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Introduction Outline

Outline

This is a talk about an induction principle, called induction-induction, in
type theory. I will try to:

1 Tell you what induction-induction is.

2 Show you why it is a useful principle.

3 Describe our formalisation.

4 Sketch how we might be able to reduce the principle to indexed
inductive definitions.
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Introduction Notation

Notation

x : A means x is of type A.
I E.g. 8 : N.

Set is the type of small types.
I 0 : Set (the empty type),

I 1 : Set (the one element type with ? : 1).

Dependent product: (x : A)× B(x).
I Sometimes written Σx : A.B(x).

I Elements pairs 〈a, b〉, where a : A and b : B(a).

Dependent function space: (x : A)→ B(x).
I Sometimes written Πx : A.B(x).

I Elements functions f that maps a : A to f (a) : B(a).
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What is induction-induction?



Introduction What is induction-induction?

What is induction-induction?

Induction-induction is an induction principle in Martin-Löf Type
Theory.

It allows us to define A : Set, together with B : A→ Set, where:
I Both A and B(a) for a : A are inductively defined.
I The constructors for A can refer to B and vice versa.
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Introduction What is induction-induction?

An example
Define

A : Set B : A→ Set

with constructors

introA,base : A

introA,step : (a1 : A)→ B(a1)→ (a2 : A)→ A

introB,base : N→ (a : A)→ B(a)

introB,step : (a : A)→ (b : B(a))→ B(introA(a, b, a))

This is not an ordinary mutual inductive definition, because B is
indexed by A.

It is not an indexed inductive definition, because the index set A is
not fixed beforehand.

It is not an inductive-recursive definition, because B is defined
inductively, not recursively.
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Motivation Type Theory in Type Theory

Martin-Löf Type Theory in Martin-Löf Type Theory

Consider the problem of modelling Martin-Löf Type Theory inside
Martin-Löf Type Theory.
Following Danielsson and Chapman, we could define

Ctxt : Set Γ : Ctxt⇔ Γ is a well-formed context

Ty : Ctxt→ Set τ : Ty(Γ)⇔ τ is a type in context Γ

Term : (Γ : Ctxt)→ Ty(Γ)→ Set t : Term(Γ, τ)⇔ t is a term of type τ

in context Γ

...

This way, we can define exactly the well-formed terms.
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Motivation Type Theory in Type Theory

Martin-Löf Type Theory in Martin-Löf Type Theory (cont.)

Ctxt : Set Γ : Ctxt⇔ Γ is a well-formed context

Ty : Ctxt→ Set τ : Ty(Γ)⇔ τ is a type in context Γ

The problem is, everything seems to depend on everything else. . .

In order to extend a context Γ with another variable x : τ , we need to
know that τ is a well-formed type in the current context Γ.

Types obviously depends on contexts, as they are indexed over
contexts.

. . .

Hence we must define Ctxt : Set, Ty : Ctxt→ Set mutually, and this is an
inductive-inductive definition.
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Motivation Type Theory in Type Theory

Contexts

We use de Bruijn indices, so contexts are represented as lists of the types
of the free variables.
The empty context is a context:

ε : Ctxt

If τ is a type in the current context, then we can extend it with a new
variable of type τ :

Γ : Ctxt τ : Ty(Γ)

cons(Γ, τ) : Ctxt

Example The context x0 : N, x1 : N→ N is represented as
cons(N, cons(N→ N, ε)).
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Motivation Type Theory in Type Theory

Types

Base types such as N and a universe U are types in any context:

Γ : Ctxt
N : Ty(Γ)

Γ : Ctxt
U : Ty(Γ)

The dependent function type is interesting, as the type of the codomain
can depend on the variable that is to be bound:

Γ : Ctxt A : Ty(Γ) B : Ty(cons(Γ,A))

Π(A,B) : Ty(Γ)

Example N→ N = Π(N,N) is a type in the empty context, i.e.
Π(N,N) : Type(ε), since

ε : Ctxt ,

N : Ty(ε) ,

N : Ty(cons(N, ε)) .
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How can we formalise
induction-induction?



