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Ordinals

What is an ordinal number?

One answer: The essence of counting beyond the finite.

0, 1, 2, . . .

, ω, ω + 1,

ω + 2, . . .

, ω · 2, . . . , ω2, . . . , ωω + 6, . . .

Another answer: The essence of termination.

ω2 > ω·4+657 > ω·4+656 > . . . > ω·4 > ω·3+9453 > . . . > ω > 19 > . . . > 0

Set theory answer: a transitive, wellfounded and extensional order (cf. Taylor
[1996]).
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Transitive, wellfounded and extensional orders
The Homotopy Type Theory Book defines the type Ord as the type of sets
equipped with an order ≺, which is

I transitive: (a ≺ b)→ (b ≺ c)→ (a ≺ c)

I wellfounded: transfinite induction along ≺ is valid

I and extensional: (∀a.a ≺ b↔ a ≺ c)→ b = c

Theorem (Escardo [2022])
The type Ord has a non-trivial decidable property if and only if weak excluded
middle ¬P ] ¬¬P holds.

This motivates a search for representations of ordinals that can be more useful
constructively.
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What has the ordinals ever done for us?

Two typical uses of ordinals:

I Transfinite iteration of operators

I Termination of processes

3



Transfinite iteration
Let F : Set→ Set be a finitary functor.

The initial algebra of F can be constructed as the colimit of the sequence

X0

!

// X1

F (!)

// X2
//

F 2(!)

// . . .

where

X0 = ∅
Xn+1 = F (Xn)

µF =

Xω = colimβ<ωXβ

µF = Xκ

Useful: Definitional principle where ordinals are classified as 0, α + 1 or a limit.
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Transfinite iteration
Let F : Set→ Set be a functor preserving κ-colimits.

The initial algebra of F can be constructed as the colimit of the sequence
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Termination of processes

I Programs terminating [Turing 1949]

I Consistency proof e.g. of Peano’s axioms [Gentzen 1936]

I Termination of Goodstein sequences [Goodstein 1944], the Hydra game
[Kirby&Paris 1982]:

Useful: Arithmetic, and every decreasing sequence of ordinals hits 0.
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A spectrum of ordinal notions

Cantor normal forms

Brouwer trees

Wellfounded, extensional, and transitive orders

decidable

partially
decidable

undecidable

N. Kraus, F. N-F., and C. Xu.
Connecting constructive notions of ordinals in homotopy type theory
MFCS 2021.
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Brouwer ordinal trees in constructive type theory
Inductive type B of Brouwer trees [Brouwer 1926; Martin-Löf 1970]:

data B where
zero : B
succ : B → B
limit : (N→ B)→ B

Examples:

ω := limit(0, 1, 2, 3, . . .)
ω · 2 := limit(ω, ω + 1, ω + 2, . . .)

and so on (addition, multiplication, exponentiation are standard).

Problems:

limit (0, 1, 2, 3, . . .) 6= limit (2, 3, . . .)

limit (0, 1, 2, 3, . . .) 6= limit (0, 2, 1, 3, . . .)
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A refined type of Brouwer tree ordinals

note: x < y
means succx ≤ y

f ≈ g means
∀k.∃n.f(k) ≤ g(n)
and vice versa

I Induction-induction (N.-F. [2013]): limits can only be taken of increasing sequences;

I Path constructor (Lumsdaine and Shulman [2020]): bisimilar sequences have equal limits.
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Recursion and induction principles for Brw
To define f : Brw→ X for X : Set, it suffices to give

f zero = ?0

f (succx) = ?1 (given f x)

f (limit g) = ?2 (given f (g i) for any i : N)

such that f (limit g) = f (limith) whenever g ≈ h.

To prove ∀(x : Brw). P (x) for P : Brw→ Prop, it suffices to give

pzero : P zero
psucc x : P x→ P (succx)
plimit g : (∀(i : N). P (g i))→ P (limit g)

(Note plimit g = plimit h for g ≈ h follows always, since P is Prop-valued.)

9



Recursion and induction principles for Brw
To define f : Brw→ X for X : Set, it suffices to give

f zero = ?0

f (succx) = ?1 (given f x)

f (limit g) = ?2 (given f (g i) for any i : N)

such that f (limit g) = f (limith) whenever g ≈ h.

To prove ∀(x : Brw). P (x) for P : Brw→ Prop, it suffices to give

pzero : P zero
psucc x : P x→ P (succx)
plimit g : (∀(i : N). P (g i))→ P (limit g)

(Note plimit g = plimit h for g ≈ h follows always, since P is Prop-valued.)
9



Example: multiplication

Seemingly straightforward definition:

x · zero = zero
x · (succ y) = x · y + x

x · (limit f) = limit (λi. x · fi)

But! λi. zero · fi is not increasing even if f is.

Thankfully, we can decide if x is zero or not and act accordingly.
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Example: multiplication

Seemingly straightforward definition:

x · zero = zero
x · (succ y) = x · y + x

x · (limit f {incr-f})with decZerox
... | yes x≡0 = zero
... | no x6≡0 = limit (λi. x · fi) {x·-increasing x 6≡0 incr-f}

But! λi. zero · fi is not increasing even if f is.

