Constructive taboos for ordinals

Fredrik Nordvall Forsberg

joint work with Nicolai Kraus and Chuangjie Xu

Tallinn Computer Science Theory seminar
online, 6 October 2022

Ordinals

What is an ordinal number?
One answer: The essence of counting beyond the finite.

Ordinals

What is an ordinal number?
One answer: The essence of counting beyond the finite.
$0,1,2, \ldots$

Ordinals

What is an ordinal number?
One answer: The essence of counting beyond the finite.

$$
0,1,2, \ldots, \omega
$$

Ordinals

What is an ordinal number?
One answer: The essence of counting beyond the finite.

$$
0,1,2, \ldots, \omega, \omega+1
$$

Ordinals

What is an ordinal number?
One answer: The essence of counting beyond the finite.

$$
0,1,2, \ldots, \omega, \omega+1, \omega+2, \ldots
$$

Ordinals

What is an ordinal number?
One answer: The essence of counting beyond the finite.

$$
0,1,2, \ldots, \omega, \omega+1, \omega+2, \ldots, \omega \cdot 2, \ldots, \omega^{2}, \ldots, \omega^{\omega}+6, \ldots
$$

Ordinals

What is an ordinal number?
One answer: The essence of counting beyond the finite.

$$
0,1,2, \ldots, \omega, \omega+1, \omega+2, \ldots, \omega \cdot 2, \ldots, \omega^{2}, \ldots, \omega^{\omega}+6, \ldots
$$

Another answer: The essence of termination.

Ordinals

What is an ordinal number?
One answer: The essence of counting beyond the finite.

$$
0,1,2, \ldots, \omega, \omega+1, \omega+2, \ldots, \omega \cdot 2, \ldots, \omega^{2}, \ldots, \omega^{\omega}+6, \ldots
$$

Another answer: The essence of termination.
$\omega^{2}>$

Ordinals

What is an ordinal number?
One answer: The essence of counting beyond the finite.

$$
0,1,2, \ldots, \omega, \omega+1, \omega+2, \ldots, \omega \cdot 2, \ldots, \omega^{2}, \ldots, \omega^{\omega}+6, \ldots
$$

Another answer: The essence of termination.
$\omega^{2}>\omega \cdot 4+657>$

Ordinals

What is an ordinal number?
One answer: The essence of counting beyond the finite.

$$
0,1,2, \ldots, \omega, \omega+1, \omega+2, \ldots, \omega \cdot 2, \ldots, \omega^{2}, \ldots, \omega^{\omega}+6, \ldots
$$

Another answer: The essence of termination.
$\omega^{2}>\omega \cdot 4+657>\omega \cdot 4+656>$

Ordinals

What is an ordinal number?
One answer: The essence of counting beyond the finite.

$$
0,1,2, \ldots, \omega, \omega+1, \omega+2, \ldots, \omega \cdot 2, \ldots, \omega^{2}, \ldots, \omega^{\omega}+6, \ldots
$$

Another answer: The essence of termination.
$\omega^{2}>\omega \cdot 4+657>\omega \cdot 4+656>\ldots>\omega \cdot 4>$

Ordinals

What is an ordinal number?
One answer: The essence of counting beyond the finite.

$$
0,1,2, \ldots, \omega, \omega+1, \omega+2, \ldots, \omega \cdot 2, \ldots, \omega^{2}, \ldots, \omega^{\omega}+6, \ldots
$$

Another answer: The essence of termination.
$\omega^{2}>\omega \cdot 4+657>\omega \cdot 4+656>\ldots>\omega \cdot 4>\omega \cdot 3+9453>$

Ordinals

What is an ordinal number?
One answer: The essence of counting beyond the finite.

$$
0,1,2, \ldots, \omega, \omega+1, \omega+2, \ldots, \omega \cdot 2, \ldots, \omega^{2}, \ldots, \omega^{\omega}+6, \ldots
$$

Another answer: The essence of termination.
$\omega^{2}>\omega \cdot 4+657>\omega \cdot 4+656>\ldots>\omega \cdot 4>\omega \cdot 3+9453>\ldots>\omega>$

Ordinals

What is an ordinal number?
One answer: The essence of counting beyond the finite.

$$
0,1,2, \ldots, \omega, \omega+1, \omega+2, \ldots, \omega \cdot 2, \ldots, \omega^{2}, \ldots, \omega^{\omega}+6, \ldots
$$

Another answer: The essence of termination.
$\omega^{2}>\omega \cdot 4+657>\omega \cdot 4+656>\ldots>\omega \cdot 4>\omega \cdot 3+9453>\ldots>\omega>19>\ldots>0$

Ordinals

What is an ordinal number?
One answer: The essence of counting beyond the finite.

$$
0,1,2, \ldots, \omega, \omega+1, \omega+2, \ldots, \omega \cdot 2, \ldots, \omega^{2}, \ldots, \omega^{\omega}+6, \ldots
$$

Another answer: The essence of termination.
$\omega^{2}>\omega \cdot 4+657>\omega \cdot 4+656>\ldots>\omega \cdot 4>\omega \cdot 3+9453>\ldots>\omega>19>\ldots>0$

Set theory answer: a transitive, wellfounded and extensional order (cf. Taylor [1996]).

Transitive, wellfounded and extensional orders

The Homotopy Type Theory Book defines the type Ord as the type of sets equipped with an order \prec, which is

- transitive:
- wellfounded
- and extensional
$(a \prec b) \rightarrow(b \prec c) \rightarrow(a \prec c)$
transfinite induction along \prec is valid

$$
(\forall a . a \prec b \leftrightarrow a \prec c) \rightarrow b=c
$$

Transitive, wellfounded and extensional orders

The Homotopy Type Theory Book defines the type Ord as the type of sets equipped with an order \prec, which is

- transitive:
- wellfounded:
- and extensional: $\quad(\forall a . a \prec b \leftrightarrow a \prec c) \rightarrow b=c$

Theorem (Escardo [2022])

The type Ord has a non-trivial decidable property if and only if weak excluded middle $\neg P \uplus \neg \neg P$ holds.

This motivates a search for representations of ordinals that can be more useful constructively.

What has the ordinals ever done for us?

Two typical uses of ordinals:

- Transfinite iteration of operators
- Termination of processes

Transfinite iteration

Let $F:$ Set \rightarrow Set be a finitary functor.

Transfinite iteration

Let F : Set \rightarrow Set be a finitary functor.
The initial algebra of F can be constructed as the colimit of the sequence

$$
X_{0} \longrightarrow X_{1} \longrightarrow X_{2} \longrightarrow \ldots
$$

where

Transfinite iteration

Let F : Set \rightarrow Set be a finitary functor.
The initial algebra of F can be constructed as the colimit of the sequence

$$
X_{0} \longrightarrow X_{1} \longrightarrow X_{2} \longrightarrow \ldots
$$

where

$$
X_{0}=\emptyset
$$

Transfinite iteration

Let F : Set \rightarrow Set be a finitary functor.
The initial algebra of F can be constructed as the colimit of the sequence

$$
X_{0} \longrightarrow X_{1} \longrightarrow X_{2} \longrightarrow \ldots
$$

where

$$
\begin{aligned}
X_{0} & =\emptyset \\
X_{n+1} & =F\left(X_{n}\right)
\end{aligned}
$$

Transfinite iteration

Let F : Set \rightarrow Set be a finitary functor.
The initial algebra of F can be constructed as the colimit of the sequence

$$
X_{0} \xrightarrow{!} X_{1} \longrightarrow X_{2} \longrightarrow \ldots
$$

where

$$
\begin{aligned}
X_{0} & =\emptyset \\
X_{n+1} & =F\left(X_{n}\right)
\end{aligned}
$$