A formalisation

Constructor form

First, note that a rule such as

Γ : Ctxt A : Ty(Γ) B : Ty(cons(Γ,A))

Π(Γ,A,B) : Ty(Γ)

can equivalently be presented as a constructor

Π :
(
(Γ : Ctxt)× (A : Ty(Γ))× Ty(cons(〈Γ,A〉))

)
→ Ty(Γ) .

It is easier to reason about terms!

Fredrik Nordvall Forsberg (Swansea) Formalising inductive-inductive definitions PECP, August 21, 2010 9 / 29



A formalisation General idea

An axiomatisation of induction-recursion

Induction-recursion was given a finite axiomatisation by Dybjer and
Setzer.

The main idea is to extend type theory with:
I a datatype SP consisting of codes for sets defined by

induction-recursion.
I a function Arg which “decodes” the code from SP, giving the domain

of the constructor for the set.
I for every γ : SP, a set Uγ closed under Arg(γ), i.e. there is a

constructor
introγ : Arg(γ,Uγ)→ Uγ .

(Omitting the recursively defined Tγ : Uγ → D.)
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A formalisation General idea

Extending the idea to induction-induction

Extending the technique used there, we can also give an axiomatisation for
induction-induction.

We will need two datatypes SPA and SPB, one for A and one for B.

In addition, we will need to keep track of the elements we can refer
to, so we will need parameters Aref and Bref.

I For example, in

cons : (Γ : Ctxt)× Ty(Γ)→ Ctxt ,

Ty(Γ) refers to Γ : Ctxt. After the first argument, Aref will be extended
to Aref + {Γ}.

Also need machinery to allow constructors for B to use constructors
for A.

Π :
(
(Γ : Ctxt)× (τ : Ty(Γ))× Ty(cons(〈Γ, τ〉))

)
→ Ty(Γ)
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A formalisation Codes for A

SPA

Code Represents

nilA : SPA(Aref,Bref) 1

K : Set γ : K → SPA(Aref,Bref)

nonind(K , γ) : SPA(Aref,Bref)
(
k : K

)
× . . .

γ : SPA(Aref + 1,Bref)

A-ind(γ) : SPA(Aref,Bref)
(
a : A

)
× . . .

hindex : Aref γ : SPA(Aref,Bref + 1)

B-ind(hindex, γ) : SPA(Aref,Bref)
(
b : B(hindex)

)
× . . .

Note Could also extend to generalised induction
(
j : K → A

)
× . . .
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A formalisation Decoding the codes for A

ArgA

More formally, “Represents” in the table will be given meaning by the
decoding function ArgA. The types of its arguments:

Aref : Set Bref : Set γA : SPA(Aref,Bref)

A : Set B : A→ Set

repA : Aref → A repindex : Bref → A

repB : (x : Bref)→ B(repindex(x))
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A formalisation Decoding the codes for A

ArgA; nilA

Aref : Set Bref : Set A : Set B : A→ Set

repA : Aref → A repindex : Bref → A repB : (x : Bref)→ B(repindex(x))

Code Represents

nilA : SPA(Aref,Bref) 1

ArgA(Aref,Bref, nilA,A,B, repA, repindex, repB) = 1
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A formalisation Decoding the codes for A

ArgA; nonind

Aref : Set Bref : Set A : Set B : A→ Set

repA : Aref → A repindex : Bref → A repB : (x : Bref)→ B(repindex(x))

Code Represents

K : Set γ : K → SPA(Aref,Bref)

nonind(K , γ) : SPA(Aref,Bref)
(
k : K

)
× . . .

ArgA(Aref,Bref, nonind(K , γ),A,B, repA, repindex, repB) =(
k : K

)
× ArgA( , , γ(k), , , , , )
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A formalisation Decoding the codes for A

ArgA; A-ind

Aref : Set Bref : Set A : Set B : A→ Set

repA : Aref → A repindex : Bref → A repB : (x : Bref)→ B(repindex(x))

Code Represents
γ : SPA(Aref + 1,Bref)

A-ind(γ) : SPA(Aref,Bref)
(
a : A

)
× . . .

