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Introduction Outline

Outline

This is a talk about an induction principle, called induction-induction, in
type theory. | will try to:

@ Tell you what induction-induction is.
@ Show you why it is a useful principle.
© Describe our formalisation.

@ Sketch how we might be able to reduce the principle to indexed
inductive definitions.
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Introduction Notation

Notation

@ x : A means x is of type A.
» Eg. 8:N.

@ Set is the type of small types.
> 0: Set (the empty type),
» 1: Set (the one element type with x : 1).
o Dependent product: (x : A) x B(x).
» Sometimes written Xx : A.B(x).
» Elements pairs (a, b), where a: A and b: B(a).

o Dependent function space: (x : A) — B(x).
> Sometimes written lx : A.B(x).
» Elements functions f that maps a: A to f(a) : B(a).
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What is induction-induction?



e iiaitel s What is induction-induction?

What is induction-induction?

@ Induction-induction is an induction principle in Martin-Lof Type
Theory.
o It allows us to define A : Set, together with B : A — Set, where:

» Both A and B(a) for a: A are inductively defined.
» The constructors for A can refer to B and vice versa.
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e iiaitel s What is induction-induction?

An example
Define
A Set B:A— Set

with constructors

iNtroa pase : A

iNtroa step : (a1 : A) = B(a1) = (a2 : A) = A

iNtrog pase : N — (a: A) — B(a)

introgstep : (2 : A) — (b : B(a)) — B(introa(a, b, a))
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e iiaitel s What is induction-induction?

An example
Define
A : Set B: A — Set

with constructors

iNtroa pase : A

iNtroa step : (a1 : A) = B(a1) = (a2 : A) = A

iNtrog pase : N — (a: A) — B(a)

introgstep : (2 : A) — (b : B(a)) — B(introa(a, b, a))

@ This is not an ordinary mutual inductive definition, because B is
indexed by A.

@ It is not an indexed inductive definition, because the index set A is
not fixed beforehand.

@ It is not an inductive-recursive definition, because B is defined
inductively, not recursively.
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e iiaitel s What is induction-induction?

An example
Define
A : Set B: A — Set

with constructors

iNtroa pase : A
introa ctep : (a1 : A) = B(a1) = (ar : A) = A

Now: a meaningful example!

@ This is not an ordinary mutual inductive definition, because B is
indexed by A.

@ It is not an indexed inductive definition, because the index set A is
not fixed beforehand.

@ It is not an inductive-recursive definition, because B is defined
inductively, not recursively.
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Martin-Lof Type Theory in Martin-Lof Type Theory

Consider the problem of modelling Martin-Lof Type Theory inside
Martin-Lof Type Theory.

Following Danielsson and Chapman, we could define

Ctxt : Set
Ty : Ctxt — Set

[: Ctxt & I is a well-formed context

7:Ty(l') < 7 is a type in context I
Term : (I : Ctxt) — Ty(I') — Set t: Term([',7) < t is a term of type 7

in context

This way, we can define exactly the well-formed terms.
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Type Theory in Type Theory
Martin-Lof Type Theory in Martin-Lof Type Theory (cont.)

Ctxt : Set [: Ctxt & I is a well-formed context
Ty : Ctxt — Set 7:Ty(l') < 7 is a type in context I’

The problem is, everything seems to depend on everything else. ..
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Type Theory in Type Theory
Martin-Lof Type Theory in Martin-Lof Type Theory (cont.)

Ctxt : Set [: Ctxt & I is a well-formed context
Ty : Ctxt — Set 7:Ty(l') < 7 is a type in context I’

The problem is, everything seems to depend on everything else. ..

@ In order to extend a context I with another variable x : 7, we need to
know that 7 is a well-formed type in the current context I'.
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iz Theay i e sy
Martin-Lof Type Theory in Martin-Lof Type Theory (cont.)

Ctxt : Set [: Ctxt & I is a well-formed context
Ty : Ctxt — Set 7:Ty(l') < 7 is a type in context I’

The problem is, everything seems to depend on everything else. . .