Transfinite iteration

Let F : Set \rightarrow Set be a finitary functor.
The initial algebra of F can be constructed as the colimit of the sequence

$$
X_{0} \xrightarrow{!} X_{1} \xrightarrow{F(!)} X_{2} \longrightarrow \ldots
$$

where

$$
\begin{aligned}
X_{0} & =\emptyset \\
X_{n+1} & =F\left(X_{n}\right)
\end{aligned}
$$

Transfinite iteration

Let F : Set \rightarrow Set be a finitary functor.
The initial algebra of F can be constructed as the colimit of the sequence

$$
X_{0} \xrightarrow{!} X_{1} \xrightarrow{F(!)} X_{2} \xrightarrow{F^{2}(!)} \ldots
$$

where

$$
\begin{aligned}
X_{0} & =\emptyset \\
X_{n+1} & =F\left(X_{n}\right)
\end{aligned}
$$

Transfinite iteration

Let F : Set \rightarrow Set be a finitary functor.
The initial algebra of F can be constructed as the colimit of the sequence

$$
X_{0} \xrightarrow{!} X_{1} \xrightarrow{F(!)} X_{2} \xrightarrow{F^{2}(!)} \ldots
$$

where

$$
\begin{aligned}
X_{0} & =\emptyset \\
X_{n+1} & =F\left(X_{n}\right) \\
\mu F=X_{\omega} & =\operatorname{colim}_{\beta<\omega} X_{\beta}
\end{aligned}
$$

Transfinite iteration

Let $F:$ Set \rightarrow Set be a functor preserving κ-colimits.
The initial algebra of F can be constructed as the colimit of the sequence

$$
X_{0} \xrightarrow{!} X_{1} \xrightarrow{F(!)} X_{2} \xrightarrow{F^{2}(!)} \ldots \longrightarrow X_{\omega}
$$

where

$$
\begin{aligned}
X_{0} & =\emptyset \\
X_{n+1} & =F\left(X_{n}\right) \\
X_{\omega} & =\operatorname{colim}_{\beta<\omega} X_{\beta}
\end{aligned}
$$

Transfinite iteration

Let $F:$ Set \rightarrow Set be a functor preserving κ-colimits.
The initial algebra of F can be constructed as the colimit of the sequence

$$
X_{0} \xrightarrow{!} X_{1} \xrightarrow{F(!)} X_{2} \xrightarrow{F^{2}(!)} \ldots \longrightarrow X_{\omega} \longrightarrow X_{\omega+1} \longrightarrow \ldots
$$

where

$$
\begin{aligned}
X_{0} & =\emptyset \\
X_{\alpha+1} & =F\left(X_{\alpha}\right) \\
X_{\lambda} & =\operatorname{colim}_{\beta<\lambda} X_{\beta}
\end{aligned}
$$

Transfinite iteration

Let $F:$ Set \rightarrow Set be a functor preserving κ-colimits.
The initial algebra of F can be constructed as the colimit of the sequence

$$
X_{0} \xrightarrow{!} X_{1} \xrightarrow{F(!)} X_{2} \xrightarrow{F^{2}(!)} \ldots \longrightarrow X_{\omega} \longrightarrow X_{\omega+1} \longrightarrow \ldots \longrightarrow X_{\kappa}
$$

where

$$
\begin{aligned}
X_{0} & =\emptyset \\
X_{\alpha+1} & =F\left(X_{\alpha}\right) \\
X_{\lambda} & =\operatorname{colim}_{\beta<\lambda} X_{\beta} \\
\mu F & =X_{\kappa}
\end{aligned}
$$

Transfinite iteration

Let $F:$ Set \rightarrow Set be a functor preserving κ-colimits.
The initial algebra of F can be constructed as the colimit of the sequence

$$
X_{0} \xrightarrow{!} X_{1} \xrightarrow{F(!)} X_{2} \xrightarrow{F^{2}(!)} \ldots \longrightarrow X_{\omega} \longrightarrow X_{\omega+1} \longrightarrow \ldots \longrightarrow X_{\kappa}
$$

where

$$
\begin{aligned}
X_{0} & =\emptyset \\
X_{\alpha+1} & =F\left(X_{\alpha}\right) \\
X_{\lambda} & =\operatorname{colim}_{\beta<\lambda} X_{\beta} \\
\mu F & =X_{\kappa}
\end{aligned}
$$

Useful: Definitional principle where ordinals are classified as $0, \alpha+1$ or a limit.

Termination of processes

- Programs terminating [Turing 1949]
- Consistency proof e.g. of Peano's axioms [Gentzen 1936]
- Termination of Goodstein sequences [Goodstein 1944], the Hydra game [Kirby\&Paris 1982]:

Termination of processes

- Programs terminating [Turing 1949]
- Consistency proof e.g. of Peano's axioms [Gentzen 1936]
- Termination of Goodstein sequences [Goodstein 1944], the Hydra game [Kirby\&Paris 1982]:

Termination of processes

- Programs terminating [Turing 1949]
- Consistency proof e.g. of Peano's axioms [Gentzen 1936]
- Termination of Goodstein sequences [Goodstein 1944], the Hydra game [Kirby\&Paris 1982]:

Termination of processes

- Programs terminating [Turing 1949]
- Consistency proof e.g. of Peano's axioms [Gentzen 1936]
- Termination of Goodstein sequences [Goodstein 1944], the Hydra game [Kirby\&Paris 1982]:

Termination of processes

- Programs terminating [Turing 1949]
- Consistency proof e.g. of Peano's axioms [Gentzen 1936]
- Termination of Goodstein sequences [Goodstein 1944], the Hydra game [Kirby\&Paris 1982]:

Termination of processes

- Programs terminating [Turing 1949]
- Consistency proof e.g. of Peano's axioms [Gentzen 1936]
- Termination of Goodstein sequences [Goodstein 1944], the Hydra game [Kirby\&Paris 1982]:

Useful: Arithmetic, and every decreasing sequence of ordinals hits 0 .

A spectrum of ordinal notions

回 N. Kraus, F. N-F., and C. Xu.
Connecting constructive notions of ordinals in homotopy type theory MFCS 2021.

A spectrum of ordinal notions

回 N. Kraus, F. N-F., and C. Xu.
Connecting constructive notions of ordinals in homotopy type theory MFCS 2021.

Brouwer ordinal trees in constructive type theory Inductive type \mathcal{B} of Brouwer trees [Brouwer 1926; Martin-Löf 1970]:
data \mathcal{B} where
zero: \mathcal{B}
succ : $\mathcal{B} \rightarrow \mathcal{B}$
limit : $(\mathbb{N} \rightarrow \mathcal{B}) \rightarrow \mathcal{B}$

Brouwer ordinal trees in constructive type theory

 Inductive type \mathcal{B} of Brouwer trees [Brouwer 1926; Martin-Löf 1970]:> data \mathcal{B} where
> \quad zero $: \mathcal{B}$
> \quad succ $: \mathcal{B} \rightarrow \mathcal{B}$
> \quad limit $:(\mathbb{N} \rightarrow \mathcal{B}) \rightarrow \mathcal{B}$

Examples:

$$
\begin{aligned}
& \omega:=\operatorname{limit}(0,1,2,3, \ldots) \\
& \omega \cdot 2:=\operatorname{limit}(\omega, \omega+1, \omega+2, \ldots)
\end{aligned}
$$

and so on (addition, multiplication, exponentiation are standard).