ArgA(Aref,Bref,A-ind(γ),A,B, repA, repindex, repB) =(
a : A

)
× ArgA(Aref + 1, , γ, , , repA t (λ ? .a), , )
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A formalisation Decoding the codes for A

ArgA; B-ind

Aref : Set Bref : Set A : Set B : A→ Set

repA : Aref → A repindex : Bref → A repB : (x : Bref)→ B(repindex(x))

Code Represents

hindex : Aref γ : SPA(Aref,Bref + 1)

B-ind(hindex, γ) : SPA(Aref,Bref)
(
b : B(hindex)

)
× . . .

ArgA(Aref,Bref,B-ind(hindex, γ),A,B, repA, repindex, repB) =(
b : B(repA(hindex))

)
×

ArgA( ,Bref + 1, γ, , , , repindex t (λ ? .repA(hindex)), repB t (λ ? .b))
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A formalisation An example

An example

cons :
(
(Γ : Ctxt)× Ty(Γ)

)
→ Ctxt

has code
γcons = A-ind(B-ind(Γ̂, nilA)) : SPA(0, 0) ,

where Γ̂ = inr(?). We have

Arg′A(γcons,Ctxt,Ty) = (Γ : Ctxt)× Ty(Γ)× 1 .

(Arg′A(γ,A,B) := ArgA(0, 0, γ,A,B, !A, !A, !B))

Fredrik Nordvall Forsberg (Swansea) Formalising inductive-inductive definitions PECP, August 21, 2010 18 / 29



A formalisation Codes and decoding for B

SPB, ArgB and indexB

SPB and ArgB are similar to SPA and ArgA, but with some additional
complexity to handle using constructors for A as indices for B, e.g.

Π :
(
(Γ : Ctxt)× (τ : Ty(Γ))× Ty(cons(〈Γ, τ〉))

)
→ Ty(Γ) .

We also need to keep track of the index of the type of the constructor, e.g.

Π(Γ, τ, σ) : Ty(Γ) .
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A formalisation Formation and introduction rules

Formation, introduction (and elimination) rules

Let γA : SP′
A, γB : SP′

B(γA).
Formation rules:

AγA,γB : Set BγA,γB : AγA,γB → Set

Introduction rule for AγA,γB :

introA : Arg′A(γA, )→ AγA,γB

Introduction rule for BγA,γB :

introB : (b : Arg′B(γA, γB ,AγA,γB ,
~BγA,γB ))

→ BγA,γB (indexB(γA, γB ,AγA,γB ,
~BγA,γB , b))

Elimination rules (the ones you would expect) can also be formulated, but
we omit them here.
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Can we reduce induction-induction
to well-known principles?



Sketch of reduction to indexed inductive definitions Contexts and types

The example again

Recall our example of contexts and types again:

ε : Ctxt

Γ : Ctxt τ : Ty(Γ)

cons(Γ, τ) : Ctxt

Γ : Ctxt
U(Γ) : Ty(Γ)

Γ : Ctxt A : Ty(Γ) B : Ty(cons(Γ,A))

Π(Γ,A,B) : Ty(Γ)

We want to replace this with an indexed inductive definition, so that we
still have terms witnessing the introduction and elimination rules.
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Sketch of reduction to indexed inductive definitions Contexts and types

The idea

The idea is to mutually define preCtxt : Set, preTy : Set and then
“goodness predicates”

goodCtxt : preCtxt→ Set

goodTy : preCtxt→ preTy→ Set

where goodTy(Γ, τ) is meant to be the set of proofs that the pre-type τ is
well-formed in the well-formed pre-context Γ.