@ In order to extend a context I with another variable x : 7, we need to
know that 7 is a well-formed type in the current context I'.

o Types obviously depends on contexts, as they are indexed over
contexts.
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iz Theay i e sy
Martin-Lof Type Theory in Martin-Lof Type Theory (cont.)

Ctxt : Set [: Ctxt & I is a well-formed context
Ty : Ctxt — Set 7:Ty(l') < 7 is a type in context I’

The problem is, everything seems to depend on everything else. . .

@ In order to extend a context I with another variable x : 7, we need to
know that 7 is a well-formed type in the current context I'.

o Types obviously depends on contexts, as they are indexed over
contexts.

Hence we must define Ctxt : Set, Ty : Ctxt — Set mutually, and this is an
inductive-inductive definition.
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Contexts

We use de Bruijn indices, so contexts are represented as lists of the types
of the free variables.
The empty context is a context:

e : Ctxt

If 7 is a type in the current context, then we can extend it with a new

variable of type 7:
M:Ctxt 7:Ty(l)

cons(l", 7) : Ctxt

Example The context xg : N, x; : N — N is represented as
cons(N, cons(N — N, ¢)).
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12 THEsR) {0 T Thessy
Types
Base types such as N and a universe U are types in any context:

[ Cixt [ Cixt
N: Ty(I) U: Ty(lN

The dependent function type is interesting, as the type of the codomain
can depend on the variable that is to be bound:
I:Ctxt A:Ty(l) B: Ty(cons(l', A))
M(A,B) : Ty()

Example N — N =TI(N,N) is a type in the empty context, i.e.
M(N,N) : Type(e), since

o ¢: Ctxt ,

o N:Ty(e) ,

o N: Ty(cons(N,¢)) .
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How can we formalise
induction-induction?



A formalisation

Constructor form

First, note that a rule such as

M:Cxt A:Ty(l) B: Ty(cons(l', A))
n(r, A, B) : Ty(T)

can equivalently be presented as a constructor

M: ((F: Cixt) x (A: Ty(T)) x Ty(cons((', A)))) — Ty(I') .

It is easier to reason about terms!
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A formalisation General idea

An axiomatisation of induction-recursion

@ Induction-recursion was given a finite axiomatisation by Dybjer and
Setzer.
@ The main idea is to extend type theory with:

> a datatype SP consisting of codes for sets defined by
induction-recursion.

» a function Arg which “decodes” the code from SP, giving the domain
of the constructor for the set.

» for every v : SP, a set U, closed under Arg(7), i.e. there is a

constructor
intro, : Arg(vy, Uy) = U, .

(Omitting the recursively defined T, : U, — D.)
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A formalisation General idea

Extending the idea to induction-induction

Extending the technique used there, we can also give an axiomatisation for
induction-induction.

o We will need two datatypes SPa and SPg, one for A and one for B.

@ In addition, we will need to keep track of the elements we can refer
to, so we will need parameters A,er and Byes.

» For example, in
cons : (I : Ctxt) x Ty(I') — Ctxt ,

Ty(I) refers to I : Ctxt. After the first argument, A will be extended
to Ares + {I'}

@ Also need machinery to allow constructors for B to use constructors
for A.

Mn: ((r : Ctxt) x (7 : Ty(I)) x Ty(cons(<r,7'>))) — Ty(I)
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A formalisation Codes for A

SPa

Code Represents

nila : SPA(Aref, Bref) 1

K :Set 7 : K — SPA(Aref, Bref)
nonind(K, ) : SPa (Aref, Bref) (k : K) X ...

v SPA(Aref + 17 Bref)
A-ind(y) : SPA(Aref, Bref) (a : A) X ..