Brouwer ordinal trees in constructive type theory

 Inductive type \mathcal{B} of Brouwer trees [Brouwer 1926; Martin-Löf 1970]:> data \mathcal{B} where
> zero : \mathcal{B}
> succ : $\mathcal{B} \rightarrow \mathcal{B}$
> limit: $(\mathbb{N} \rightarrow \mathcal{B}) \rightarrow \mathcal{B}$

Examples:

$$
\begin{aligned}
& \omega:=\operatorname{limit}(0,1,2,3, \ldots) \\
& \omega \cdot 2:=\operatorname{limit}(\omega, \omega+1, \omega+2, \ldots)
\end{aligned}
$$

and so on (addition, multiplication, exponentiation are standard).

Problems:

$$
\operatorname{limit}(0,1,2,3, \ldots) \neq \operatorname{limit}(2,3, \ldots)
$$

Brouwer ordinal trees in constructive type theory

 Inductive type \mathcal{B} of Brouwer trees [Brouwer 1926; Martin-Löf 1970]:> data \mathcal{B} where
> zero : \mathcal{B}
> succ : $\mathcal{B} \rightarrow \mathcal{B}$
> limit: $(\mathbb{N} \rightarrow \mathcal{B}) \rightarrow \mathcal{B}$

Examples:

$$
\begin{aligned}
& \omega:=\operatorname{limit}(0,1,2,3, \ldots) \\
& \omega \cdot 2:=\operatorname{limit}(\omega, \omega+1, \omega+2, \ldots)
\end{aligned}
$$

and so on (addition, multiplication, exponentiation are standard).

Problems:

$$
\operatorname{limit}(0,1,2,3, \ldots) \neq \operatorname{limit}(2,3, \ldots)
$$

Brouwer ordinal trees in constructive type theory

 Inductive type \mathcal{B} of Brouwer trees [Brouwer 1926; Martin-Löf 1970]:> data \mathcal{B} where
> zero : \mathcal{B}
> succ : $\mathcal{B} \rightarrow \mathcal{B}$
> limit : $(\mathbb{N} \rightarrow \mathcal{B}) \rightarrow \mathcal{B}$

Examples:

$$
\begin{aligned}
& \omega:=\operatorname{limit}(0,1,2,3, \ldots) \\
& \omega \cdot 2:=\operatorname{limit}(\omega, \omega+1, \omega+2, \ldots)
\end{aligned}
$$

and so on (addition, multiplication, exponentiation are standard).

Problems:

$$
\begin{aligned}
\operatorname{limit}(0,1,2,3, \ldots) & \neq \operatorname{limit}(2,3, \ldots) \\
\operatorname{limit}(0,1,2,3, \ldots) & \neq \operatorname{limit}(0,2,1,3, \ldots)
\end{aligned}
$$

Brouwer ordinal trees in constructive type theory

 Inductive type \mathcal{B} of Brouwer trees [Brouwer 1926; Martin-Löf 1970]:> data \mathcal{B} where
> zero : \mathcal{B}
> succ : $\mathcal{B} \rightarrow \mathcal{B}$
> limit : $(\mathbb{N} \rightarrow \mathcal{B}) \rightarrow \mathcal{B}$

Examples:

$$
\begin{aligned}
& \omega:=\operatorname{limit}(0,1,2,3, \ldots) \\
& \omega \cdot 2:=\operatorname{limit}(\omega, \omega+1, \omega+2, \ldots)
\end{aligned}
$$

and so on (addition, multiplication, exponentiation are standard).

Problems:

$$
\begin{aligned}
\operatorname{limit}(0,1,2,3, \ldots) & \neq \operatorname{limit}(2,3, \ldots) \\
\operatorname{limit}(0,1,2,3, \ldots) & \neq \operatorname{limit}(0,2,1,3, \ldots)
\end{aligned}
$$

A refined type of Brouwer tree ordinals

```
data Brw where
    zero : Brw
    succ : Brw -> Brw
    limit : (f : N }->\mathrm{ Brw) }->{f\uparrow : increasing f} -> Brw
    bisim : \forall f {f\uparrow} g {g\uparrow} ->
            f \approxg ->
            limit f {f\uparrow} \equiv limit g {g^}
    trunc : isSet Brw
data _\leq_ where
    s-z\overline{erō :}:\forall{x}->zero \leqx
    s-trans : \forall {x y z} }->\textrm{x}\leq\textrm{y}->\textrm{y}\leq\textrm{z}->\textrm{x}\leq\textrm{z
    s-succ-mono : }\forall{xy}->x\leqy->\operatorname{succ}x\leq\operatorname{succ}
    s-cocone : \forall {x} f {f\uparrow k} ->( }\textrm{x}\leq\textrm{f
    s-limiting : \forall f {f\uparrow x} -> ((k : N ) -> f k \leq x ) -> limit f {f\uparrow} \leq x
    s-trunc : \forall {x y} -> isProp (x m y)
```

- Induction-induction (N.-F. [2013]): limits can only be taken of increasing sequences;
- Path constructor (Lumsdaine and Shulman [2020]): bisimilar sequences have equal limits.

Recursion and induction principles for Brw

To define f : Brw $\rightarrow X$ for X : Set, it suffices to give

$$
\left.\begin{array}{l}
f \text { zero }=?_{0} \\
f(\operatorname{succ} x)=?_{1} \\
f(\text { limit } g)=?_{2}
\end{array} \quad \text { (given } f x\right)
$$

such that $f($ limit $g)=f($ limit $h)$ whenever $g \approx h$.

Recursion and induction principles for Brw

To define f : Brw $\rightarrow X$ for X : Set, it suffices to give

$$
\begin{array}{ll}
f \text { zero }=?_{0} \\
f(\operatorname{succ} x)=?_{1} & \text { (given } f x) \\
f(\text { limit } g)=?_{2} & \text { (given } f(g i) \text { for any } i: \mathbb{N})
\end{array}
$$

such that $f($ limit $g)=f($ limit $h)$ whenever $g \approx h$.
To prove $\forall(x: \operatorname{Brw}) . P(x)$ for $P: \operatorname{Brw} \rightarrow$ Prop, it suffices to give

$$
\begin{aligned}
& p_{\text {zero }}: P \text { zero } \\
& p_{\text {succ }} x: P x \rightarrow P(\operatorname{succ} x) \\
& p_{\text {limit }} g:(\forall(i: \mathbb{N}) \cdot P(g i)) \rightarrow P(\text { limit } g)
\end{aligned}
$$

(Note $p_{\text {limit }} g=p_{\text {limit }} h$ for $g \approx h$ follows always, since P is Prop-valued.)

Example: multiplication

Seemingly straightforward definition:

$$
\begin{aligned}
x \cdot \text { zero } & =\text { zero } \\
x \cdot(\operatorname{succ} y) & =x \cdot y+x \\
x \cdot(\operatorname{limit} f) & =\operatorname{limit}\left(\lambda i . x \cdot f_{i}\right)
\end{aligned}
$$

Example: multiplication

Seemingly straightforward definition:

$$
\begin{aligned}
x \cdot \text { zero } & =\text { zero } \\
x \cdot(\operatorname{succ} y) & =x \cdot y+x \\
x \cdot(\operatorname{limit} f) & =\operatorname{limit}\left(\lambda i . x \cdot f_{i}\right)
\end{aligned}
$$

But! λi.zero $\cdot f_{i}$ is not increasing even if f is.

Example: multiplication

Seemingly straightforward definition:

$$
\begin{aligned}
x \cdot \text { zero } & =\text { zero } \\
x \cdot(\operatorname{succ} y) & =x \cdot y+x \\
x \cdot(\operatorname{limit} f) & =\operatorname{limit}\left(\lambda i . x \cdot f_{i}\right)
\end{aligned}
$$

But! λi.zero $\cdot f_{i}$ is not increasing even if f is.
Thankfully, we can decide if x is zero or not and act accordingly.