Thankfully, we can decide if x is zero or not and act accordingly.
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Basic feasibility

Everything that one can “reasonably expect” works:

I < is wellfounded and extensional;

I ≤ is antisymmetric;

I limits are actually limits;

I zero 6= succx, succ x 6= limit g, etc;

I arithmetic operations can be defined and proven correct;

I and so on.
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Characterising ≤ using encode-decode
Main proof technique: we use an encode-decode method [Licata and Shulman
2013] to characterise the ≤ relation.

That is, we define
Code : Brw→ Brw→ Prop

such that Codex y ∼= (x ≤ y).

For example:

Code (succx) (limit f) = (∃n : N) (Code (succx) (f n))

Technically involved: need to simultaneously prove transitivity, reflexivity of
Code, and (x ≤ y)→ Codex y.
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Decidability properties data Brw where
zero : Brw
succ : Brw→ Brw

limit : (N incr−−→ Brw)→ Brw
P is decidable if we can prove DecP :≡ P ] ¬P .

If x is a Brouwer tree ordinal, is it decidable whether . . .
1. x is finite?

Sure: zero is finite; succ y is finite iff y is; limits are never finite.
2. x = 5?

Sure: No for zero and limits; for succ y, check whether y = 4.
3. x > 103?

Sure: No for zero, yes for limits; for succ y, check whether y > 102.
4. x > ω?

Can decide it for zero and succ, but: limit(x0, x1, x2, . . .) > ω?

13
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When is limit(x0, x1, x2, . . .) > ω ?

I For any i, we can check whether xi is finite.
I As soon as we discover an infinite xi, the question is decided positively.
I Only if all xi are finite, the answer is negative.

I So if we could decide between these two possibilities, we could decide
limit(x0, x1, x2, . . .) > ω.

Indeed if we assume the lesser principle of omniscience

LPO :≡ ∀(s : N→ Bool).(∀n.sn = false) ] (∃n.sn = true).

the question x > ω is decidable.

Conversely:

Theorem
(∀x : Brw.Dec (x > ω))↔ LPO
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∀x : Brw.Dec (x > ω) implies LPO

Given s : N→ Bool, we can construct an increasing sequence s↑ : N→ Brw by

s↑ n =

{
ω + n if there is k ≤ n such that sk = true
n else.

Then: (limit s↑ > ω)↔ (∃k.sk = true).

Key lemma: If y < limit f , then ∃k.y < f k.

Hence if we can decide limit s↑ > ω, we know whether ∀n.sn = false or
∃n.sn = true.
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Many decidability statements for Brw are equivalent to LPO

Using similar proof ideas, we can show:

Theorem
For the type of Brouwer trees, the following statements are equivalent:
(i) LPO

(ii) ∀x, y.Dec(x ≤ y)

(iii) ∀x, y.Dec(x < y)

(iv) ∀x, y.Dec(x = y)

(v) ∀x.Dec(ω < x)

(vi) ∀x.Dec(x = ω · 2)

16



A slight generalisation

Lemma
For α, β : Brw and k : N, we have
(i) (∀x.Dec(x = β + α))→ (∀x.Dec(x = α))

(ii) (∀x.Dec(x = α))↔ (∀x.Dec(x = α + k))

Proof sketch.
For (i), note that addition is left cancellative:

β + x = β + αx = α

For (ii), we can decide if x starts with k successors or not.
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Equality with ω · n + k

P is ¬¬-stable if we can prove StableP :≡ (¬¬P → P ).

Theorem
Let x : Brw. We have:

Dec(x = k)↔ True

Stable(x = k)↔
Dec(x = ω + k)↔ ? Stable(x = ω + k)↔

Dec(x = ω · 2)↔ LPO

Stable(x = ω · (n+ 2) + k)→

WLPO :≡ ∀(s : N→ Bool).(∀n.sn = false) ] ¬(∀n.sn = false)
MP :≡ ∀(s : N→ Bool).¬(∀n.sn = false)→ (∃n.sn = true)
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Trichotomy
Classically, ordinals satisfy (x < y) ] (x = y) ] (x > y).

This is true for Cnf, and equivalent to LEM for Ord.

For Brw, we again have:

Theorem
For the type of Brouwer trees, the following are equivalent:
(i) LPO

(ii) trichotomy: ∀x, y.(x < y) ] (x = y) ] (y < x)

(iii) splitting: ∀x, y.(x ≤ y)→ (x < y) ] (x = y).

Proof sketch.
(i) ⇒ (ii): LPO implies ¬(x < y)→ y ≤ x. Use LPO to decide x < y and y < x.

(ii) ⇒ (iii): We cannot have both y < x and x ≤ y by irreflexivity.
(iii) ⇒ (i): We always have s↑ ≤ ω · 2. Further s↑ = ω · 2↔ ∃k.sk = true.
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Taboo arithmetic
The usual ordinal arithmetic operations can be defined for all notions of ordinals
we consider, and proven correct.