Hindex @ Aref v SPA(Areﬂ Bref + 1)
B‘ind(hindex>7) : SPA(Arefa Bref) (b : B(hindex)) X

Note Could also extend to generalised induction (j K — A) X ...
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Dot e ks
Arg,

More formally, “Represents” in the table will be given meaning by the

decoding function Arg,. The types of its arguments:

Aref © Set Bref : Set YA - SPA(Areﬁ Bref)

A : Set B: A — Set

repy @ Aref = A rePindex - Bref = A
repg - (X : Bref) — B(repindex(x))
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Arg,; nily

Aver : Set Bies : Set A Set B:A— Set
repa : Aref = A rePindex : Bref = A repp i (X 1 Bref) = B(repingex (X))

Code Represents

nil : SPA(Aref7 Bref) 1

ArgA(Arefa Bres, nila, A, B, repa; rePindexs repB) =1

Fredrik Nordvall Forsberg (Swansea) Formalising inductive-inductive definitions PECP, August 21, 2010 14 /29



Dot e ks
Arg,; nonind

Aves © Set Bies : Set A Set B:A— Set
repp - Aref = A rePindex : Bref = A repp : (X 1 Bref) = B(repingex (X))

Code Represents

K :Set 7 : K — SPA(Aref, Bref)
nonind(K, ) : SPa(Aref, Bref) (k : K) X ...

Arga (Aref, Bref, nonind( K, ), A, B, repa, repindexs 'epp) =

(k : K) X ArgA(—7 - V(k)wa ] —)
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Dot e ks
Arg,; A-ind

Aes : Set Bies : Set A Set B:A— Set
repp - Aref = A rePindex : Bref = A repp : (X 1 Bref) = B(repingex (X))

Code Represents
v SPA(Aref + 17 Bref)
A—ind(’y) . SPA(Aref, Bref) (a : A) X ...

ArgA(Arefa Bref; A'ind(7)7 A7 B: re€P A, MePindex> I’epB) =
(a:A) x Arga(Arer + 1,7, -, repp LI (A% .a), -, )
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Dot e ks
Arg,; B-ind

Aver : Set Bies : Set A Set B:A— Set
repa : Aref = A rePindex : Bref = A repg i (X 1 Bref) = B(repinaex (X))

Code Represents

hindex @ Aref v SPA(Areﬁ Bref + 1)
B-ind(hindex; 7) SPA(Arefa Bref) (b : B(hindex)) X

ArgA(Arefa Bref: B‘ind(hindexa 7)7 A: B, FePA; MPindex> repB) =
(b : B(repA(hindex))) X
ArgA(—7 Bret + 1,7, -, rePindex U ()‘ * -rePA(hindex)), repg U ()‘ * b))
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A formalisation An example

An example

cons : ((I: Ctxt) x Ty(I')) — Ctxt

has code
Yeons = A-ind(B-ind(I', nils)) : SPA(0,0) ,

where [ = inr(x). We have

Arg/y (Yeons, Ctxt, Ty) = (I : Ctxt) x Ty(F) x 1 .

(Argg(’y, A7 B) = ArgA(07 0)77 A, Ba !A7 !A7 'B))
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e e e S A

SPg, Argg and indexp

SPgp and Argg are similar to SP and Argy, but with some additional
complexity to handle using constructors for A as indices for B, e.g.

n: ((r : Ctxt) x (7 : Ty(I)) x Ty(cons((F,T)))) — Ty(l) .
We also need to keep track of the index of the type of the constructor, e.g.

nr,r,o): Ty(l) .
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A formalisation Formation and introduction rules

Formation, introduction (and elimination) rules

Let va : SPy, 78 : SP5(7a).
Formation rules:

Avarrs 258t Byynp t Ayynp = Set
Introduction rule for A,, -,.:

introp : Argk(’}’m) - A*mms

Introduction rule for B,, -,:

introg : (b: Argis(’YA;’)’B: Avpavs BWANB))

— By s (indexs(va, 785 Avae s Byans: b))

Elimination rules (the ones you would expect) can also be formulated, but
we omit them here.
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Can we reduce induction-induction
to well-known principles?



Sketch of reduction to indexed inductive definitions BNECIIEIGEIEN T BT

The example again

Recall our example of contexts and types again:

[:Ctxt 7:Ty(l)

e : Ctxt cons(I", 7) : Ctxt
- Cixt M:Ctxt A:Ty(l) B: Ty(cons(l', A))
u(r) : Ty(r) n(r, A B):Ty(r)

We want to replace this with an indexed inductive definition, so that we
still have terms witnessing the introduction and elimination rules.
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Sketch of reduction to indexed inductive definitions BNECIIEIGEIEN T BT

The idea

The idea is to mutually define preCtxt : Set, preTy : Set and then
“goodness predicates”

goodCtxt : preCtxt — Set
goodTy : preCtxt — preTy — Set

where goodTy(I", 7) is meant to be the set of proofs that the pre-type 7 is
well-formed in the well-formed pre-context I'.