Example: multiplication

Seemingly straightforward definition:

$$
\begin{aligned}
& x \cdot \text { zero }=\text { zero } \\
& x \cdot(\text { succ } y)=x \cdot y+x \\
& x \cdot(\text { limit } f\{\text { incr- } f\}) \text { with decZero } x \\
& \ldots \mid \text { yes } x \equiv 0=\text { zero } \\
& \ldots \mid \text { no } x \neq 0=\operatorname{limit}\left(\lambda i . x \cdot f_{i}\right)\{x \text {--increasing } \mathrm{x} \neq 0 \text { incr- } f\}
\end{aligned}
$$

But! λi.zero $\cdot f_{i}$ is not increasing even if f is.
Thankfully, we can decide if x is zero or not and act accordingly.

Basic feasibility

Everything that one can "reasonably expect" works:

- < is wellfounded and extensional;
- \leq is antisymmetric;
- limits are actually limits;
- zero $\neq \operatorname{succ} x$, succ $x \neq$ limit g, etc;
- arithmetic operations can be defined and proven correct;
- and so on.

Characterising \leq using encode-decode

Main proof technique: we use an encode-decode method [Licata and Shulman 2013] to characterise the \leq relation.

Characterising \leq using encode-decode

Main proof technique: we use an encode-decode method [Licata and Shulman 2013] to characterise the \leq relation.

That is, we define

$$
\text { Code : Brw } \rightarrow \text { Brw } \rightarrow \text { Prop }
$$

such that Code $x y \cong(x \leq y)$.

Characterising \leq using encode-decode

Main proof technique: we use an encode-decode method [Licata and Shulman 2013] to characterise the \leq relation.

That is, we define

$$
\text { Code : Brw } \rightarrow \text { Brw } \rightarrow \text { Prop }
$$

such that Code $x y \cong(x \leq y)$.
For example:

$$
\operatorname{Code}(\operatorname{succ} x)(\operatorname{limit} f)=(\exists n: \mathbb{N})(\operatorname{Code}(\operatorname{succ} x)(f n))
$$

Characterising \leq using encode-decode

Main proof technique: we use an encode-decode method [Licata and Shulman 2013] to characterise the \leq relation.

That is, we define

$$
\text { Code : Brw } \rightarrow \text { Brw } \rightarrow \text { Prop }
$$

such that Code $x y \cong(x \leq y)$.
For example:

$$
\operatorname{Code}(\operatorname{succ} x)(\operatorname{limit} f)=(\exists n: \mathbb{N})(\operatorname{Code}(\operatorname{succ} x)(f n))
$$

Technically involved: need to simultaneously prove transitivity, reflexivity of Code, and $(x \leq y) \rightarrow$ Code $x y$.

Decidability properties

P is decidable if we can prove $\operatorname{Dec} P: \equiv P \uplus \neg P$.
data Brw where
zero: Brw
succ: Brw \rightarrow Brw
limit : $(\mathbb{N} \xrightarrow{i n c r}$ Brw $) \rightarrow$ Brw

Decidability properties

data Brw where

zero: Brw
P is decidable if we can prove $\operatorname{Dec} P: \equiv P \uplus \neg P$.
If x is a Brouwer tree ordinal, is it decidable whether ...
succ: Brw \rightarrow Brw
limit : $(\mathbb{N} \xrightarrow{\text { incr }}$ Brw $) \rightarrow$ Brw 1. x is finite?

Decidability properties

data Brw where

zero: Brw
P is decidable if we can prove $\operatorname{Dec} P: \equiv P \uplus \neg P$.
If x is a Brouwer tree ordinal, is it decidable whether \ldots limit $:(\mathbb{N} \xrightarrow{\text { incr }}$ Brw $) \rightarrow$ Brw 1. x is finite?

Sure: zero is finite; succ y is finite iff y is; limits are never finite.

Decidability properties

data Brw where

zero: Brw
P is decidable if we can prove $\operatorname{Dec} P: \equiv P \uplus \neg P$.
If x is a Brouwer tree ordinal, is it decidable whether ...
succ : Brw \rightarrow Brw
limit : $(\mathbb{N} \xrightarrow{\text { incr }}$ Brw $) \rightarrow$ Brw 1. x is finite?

Sure: zero is finite; succ y is finite iff y is; limits are never finite.
2. $x=5$?

Decidability properties

data Brw where

zero: Brw
P is decidable if we can prove $\operatorname{Dec} P: \equiv P \uplus \neg P$.
If x is a Brouwer tree ordinal, is it decidable whether ...
succ: Brw \rightarrow Brw
limit : $(\mathbb{N} \xrightarrow{\text { incr }}$ Brw $) \rightarrow$ Brw 1. x is finite?

Sure: zero is finite; succ y is finite iff y is; limits are never finite.
2. $x=5$?

Sure: No for zero and limits; for succ y, check whether $y=4$.

Decidability properties

data Brw where

zero: Brw
succ : Brw \rightarrow Brw
limit : $(\mathbb{N} \xrightarrow{\text { incr }}$ Brw $) \rightarrow$ Brw
If x is a Brouwer tree ordinal, is it decidable whether ...

1. x is finite?

Sure: zero is finite; succ y is finite iff y is; limits are never finite.
2. $x=5$?

Sure: No for zero and limits; for succ y, check whether $y=4$.
3. $x>103$?

Decidability properties

data Brw where

zero: Brw
succ: Brw \rightarrow Brw
limit : $(\mathbb{N} \xrightarrow{\text { incr }}$ Brw $) \rightarrow$ Brw
If x is a Brouwer tree ordinal, is it decidable whether ...

1. x is finite?

Sure: zero is finite; succ y is finite iff y is; limits are never finite.
2. $x=5$?

Sure: No for zero and limits; for succ y, check whether $y=4$.
3. $x>103$?

Sure: No for zero, yes for limits; for succ y, check whether $y>102$.

Decidability properties

data Brw where

zero: Brw
succ: Brw \rightarrow Brw
limit : $(\mathbb{N} \xrightarrow{\text { incr }}$ Brw $) \rightarrow$ Brw
If x is a Brouwer tree ordinal, is it decidable whether ...

1. x is finite?

Sure: zero is finite; succ y is finite iff y is; limits are never finite.
2. $x=5$?

Sure: No for zero and limits; for succ y, check whether $y=4$.
3. $x>103$?

Sure: No for zero, yes for limits; for succ y, check whether $y>102$.
4. $x>\omega$?

Decidability properties

data Brw where

zero: Brw
succ: Brw \rightarrow Brw
limit : $(\mathbb{N} \xrightarrow{\text { incr }}$ Brw $) \rightarrow$ Brw If x is a Brouwer tree ordinal, is it decidable whether ... 1. x is finite?

Sure: zero is finite; succ y is finite iff y is; limits are never finite.
2. $x=5$?

Sure: No for zero and limits; for succ y, check whether $y=4$.
3. $x>103$?

Sure: No for zero, yes for limits; for succ y, check whether $y>102$.
4. $x>\omega$?

Can decide it for zero and succ, but: $\quad \operatorname{limit}\left(x_{0}, x_{1}, x_{2}, \ldots\right)>\omega$?

When is limit $\left(x_{0}, x_{1}, x_{2}, \ldots\right)>\omega$?

- For any i, we can check whether x_{i} is finite.
- As soon as we discover an infinite x_{i}, the question is decided positively.
- Only if all x_{i} are finite, the answer is negative.

When is limit $\left(x_{0}, x_{1}, x_{2}, \ldots\right)>\omega$?

- For any i, we can check whether x_{i} is finite.
- As soon as we discover an infinite x_{i}, the question is decided positively.
- Only if all x_{i} are finite, the answer is negative.
- So if we could decide between these two possibilities, we could decide $\operatorname{limit}\left(x_{0}, x_{1}, x_{2}, \ldots\right)>\omega$.