For Cantor Normal Forms, correctness crucially relies on defining inverse
operations such as subtraction, division, etc.

Definition
A notion of ordinals A has subtraction, if there is an operation
(b : A)→ (a : A)→ (p : a ≤ b)→ A, written b−p a, such that a+ (b−p a) = b.

Perhaps surprisingly, having subtraction is a constructive taboo for Brw:

Theorem
Brw has subtraction if and only if LPO holds.
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Subtraction is a taboo

Theorem
Brw has subtraction if and only if ≤ splits, i.e. (x ≤ y)→ (x < y) ] (x = y).

Proof sketch.

If Brw has subtraction and p : x ≤ y, then x = y iff y −p x = 0, which is always
decidable.

Conversely, note that “having subtraction” is a proposition by left cancellation:

x+ (y −p x) = y = x+ (y −p x)′ so (y −p x) = (y −p x)′

Hence we can define y−p x by induction on y. Splitting p, we define y−p y = 0,
and if x < y, we can use the induction hypothesis to finish the definition.
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Binary joins
We only compute limits of increasing sequences limit (s0, s1, s2, . . .). What if we
relaxed this requirement?

Simplest case: the binary join a t b = limit (a, b, b, b, . . .).

Theorem
If y = n for a finite n, or y = ω, we can define a function (− t y) : Brw→ Brw
calculating the binary join with y.

However this is as far as we can go; already computing x t (ω + 1) is a
constructive taboo.

Theorem
LPO implies (− t (ω + 1)) can be calculated, which in turn implies WLPO.
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Beyond decidability



Semidecidability via Brouwer trees
Definition (Bauer [2006], cf. also Veltri [2017])
P is semidecidable if ∃(s : N→ Bool)

(
P ↔ ∃k.sk = true

)
.

Recall construction of s↑ with limit s↑ > ω ↔ ∃k.sk = true.

Fact: For any proposition P ,

∃(y : Brw)
(
P ↔ (y > ω)

)
←→ ∃(s : N→ Bool)

(
P ↔ ∃k.sk = true

)
“P decidable in ω steps” “P semidecidable”

What if we swap ω for another ordinal α?

Definition
P is decidable in α steps if ∃(y : Brw)

(
P ↔ (y > α)

)
.
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Fewer than ω steps

Theorem
Let n be a natural number. Then:

∃(y : Brw)
(
P ↔ (y > n)

)
←→ P ] ¬P

“P decidable in n steps” “P decidable”
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More than ω steps – an example
Twin prime conjecture (TPC):

There are arbitrarily large numbers p such that p and p+ 2 are both prime.

It is clearly semidecidable whether there is a twin pair > 101,000,000, but TPC
does not seem to be semidecidable.

However, one can show:

∃(y : Brw)
(
TPC↔ (y > ω2)

)
“TPC is decidable in ω2 steps.”
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TPC’s ordinal
Define a sequence f : N→ Brw by:

f 0 = zero

f (n+ 1) =

{
(f n) + ω if n and n+ 2 are prime
(f n) + 1 else.

Claim(
∀n.∃p > n. p, p+ 2 are prime

)
↔ limit f = ω2 ↔ succ (limit f) > ω2
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TPC’s ordinal
Define a sequence f : N→ Brw by:

f 0 = zero

f (n+ 1) =

{
(f n) + ω if n and n+ 2 are prime
(f n) + 1 else.

Claim(
∀n.∃p > n. p, p+ 2 are prime

)
↔ limit f = ω2 ↔ succ (limit f) > ω2

Proof sketch TPC→ (limit f = ω2).
For any n, we find p > n s.t. f(p) ≥ ω · p, thus limit f ≥ ω · ω.
At the same time, f never exceeds ω2.
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TPC’s ordinal
Define a sequence f : N→ Brw by:

f 0 = zero

f (n+ 1) =

{
(f n) + ω if n and n+ 2 are prime
(f n) + 1 else.

Claim(
∀n.∃p > n. p, p+ 2 are prime

)
↔ limit f = ω2 ↔ succ (limit f) > ω2

Proof sketch (limit f ≥ ω2)→ TPC.

For every n, (limit f ≥ ω2) ⇒ ∃k.fk ≥ ω · (n+ 1)

⇒ ∃k.¬¬( f(p) jumped for some n < p ≤ k)

⇒ ∃k. f(p) jumped for some n < p ≤ k

⇒ there is a twin prime pair (p, p+ 2) above n
26



Summary
We have considered decidability aspects of different notions of ordinals.

Cantor normal forms

Brouwer trees

Wellfounded, extensional, and transitive orders

“Decidability ↔ True”

“Finite decidability ↔ True”
“Infinite decidability ↔ (W)LPO”

“Decidability ↔ (W)LEM”

In future: Connections with arithmetical hierarchy and synthetic computability theory.

N. Kraus, F. N-F., and C. Xu.
Type-Theoretic Approaches to Ordinals
arXiv:2208.03844
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Thank you!
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