This goes back to an (unpublished) idea by Dybjer and Setzer.
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Sketch of reduction to indexed inductive definitions Contexts and types

Pre-contexts and pre-types

For the pre-contexts and pre-types, we simply drop all index information:

ε : Ctxt

Γ : Ctxt τ : Ty(Γ)

cons(Γ, τ) : Ctxt

Γ : Ctxt
U(Γ) : Ty(Γ)

Γ : Ctxt A : Ty(Γ) B : Ty(cons(Γ,A))

Π(Γ,A,B) : Ty(Γ)

becomes

preε : preCtxt

Γ : preCtxt τ : preTy

precons(Γ, τ) : preCtxt

Γ : preCtxt

preU(Γ) : preTy

Γ : preCtxt A : preTy B : preTy

preΠ(Γ,A,B) : preTy
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Sketch of reduction to indexed inductive definitions Contexts and types

Good contexts

Instead, the indices come back in the goodness predicates.

ε : Ctxt

Γ : Ctxt τ : Ty(Γ)

cons(Γ, τ) : Ctxt

becomes
goodε : goodCtxt(preε)

Γ : preCtxt Γg : goodCtxt(Γ) τ : preTy τg : goodTy(Γ, τ)

goodcons(Γ, Γg , τ, τg) : goodCtxt(precons(Γ, τ))
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Sketch of reduction to indexed inductive definitions Contexts and types

Good types

Γ : Ctxt
U(Γ) : Ty(Γ)

Γ : Ctxt A : Ty(Γ) B : Ty(cons(Γ,A))

Π(Γ,A,B) : Ty(Γ)

becomes

Γ : preCtxt Γg : goodCtxt(Γ)

goodU(Γ, Γg) : goodTy(Γ, preU(Γ))

Γ : preCtxt
Γg : goodCtxt(Γ)

A : preTy
Ag : goodTy(Γ,A)

B : preTy
Bg : goodTy(precons(Γ,A),B)

goodΠ(Γ, Γg ,A,Ag ,B,Bg) : goodTy(Γ, preΠ(Γ,A,B))
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Sketch of reduction to indexed inductive definitions Contexts and types

Formation rules

We define
JCtxtK := (Γ : preCtxt)× goodCtxt(Γ)

JTyK(x) := (τ : preTy)× goodTy(fst(x), τ)

This obviously satisfies the formation rules

JCtxtK : Set JTyK : JCtxtK→ Set .
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Sketch of reduction to indexed inductive definitions Contexts and types

Introduction rules

The defined constructors will simply assemble goodness proofs from its
parts:

JεK : JCtxtK
JεK = 〈preε, goodε〉

JconsK : (Γ : JCtxtK)→ JTyK(Γ)→ JCtxtK
JconsK(Γ, τ) = 〈precons(fst(Γ), fst(τ)),

goodcons(fst(Γ), snd(Γ), fst(τ), snd(τ))〉
JUK : (Γ : JCtxtK)→ JTyK(Γ)

JUK(Γ) = 〈preU(fst(Γ)), goodU(fst(Γ), snd(Γ))〉
JΠK : (Γ : JCtxtK)→ (A : JTyK(Γ))→ JTyK(cons(Γ,A))→ JTyK(Γ)

JΠK(Γ,A,B) = 〈preΠ(fst(Γ), fst(A), fst(B)),

goodΠ(fst(Γ), snd(Γ), fst(A), snd(A), fst(B), snd(B))〉
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Sketch of reduction to indexed inductive definitions Contexts and types

Work in progress: elimination and computation rules

Problem In order to use the base case and step cases the elimination
principle gives us, we need that all goodness proofs are
equal.

Solution This can be proven with the elimination rules for indexed
inductive definitions.

Problem This lets us define the eliminators. However, now the
computation rules only hold up to propositional equality.

Possible solution If we work in a type theory with a propositional
universe, this could be avoided.

Problem ???
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Summary

Summary

Induction-induction is an induction principle which allows us to define
A : Set, together with B : A→ Set, where:

I Both A and B(a) for a : A are inductively defined.
I The constructors for A can refer to B and vice versa.

Natural to use when modelling type theory inside type theory.

Axiomatisation by defining a universe of codes.

Work in progress: Reduction to indexed inductive definitions.
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