When is limit $\left(x_{0}, x_{1}, x_{2}, \ldots\right)>\omega$?

- For any i, we can check whether x_{i} is finite.
- As soon as we discover an infinite x_{i}, the question is decided positively.
- Only if all x_{i} are finite, the answer is negative.
- So if we could decide between these two possibilities, we could decide $\operatorname{limit}\left(x_{0}, x_{1}, x_{2}, \ldots\right)>\omega$.
Indeed if we assume the lesser principle of omniscience

$$
\mathrm{LPO}: \equiv \forall(s: \mathbb{N} \rightarrow \text { Bool }) \cdot\left(\forall n \cdot s_{n}=\text { false }\right) \uplus\left(\exists n \cdot s_{n}=\text { true }\right)
$$

the question $x>\omega$ is decidable.

When is limit $\left(x_{0}, x_{1}, x_{2}, \ldots\right)>\omega$?

- For any i, we can check whether x_{i} is finite.
- As soon as we discover an infinite x_{i}, the question is decided positively.
- Only if all x_{i} are finite, the answer is negative.
- So if we could decide between these two possibilities, we could decide $\operatorname{limit}\left(x_{0}, x_{1}, x_{2}, \ldots\right)>\omega$.

Indeed if we assume the lesser principle of omniscience

$$
\mathrm{LPO}: \equiv \forall(s: \mathbb{N} \rightarrow \text { Bool }) .\left(\forall n \cdot s_{n}=\text { false }\right) \uplus\left(\exists n \cdot s_{n}=\text { true }\right)
$$

the question $x>\omega$ is decidable. Conversely:
Theorem

$$
(\forall x: \operatorname{Brw} \cdot \operatorname{Dec}(x>\omega)) \leftrightarrow \mathrm{LPO}
$$

$\forall x: \operatorname{Brw} . \operatorname{Dec}(x>\omega)$ implies LPO

Given $s: \mathbb{N} \rightarrow$ Bool, we can construct an increasing sequence $s^{\uparrow}: \mathbb{N} \rightarrow$ Brw by

$$
s^{\uparrow} n= \begin{cases}\omega+n & \text { if there is } k \leq n \text { such that } s_{k}=\text { true } \\ n & \text { else. }\end{cases}
$$

$\forall x: \operatorname{Brw} . \operatorname{Dec}(x>\omega)$ implies LPO

Given $s: \mathbb{N} \rightarrow$ Bool, we can construct an increasing sequence $s^{\uparrow}: \mathbb{N} \rightarrow$ Brw by

$$
s^{\uparrow} n= \begin{cases}\omega+n & \text { if there is } k \leq n \text { such that } s_{k}=\text { true } \\ n & \text { else. }\end{cases}
$$

Then: (limit $\left.s^{\uparrow}>\omega\right) \leftrightarrow\left(\exists k \cdot s_{k}=\right.$ true $)$.
Key lemma: If $y<\operatorname{limit} f$, then $\exists k . y<f k$.

$\forall x: \operatorname{Brw} . \operatorname{Dec}(x>\omega)$ implies LPO

Given $s: \mathbb{N} \rightarrow$ Bool, we can construct an increasing sequence $s^{\uparrow}: \mathbb{N} \rightarrow$ Brw by

$$
s^{\uparrow} n= \begin{cases}\omega+n & \text { if there is } k \leq n \text { such that } s_{k}=\text { true } \\ n & \text { else. }\end{cases}
$$

Then: (limit $\left.s^{\uparrow}>\omega\right) \leftrightarrow\left(\exists k \cdot s_{k}=\right.$ true $)$.
Key lemma: If $y<\operatorname{limit} f$, then $\exists k . y<f k$.
Hence if we can decide limit $s^{\uparrow}>\omega$, we know whether $\forall n \cdot s_{n}=$ false or $\exists n . s_{n}=$ true.

Many decidability statements for Brw are equivalent to LPO

Using similar proof ideas, we can show:
Theorem
For the type of Brouwer trees, the following statements are equivalent:
(i) LPO
(ii) $\forall x, y \cdot \operatorname{Dec}(x \leq y)$
(iii) $\forall x, y \cdot \operatorname{Dec}(x<y)$
(iv) $\forall x, y \cdot \operatorname{Dec}(x=y)$
(v) $\forall x \cdot \operatorname{Dec}(\omega<x)$
(vi) $\forall x \cdot \operatorname{Dec}(x=\omega \cdot 2)$

A slight generalisation

Lemma
For $\alpha, \beta: \operatorname{Brw}$ and $k: \mathbb{N}$, we have
(i) $(\forall x \cdot \operatorname{Dec}(x=\beta+\alpha)) \rightarrow(\forall x \cdot \operatorname{Dec}(x=\alpha))$
(ii) $(\forall x \cdot \operatorname{Dec}(x=\alpha)) \leftrightarrow(\forall x \cdot \operatorname{Dec}(x=\alpha+k))$

A slight generalisation

Lemma
For $\alpha, \beta: \operatorname{Brw}$ and $k: \mathbb{N}$, we have
(i) $(\forall x \cdot \operatorname{Dec}(x=\beta+\alpha)) \rightarrow(\forall x \cdot \operatorname{Dec}(x=\alpha))$
(ii) $(\forall x \cdot \operatorname{Dec}(x=\alpha)) \leftrightarrow(\forall x \cdot \operatorname{Dec}(x=\alpha+k))$

Proof sketch.
For (i), note that addition is left cancellative:

$$
\beta+x=\beta+\alpha \rightarrow x=\alpha
$$

A slight generalisation

Lemma
For $\alpha, \beta: \operatorname{Brw}$ and $k: \mathbb{N}$, we have
(i) $(\forall x \cdot \operatorname{Dec}(x=\beta+\alpha)) \rightarrow(\forall x \cdot \operatorname{Dec}(x=\alpha))$
(ii) $(\forall x \cdot \operatorname{Dec}(x=\alpha)) \leftrightarrow(\forall x \cdot \operatorname{Dec}(x=\alpha+k))$

Proof sketch.
For (i), note that addition is left cancellative:

$$
\beta+x=\beta+\alpha \leftrightarrow x=\alpha
$$

A slight generalisation

Lemma
For $\alpha, \beta: \operatorname{Brw}$ and $k: \mathbb{N}$, we have
(i) $(\forall x \cdot \operatorname{Dec}(x=\beta+\alpha)) \rightarrow(\forall x \cdot \operatorname{Dec}(x=\alpha))$
(ii) $(\forall x \cdot \operatorname{Dec}(x=\alpha)) \leftrightarrow(\forall x \cdot \operatorname{Dec}(x=\alpha+k))$

Proof sketch.
For (i), note that addition is left cancellative:

$$
\beta+x=\beta+\alpha \leftrightarrow x=\alpha
$$

For (ii), we can decide if x starts with k successors or not.