This goes back to an (unpublished) idea by Dybjer and Setzer.
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Sketch of reduction to indexed inductive definitions BNECIIEIGEIEN T BT

Pre-contexts and pre-types

For the pre-contexts and pre-types, we simply drop all index information:

M:Ctxt 7:Ty(lN)

e : Ctxt cons(I', 7) : Ctxt
- Cixt M:Ctxt A:Ty(l) B: Ty(cons(l', A))
u(r) - Ty(N) n(r,A,B): Ty(r)
becomes

IM: preCtxt 7 : preTy

pree : preCtxt precons(l", 7) : preCtxt

IM: preCtxt [:preCtxt A:preTy B :preTy
preU(T) : preTy prel(I', A, B) : preTy
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Sketch of reduction to indexed inductive definitions Contexts and types

Good contexts

Instead, the indices come back in the goodness predicates.

M:Cext 7:Ty(lN)
e : Ctxt cons(I", 7) : Ctxt

becomes

goode : goodCtxt(pree)

I:preCtxt g :goodCtxt(l) 7 :preTy 7g:goodTy(l,7)

goodcons(I',T'g, 7, 7g) : goodCtxt(precons(I', 7))
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Sketch of reduction to indexed inductive definitions Contexts and types

Good types
- Cixt M:Ctxt A:Ty(l) B: Ty(cons(l', A))
u(r) : Ty(r) n(r,A, B) : Ty(l)
becomes
I: preCtxt g : goodCtxt(I)
goodU(I', T'g) : goodTy(l', preU(I))
I : preCtxt A preTy B : preTy

Fg : goodCtxt(l) Ag :goodTy(l',A) Bg:goodTy(precons(l', A), B)
goodl(I',I'g, A, Ag, B, Bg) : goodTy(I", prel(T', A, B))
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Sketch of reduction to indexed inductive definitions Contexts and types

Formation rules

We define
[Ctxt] := (T : preCtxt) x goodCtxt(I")

[Ty](x) == (7 : preTy) x goodTy(fst(x), )

This obviously satisfies the formation rules

[Ctxt] : Set [Ty] : [Ctxt] — Set .
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Sketch of reduction to indexed inductive definitions BNECIIEIGEIEN T BT

Introduction rules

The defined constructors will simply assemble goodness proofs from its
parts:

[e] : [Ctxt]
[e] = (preze, goode)
[cons] : (I : [Ctxt]) — [Ty](I') — [Ctxt]
[cons](T, 7) = (precons(fst(I), fst(7)),
goodcons(fst(I), snd(I"), fst(7), snd(7)))
[U] : (T : [Cext]) — [Ty](T)
[UI(T) = (preU(fst(I)), good U(fst(I"),snd(T)))
[M] - (7= [Coxt]) = (A: [TYI(T)) — [Tyl(cons(T, A)) — [Ty](T)
[N, A, B) = (pref(fst(T), fst(A), fst(B)),
good[(fst(I"), snd(T"), fst(A), snd(A), fst(B), snd(B)))
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Sketch of reduction to indexed inductive definitions BNECIIEIGEIEN T BT

Work in progress: elimination and computation rules

Problem In order to use the base case and step cases the elimination
principle gives us, we need that all goodness proofs are
equal.

Solution This can be proven with the elimination rules for indexed
inductive definitions.

Problem This lets us define the eliminators. However, now the
computation rules only hold up to propositional equality.

Possible solution If we work in a type theory with a propositional
universe, this could be avoided.

Problem 777
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Summary



Summary

@ Induction-induction is an induction principle which allows us to define
A : Set, together with B : A — Set, where:

» Both A and B(a) for a: A are inductively defined.
» The constructors for A can refer to B and vice versa.

@ Natural to use when modelling type theory inside type theory.
o Axiomatisation by defining a universe of codes.

@ Work in progress: Reduction to indexed inductive definitions.
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