Equality with $\omega \cdot n+k$

Theorem
Let x : Brw. We have:

$$
\operatorname{Dec}(x=k) \leftrightarrow \operatorname{True}
$$

$$
\operatorname{Dec}(x=\omega \cdot 2) \leftrightarrow \mathrm{LPO}
$$

Equality with $\omega \cdot n+k$

Theorem

Let x : Brw. We have:

$$
\operatorname{Dec}(x=k) \leftrightarrow \text { True }
$$

$$
\operatorname{Dec}(x=\omega \cdot(n+2)+k) \leftrightarrow \mathrm{LPO}
$$

Equality with $\omega \cdot n+k$

Theorem

Let x : Brw. We have:

$$
\begin{aligned}
\operatorname{Dec}(x=k) & \leftrightarrow \text { True } \\
\operatorname{Dec}(x=\omega+k) & \leftrightarrow ? \\
\operatorname{Dec}(x=\omega \cdot(n+2)+k) & \leftrightarrow \mathrm{LPO}
\end{aligned}
$$

Equality with $\omega \cdot n+k$

Theorem

Let x : Brw. We have:

$$
\begin{aligned}
\operatorname{Dec}(x=k) & \leftrightarrow \text { True } \\
\operatorname{Dec}(x=\omega+k) & \leftrightarrow \mathrm{WLPO} \\
\operatorname{Dec}(x=\omega \cdot(n+2)+k) & \leftrightarrow \mathrm{LPO}
\end{aligned}
$$

$$
\text { WLPO }: \equiv \forall(s: \mathbb{N} \rightarrow \text { Bool }) .\left(\forall n \cdot s_{n}=\text { false }\right) \uplus \neg\left(\forall n \cdot s_{n}=\text { false }\right)
$$

Equality with $\omega \cdot n+k$

P is $\neg \neg$-stable if we can prove Stable $P: \equiv(\neg \neg P \rightarrow P)$.

Theorem

Let x : Brw. We have:

$$
\begin{aligned}
\operatorname{Dec}(x=k) & \leftrightarrow \text { True } & \text { Stable }(x=k) & \leftrightarrow ? \\
\operatorname{Dec}(x=\omega+k) & \leftrightarrow \text { WLPO } & \text { Stable }(x=\omega+k) & \leftrightarrow ? \\
\operatorname{Dec}(x=\omega \cdot(n+2)+k) & \leftrightarrow \text { LPO } & \text { Stable }(x=\omega \cdot(n+2)+k) & \rightarrow ?
\end{aligned}
$$

$$
\text { WLPO }: \equiv \forall(s: \mathbb{N} \rightarrow \text { Bool }) .\left(\forall n . s_{n}=\text { false }\right) \uplus \neg\left(\forall n . s_{n}=\text { false }\right)
$$

Equality with $\omega \cdot n+k$

P is $\neg \neg$-stable if we can prove Stable $P: \equiv(\neg \neg P \rightarrow P)$.

Theorem

Let x : Brw. We have:

$$
\begin{aligned}
\operatorname{Dec}(x=k) & \leftrightarrow \text { True } \\
\operatorname{Dec}(x=\omega+k) & \leftrightarrow \text { WLPO } \\
\operatorname{Dec}(x=\omega \cdot(n+2)+k) & \leftrightarrow \text { LPO }
\end{aligned}
$$

$$
\text { Stable }(x=k) \leftrightarrow \text { True }
$$

$$
\text { Stable }(x=\omega+k) \leftrightarrow ?
$$

$$
\text { Stable }(x=\omega \cdot(n+2)+k) \rightarrow ?
$$

$$
\text { WLPO }: \equiv \forall(s: \mathbb{N} \rightarrow \text { Bool }) .\left(\forall n . s_{n}=\text { false }\right) \uplus \neg\left(\forall n . s_{n}=\text { false }\right)
$$

Equality with $\omega \cdot n+k$

P is $\neg \neg$-stable if we can prove Stable $P: \equiv(\neg \neg P \rightarrow P)$.

Theorem

Let x : Brw. We have:

$$
\begin{aligned}
\operatorname{Dec}(x=k) & \leftrightarrow \text { True } & \text { Stable }(x=k) & \leftrightarrow \text { True } \\
\operatorname{Dec}(x=\omega+k) & \leftrightarrow \text { WLPO } & \text { Stable }(x=\omega+k) & \leftrightarrow \text { True } \\
\operatorname{Dec}(x=\omega \cdot(n+2)+k) & \leftrightarrow \text { LPO } & \text { Stable }(x=\omega \cdot(n+2)+k) & \rightarrow \text { MP }
\end{aligned}
$$

$$
\begin{aligned}
\text { WLPO } & : \equiv \forall(s: \mathbb{N} \rightarrow \text { Bool }) .\left(\forall n \cdot s_{n}=\text { false }\right) \uplus \neg\left(\forall n \cdot s_{n}=\text { false }\right) \\
\mathrm{MP} & : \equiv \forall(s: \mathbb{N} \rightarrow \text { Bool }) . \neg\left(\forall n \cdot s_{n}=\text { false }\right) \rightarrow\left(\exists n \cdot s_{n}=\text { true }\right)
\end{aligned}
$$

Trichotomy

Classically, ordinals satisfy $(x<y) \uplus(x=y) \uplus(x>y)$.

Trichotomy

Classically, ordinals satisfy $(x<y) \uplus(x=y) \uplus(x>y)$.
This is true for Cnf, and equivalent to LEM for Ord.

Trichotomy

Classically, ordinals satisfy $(x<y) \uplus(x=y) \uplus(x>y)$.
This is true for Cnf, and equivalent to LEM for Ord. For Brw, we again have:
Theorem
For the type of Brouwer trees, the following are equivalent:
(i) LPO
(ii) trichotomy: $\forall x, y .(x<y) \uplus(x=y) \uplus(y<x)$
(iii) splitting: $\forall x, y \cdot(x \leq y) \rightarrow(x<y) \uplus(x=y)$.

Trichotomy

Classically, ordinals satisfy $(x<y) \uplus(x=y) \uplus(x>y)$.
This is true for Cnf, and equivalent to LEM for Ord. For Brw, we again have:
Theorem
For the type of Brouwer trees, the following are equivalent:
(i) LPO
(ii) trichotomy: $\forall x, y .(x<y) \uplus(x=y) \uplus(y<x)$
(iii) splitting: $\forall x, y \cdot(x \leq y) \rightarrow(x<y) \uplus(x=y)$.

Proof sketch.
(i) \Rightarrow (ii): LPO implies $\neg(x<y) \rightarrow y \leq x$. Use LPO to decide $x<y$ and $y<x$.

Trichotomy

Classically, ordinals satisfy $(x<y) \uplus(x=y) \uplus(x>y)$.
This is true for Cnf, and equivalent to LEM for Ord. For Brw, we again have:
Theorem
For the type of Brouwer trees, the following are equivalent:
(i) LPO
(ii) trichotomy: $\forall x, y \cdot(x<y) \uplus(x=y) \uplus(y<x)$
(iii) splitting: $\forall x, y \cdot(x \leq y) \rightarrow(x<y) \uplus(x=y)$.

Proof sketch.

(i) \Rightarrow (ii): LPO implies $\neg(x<y) \rightarrow y \leq x$. Use LPO to decide $x<y$ and $y<x$.
(ii) \Rightarrow (iii): We cannot have both $y<x$ and $x \leq y$ by irreflexivity.

Trichotomy

Classically, ordinals satisfy $(x<y) \uplus(x=y) \uplus(x>y)$.
This is true for Cnf, and equivalent to LEM for Ord. For Brw, we again have:

Theorem

For the type of Brouwer trees, the following are equivalent:
(i) LPO
(ii) trichotomy: $\forall x, y \cdot(x<y) \uplus(x=y) \uplus(y<x)$
(iii) splitting: $\forall x, y \cdot(x \leq y) \rightarrow(x<y) \uplus(x=y)$.

Proof sketch.

(i) \Rightarrow (ii): LPO implies $\neg(x<y) \rightarrow y \leq x$. Use LPO to decide $x<y$ and $y<x$.
(ii) \Rightarrow (iii): We cannot have both $y<x$ and $x \leq y$ by irreflexivity.
(iii) \Rightarrow (i): We always have $s^{\uparrow} \leq \omega \cdot 2$. Further $s^{\uparrow}=\omega \cdot 2 \leftrightarrow \exists k . s_{k}=$ true.

Taboo arithmetic

The usual ordinal arithmetic operations can be defined for all notions of ordinals we consider, and proven correct.

Taboo arithmetic

The usual ordinal arithmetic operations can be defined for all notions of ordinals we consider, and proven correct.

For Cantor Normal Forms, correctness crucially relies on defining inverse operations such as subtraction, division, etc.

Taboo arithmetic

The usual ordinal arithmetic operations can be defined for all notions of ordinals we consider, and proven correct.

For Cantor Normal Forms, correctness crucially relies on defining inverse operations such as subtraction, division, etc.

Definition

A notion of ordinals A has subtraction, if there is an operation $(b: A) \rightarrow(a: A) \rightarrow(p: a \leq b) \rightarrow A$, written $b-_{p} a$, such that $a+\left(b-_{p} a\right)=b$.

Taboo arithmetic

The usual ordinal arithmetic operations can be defined for all notions of ordinals we consider, and proven correct.

For Cantor Normal Forms, correctness crucially relies on defining inverse operations such as subtraction, division, etc.

Definition

A notion of ordinals A has subtraction, if there is an operation $(b: A) \rightarrow(a: A) \rightarrow(p: a \leq b) \rightarrow A$, written $b-_{p} a$, such that $a+\left(b-_{p} a\right)=b$.

Perhaps surprisingly, having subtraction is a constructive taboo for Brw:
Theorem
Brw has subtraction if and only if LPO holds.

Subtraction is a taboo

Theorem
Brw has subtraction if and only if \leq splits, i.e. $(x \leq y) \rightarrow(x<y) \uplus(x=y)$.
Proof sketch.

Subtraction is a taboo

Theorem
Brw has subtraction if and only if \leq splits, i.e. $(x \leq y) \rightarrow(x<y) \uplus(x=y)$.
Proof sketch.
If Brw has subtraction and $p: x \leq y$, then $x=y$ iff $y-_{p} x=0$, which is always decidable.

Subtraction is a taboo

Theorem
Brw has subtraction if and only if \leq splits, i.e. $(x \leq y) \rightarrow(x<y) \uplus(x=y)$.
Proof sketch.
If Brw has subtraction and $p: x \leq y$, then $x=y$ iff $y-{ }_{p} x=0$, which is always decidable.

Conversely, note that "having subtraction" is a proposition by left cancellation:

$$
x+\left(y-_{p} x\right)=y=x+\left(y-_{p} x\right)^{\prime} \quad \text { so }\left(y-_{p} x\right)=\left(y-_{p} x\right)^{\prime}
$$

Subtraction is a taboo

Theorem
Brw has subtraction if and only if \leq splits, i.e. $(x \leq y) \rightarrow(x<y) \uplus(x=y)$.
Proof sketch.
If Brw has subtraction and $p: x \leq y$, then $x=y$ iff $y-{ }_{p} x=0$, which is always decidable.

Conversely, note that "having subtraction" is a proposition by left cancellation:

$$
x+\left(y-_{p} x\right)=y=x+\left(y-_{p} x\right)^{\prime} \quad \text { so }\left(y-_{p} x\right)=\left(y-_{p} x\right)^{\prime}
$$

Hence we can define $y-_{p} x$ by induction on y. Splitting p, we define $y-_{p} y=0$, and if $x<y$, we can use the induction hypothesis to finish the definition.

Binary joins

We only compute limits of increasing sequences limit $\left(s_{0}, s_{1}, s_{2}, \ldots\right)$. What if we relaxed this requirement?

Binary joins

We only compute limits of increasing sequences limit $\left(s_{0}, s_{1}, s_{2}, \ldots\right)$. What if we relaxed this requirement?

Simplest case: the binary join $a \sqcup b=\operatorname{limit}(a, b, b, b, \ldots)$.

Binary joins

We only compute limits of increasing sequences limit $\left(s_{0}, s_{1}, s_{2}, \ldots\right)$. What if we relaxed this requirement?

Simplest case: the binary join $a \sqcup b=\operatorname{limit}(a, b, b, b, \ldots)$.
Theorem
If $y=n$ for a finite n, or $y=\omega$, we can define a function $(-\sqcup y): B r w \rightarrow B r w$ calculating the binary join with y.

Binary joins

We only compute limits of increasing sequences limit $\left(s_{0}, s_{1}, s_{2}, \ldots\right)$. What if we relaxed this requirement?

Simplest case: the binary join $a \sqcup b=\operatorname{limit}(a, b, b, b, \ldots)$.

Theorem

If $y=n$ for a finite n, or $y=\omega$, we can define a function $(-\sqcup y): B r w \rightarrow B r w$ calculating the binary join with y.

However this is as far as we can go; already computing $x \sqcup(\omega+1)$ is a constructive taboo.

Theorem

LPO implies $(-\sqcup(\omega+1))$ can be calculated, which in turn implies WLPO.

Semidecidability via Brouwer trees

Definition (Bauer [2006], cf. also Veltri [2017])
P is semidecidable if $\exists\left(s: \mathbb{N} \rightarrow\right.$ Bool) $\left(P \leftrightarrow \exists k . s_{k}=\right.$ true $)$.

Semidecidability via Brouwer trees

Definition (Bauer [2006], cf. also Veltri [2017])
P is semidecidable if $\exists\left(s: \mathbb{N} \rightarrow\right.$ Bool) $\left(P \leftrightarrow \exists k . s_{k}=\right.$ true $)$.
Recall construction of s^{\uparrow} with limit $s^{\uparrow}>\omega \leftrightarrow \exists k \cdot s_{k}=$ true.

Semidecidability via Brouwer trees

Definition (Bauer [2006], cf. also Veltri [2017])
P is semidecidable if $\exists(s: \mathbb{N} \rightarrow$ Bool $)\left(P \leftrightarrow \exists k . s_{k}=\right.$ true $)$.
Recall construction of s^{\uparrow} with limit $s^{\uparrow}>\omega \leftrightarrow \exists k \cdot s_{k}=$ true.
Fact: For any proposition P,

$$
\exists(y: \operatorname{Brw})(P \leftrightarrow(y>\omega)) \quad \longleftrightarrow \quad \exists(s: \mathbb{N} \rightarrow \operatorname{Bool})\left(P \leftrightarrow \exists k \cdot s_{k}=\text { true }\right)
$$

" P decidable in ω steps"
" P semidecidable"

Semidecidability via Brouwer trees

Definition (Bauer [2006], cf. also Veltri [2017])
P is semidecidable if $\exists(s: \mathbb{N} \rightarrow$ Bool $)\left(P \leftrightarrow \exists k \cdot s_{k}=\right.$ true $)$.
Recall construction of s^{\uparrow} with limit $s^{\uparrow}>\omega \leftrightarrow \exists k \cdot s_{k}=$ true.
Fact: For any proposition P,

$$
\exists(y: \operatorname{Brw})(P \leftrightarrow(y>\omega)) \quad \longleftrightarrow \quad \exists(s: \mathbb{N} \rightarrow \operatorname{Bool})\left(P \leftrightarrow \exists k \cdot s_{k}=\text { true }\right)
$$

" P decidable in ω steps"
" P semidecidable"
What if we swap ω for another ordinal α ?
Definition
P is decidable in α steps if $\exists(y: \operatorname{Brw})(P \leftrightarrow(y>\alpha))$.

Fewer than ω steps

Theorem
Let n be a natural number. Then:

$$
\begin{array}{ccc}
\exists(y: \text { Brw })(P \leftrightarrow(y>n)) \\
\text { " } P \text { decidable in } n \text { steps" } & & P \uplus \neg P \\
\text { "P decidable" }
\end{array}
$$

More than ω steps - an example

Twin prime conjecture (TPC):
There are arbitrarily large numbers p such that p and $p+2$ are both prime.
It is clearly semidecidable whether there is a twin pair $>10^{1,000,000}$, but TPC does not seem to be semidecidable.

More than ω steps - an example

Twin prime conjecture (TPC):

There are arbitrarily large numbers p such that p and $p+2$ are both prime.

It is clearly semidecidable whether there is a twin pair $>10^{1,000,000}$, but TPC does not seem to be semidecidable.

However, one can show:

$$
\begin{aligned}
& \exists(y: \operatorname{Brw})\left(\operatorname{TPC} \leftrightarrow\left(y>\omega^{2}\right)\right) \\
& \text { "TPC is decidable in } \omega^{2} \text { steps." }
\end{aligned}
$$

TPC's ordinal

Define a sequence $f: \mathbb{N} \rightarrow$ Brw by:

$$
\begin{aligned}
& f 0=\text { zero } \\
& f(n+1)= \begin{cases}(f n)+\omega & \text { if } n \text { and } n+2 \text { are prime } \\
(f n)+1 & \text { else. }\end{cases}
\end{aligned}
$$

Claim
$(\forall n . \exists p>n . p, p+2$ are prime $) \leftrightarrow \operatorname{limit} f=\omega^{2} \leftrightarrow \operatorname{succ}(\operatorname{limit} f)>\omega^{2}$

TPC's ordinal

Define a sequence $f: \mathbb{N} \rightarrow$ Brw by:

$$
\begin{aligned}
& f 0=\text { zero } \\
& f(n+1)= \begin{cases}(f n)+\omega & \text { if } n \text { and } n+2 \text { are prime } \\
(f n)+1 & \text { else. }\end{cases}
\end{aligned}
$$

Claim
$(\forall n . \exists p>n . p, p+2$ are prime $) \leftrightarrow \operatorname{limit} f=\omega^{2} \leftrightarrow \operatorname{succ}($ limit $f)>\omega^{2}$
Proof sketch TPC $\rightarrow\left(\right.$ limit $\left.f=\omega^{2}\right)$.
For any n, we find $p>n$ s.t. $f(p) \geq \omega \cdot p$, thus limit $f \geq \omega \cdot \omega$. At the same time, f never exceeds ω^{2}.

TPC's ordinal

Define a sequence $f: \mathbb{N} \rightarrow$ Brw by:

$$
f 0=\text { zero }
$$

$$
f(n+1)= \begin{cases}(f n)+\omega & \text { if } n \text { and } n+2 \text { are prime } \\ (f n)+1 & \text { else. }\end{cases}
$$

Claim
$(\forall n . \exists p>n . p, p+2$ are prime $) \leftrightarrow \operatorname{limit} f=\omega^{2} \leftrightarrow \operatorname{succ}(\operatorname{limit} f)>\omega^{2}$
Proof sketch (limit $f \geq \omega^{2}$) \rightarrow TPC.
For every $n, \quad\left(\right.$ limit $\left.f \geq \omega^{2}\right) \quad \Rightarrow \quad \exists k \cdot f_{k} \geq \omega \cdot(n+1)$
$\Rightarrow \quad \exists k . \neg \neg(f(p)$ jumped for some $n<p \leq k)$
$\Rightarrow \quad \exists k . f(p)$ jumped for some $n<p \leq k$
$\Rightarrow \quad$ there is a twin prime pair $(p, p+2)$ above n

Summary

We have considered decidability aspects of different notions of ordinals.

国 N. Kraus, F. N-F., and C. Xu.
Type-Theoretic Approaches to Ordinals
arXiv:2208.03844

Summary

We have considered decidability aspects of different notions of ordinals.

国 N. Kraus, F. N-F., and C. Xu.
Type-Theoretic Approaches to Ordinals
arXiv:2208.03844

Summary

We have considered decidability aspects of different notions of ordinals.

囯 N. Kraus, F. N-F., and C. Xu.
Type-Theoretic Approaches to Ordinals
arXiv:2208.03844

Summary

We have considered decidability aspects of different notions of ordinals.

葍 N. Kraus, F. N-F., and C. Xu.
Type-Theoretic Approaches to Ordinals
arXiv:2208.03844

Summary

We have considered decidability aspects of different notions of ordinals.
"Decidability \leftrightarrow True" Cantor normal forms
"Finite decidability \leftrightarrow True"
"Infinite decidability $\leftrightarrow(W)$ LPO"

"Decidability $\leftrightarrow(W)$ LEM" Wellfounded, extensional, and transitive orders

囯 N. Kraus, F. N-F., and C. Xu.
Type-Theoretic Approaches to Ordinals
arXiv:2208.03844

Summary

We have considered decidability aspects of different notions of ordinals.
"Finite decidability \leftrightarrow True"
"Infinite decidability $\leftrightarrow(W)$ LPO"
"Decidability \leftrightarrow True" Cantor normal forms
"Decidability $\leftrightarrow(W)$ LEM" $\downarrow_{\downarrow}^{\text {Brouwer trees }}$
Wellfounded, extensional, and transitive orders
In future: Connections with arithmetical hierarchy and synthetic computability theory.
囯 N. Kraus, F. N-F., and C. Xu.
Type-Theoretic Approaches to Ordinals
arXiv:2208.03844

Summary

We have considered decidability aspects of different notions of ordinals.
"Finite decidability \leftrightarrow True"
"Infinite decidability $\leftrightarrow(W)$ LPO"
"Decidability \leftrightarrow True" Cantor normal forms
"Decidability $\leftrightarrow(W)$ LEM" $\downarrow_{\downarrow}^{\text {Brouwer trees }}$
Wellfounded, extensional, and transitive orders
In future: Connections with arithmetical hierarchy and synthetic computability theory.
囯 N. Kraus, F. N-F., and C. Xu.
Type-Theoretic Approaches to Ordinals
arXiv:2208.03844

Summary

We have considered decidability aspects of different notions of ordinals.

References

In order of appearance

- Paul Taylor. 1996. "Intuitionistic sets and ordinals". Journal of Symbolic Logic, 61(3):705-744.
- Martín Escardó. 2022. "Indecomposability of ordinals". Available at https://www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.Indecomposable.html.
- Alan Turing. 1949. "Checking a Large Routine". In Report of a Conference on High Speed Automatic Calculating Machines. University Mathematical Laboratory, Cambridge, UK, 67-69.
- Gerhard Gentzen. 1936. "Die Widerspruchsfreiheit der reinen Zahlentheorie", Mathematische Annalen, 112: 493-565.
- Reuben Goodstein. 1944. "On the restricted ordinal theorem", Journal of Symbolic Logic, 9(2): 33-41.
- Laurie Kirby and Jeff Paris. 1982. "Accessible Independence Results for Peano Arithmetic". Bulletin of the London Mathematical Society. 14(4): 285-293.
- Nicolai Kraus, Fredrik Nordvall Forsberg, and Chuangjie Xu. 2021. "Connecting constructive notions of ordinals in homotopy type theory". In MFCS'21, pages 70:1-70:16.
- L. E. J. Brouwer. 1996. "Zur Begründung der intuitionistischen Mathematik. III". Mathematische Annalen, 96:451-488.
- Per Martin-Löf. 1970. "Notes on constructive mathematics". Almqvist \& Wiksell, Stockholm.
- Peter LeFanu Lumsdaine and Michael Shulman. 2020. "Semantics of higher inductive types". Mathematical Proceedings of the Cambridge Philosophical Society, 169(1):159-208.
- Daniel Licata and Michael Shulman. 2013. "Calculating the fundamental group of the circle in homotopy type theory". In LICS'13, pages 223-232.
- Andrej Bauer. 2006. "First Steps in Synthetic Computability Theory". in MFPS 2005, 5-31.
- Niccolò Veltri. 2017. "A type-theoretic study of nontermination", PhD thesis, Tallinn University of Technology.

