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Relational reasoning à la
Burstall



Burstall’s insight: fold-ing lists (1969)

Theorem Given A,B : U ,b : B, f : A→ B → B, define

fold f b [] = b

fold f b (a :: as) = f a (fold f b as)

Then for all A,B,b, f as above, and F : List A→ B → U ,

if F [] b and F as r
F (a :: as) (f a r)

,

then for all as : List A, we have F as (fold f b as).

Proof Induction on as : List A.
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Induction for functions

every f : X → Y gives rise to graph relation y = f x

recursive f may be simulated by an inductive F x y

I (partial correctness) soundness

sndf (F ) : (Πx : X ) (Πy : Y ) F x y → (y = f x)

(typically: mechanical; proof by induction on F )

I (totality) completeness

cmpf (F ) : (Πx : X ) (Πy : Y ) (y = f x)→ F x y

alternatively, by appeal to J

cmpf (F ) : (Πx : X ) F x (f x)

(typically: not mechanical; proof by induction on the data x)
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Abstraction principle

in proof (elimination): replace induction on lists with induction on
graph; definitional equalities encapsulated in instantiation of
inductive premises;

in specification (introduction/definition): reduce fold induction to
datatype induction; definitional equalities justify constructors
(axioms, inference rules) of graph.

cf.
Bove-Capretta (1999): termination of non-structural recursion via
domain predicates
Bertot-Magaud (2000): Changement de représentation des
données
McBride-McKinna (2004): The View from the Left
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Implemented instances

NQTHM/ACL2: Boyer-Moore "recursion analysis".

HOL: TFP (Slind); Krauss et al..

COQ: Function (Forest et al.), Program, Equations
(Sozeau); esp. for non-structural recursion.

EPIGRAM: native support for views (soundness built in);
have to write programs witnessing views (proofs of completeness)
by hand.

AGDA, IDRIS: (so far) need to proceed entirely by hand.

Idea: extend the technique to implementations of HoTT.
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Homotopy Type Theory



Synthetic homotopy theory via Type Theory
New interpretation of Martin-Löf Type Theory into (abstract)
homotopy theory.

Intuitively:

I Types spaces.

I a : A points of A.

I Identity type a =A b  space of paths from a to b in A.

Univalence Axiom: equality of types is homotopy equivalence.

Logical methods capture homotopical concepts; synthetic
homotopy theory.

Getting closer to a well-behaved implementation (CUBICALTT,
Coquand et al.).
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Higher inductive types

Other logical ideas are also suggested by the homotopy
interpretation.

Higher inductive types: generated by both point and (higher) path
constructors.

E.g. circle S1 generated by

base : S1

loop : base = base

base

loop

Eliminator must respect/act on higher constructors.

Proofs are more subtle; blind approach not very useful.
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Proving homotopy equivalences

Proving

f : A ' B : g

becomes: construct inhabitants of

(Πb : B) f (g b) = b

(Πa : A) g (f a) = a
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Actual use case: the encode-decode method

ex : P(x) ' C(x) : dx

where:

x : T for HIT T ,

P(x) ≡ path space, defined in terms of equality,

C(x) ≡ covering space, defined by HIT-recursion and the
univalence axiom.
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Example for showing π1(S1) ' Z

S1

Here:
T ≡ S1

P(x) ≡ base = x

C(x) given by
I C(base) ≡ Z
I C(loop) : C(base) = C(base) ≡ ua(succ)
I i.e. loop?

Cz ≡ succ z.

for p : P(x), exp ≡ p?
C0.

for c : C(x), dxc given by
I dbase ≡ z 7→ loopz

I dloop : loop?(dbase) = dbase
I given by a translation-invariance lemma.

Prove ex = d−1
x (tricky!) and conclude:

Ω(S1,base) :≡ (base = base) ≡ P(base) ' C(base) ≡ Z
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Proving ex = d−1
x in terms of graphs

Introduce graphs, for x : S1

Ex : P(x)→ C(x)→ U
Dx : C(x)→ P(x)→ U

with, for all x : S1

sndex (Ex ) : (Πp : P(x)) (Πc : C(x)) Ex p c → (c = ex p)

cmpex
(Ex ) : (Πp : P(x)) (Πc : C(x)) (c = ex p)→ Ex p c

snddx (Dx ) : (Πc : C(x)) (Πp : P(x)) Dx c p → (p = dx c)

cmpdx
(Dx ) : (Πc : C(x)) (Πp : P(x)) (p = dx c)→ Dx c p

Finally, prove

(†) (Πx : S1) (Πp : P(x)) (Πc : C(x)) Ex p c ⇔ Dx c p
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The encode-decode equivalence

The equivalence ex : P(x) ' C(x) : dx now follows:

Ex p (ex (p)) by cmpex
(Ex )

Dx (ex (p)) p by (†)
dx (ex (p)) = p by snddx (Dx )

The other direction is entirely symmetric.

Note No explicit equational reasoning!

Also Note Each step is logical equivalence, homotopy equivalences
not needed for argument.
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Logical equivalence vs homotopy equivalence

By soundness and completeness, we get a logical equivalence

F x y ⇔ (y = f x)

Can this be improved to a homotopy equivalence

F x y ' (y = f x)?

Yes, if snd and cmp are coherent in a suitable way:

cohf (F ) : transportFx (snd p)(p) = cmp x

(cf. HoTT Book Issue #718 [for f = id], Rijke/Escardó).

Can usually be proven for the inductively defined graph.

However. . .
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this is not what we are doing!



Idea: how to prove (†) (cf. Bertot/Magaud)

(†) is an equivalence of specifications

F x y ' (y = f x) is one way to proceed, not the only one!

for suitable choices of D,E , (†) becomes easy or even vacuous to
prove

I (easy) by (higher) induction on D,E ; not necessarily a homotopy
equivalence

I (vacuous) take Dx p c ≡ Ex c p (!)

Difficulty moves into proofs of completeness.
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Choices and tradeoffs

inductive E
inductive D

inductive E
D c p ≡ E p c

inductive E
HIT D

sndex (Ex )

cmpex
(Ex )

cohex (Ex )

mechanical mechanical mechanical

snddx (Dx ) easy induction

cmpdx
(Dx ) impossible? induction + Z is a set

mechanical

(†)D ⇔ E easy induction vacuous hard
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Z is a set!

Because Z has decidable equality, it has trivial higher structure by
Hedberg’s Theorem.

For all p,q : x =Z y , we have p = q.

In the terminology of HoTT, Z is a set.

By soundness, coherence and the univalence axiom,
Ebase p c = (ex (p) =Z c).

Hence also Ebase p c is trivial.

In particular loop?e = e for all e : Ebase p c.

This makes HIT-induction respecting paths vacous!
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Completeness because Z is a set

For Dx c p ≡ Ex p c, we need

cmpDx
(dx ) : (Πx : S1) (Πc : C(x)) Ex (dxc) c

which by HIT-induction on S1, and the above observation reduces
to

(Π) Ebase (dbase)

by completeness for E , this reduces to

(Πz : Z) (loopz)
?0 = z

which is easily proven by (normal) induction on z : Z.

No (non-trivial) HIT-induction needed to prove π1(S1) ' Z!
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Summary



Summary

Burstall’s insight: replace proofs relying on reduction behaviour of
functions by proofs by induction over the graph of the function.

By choosing a clever encoding of the graph, we can get away with
less work.

Work in progress: hopefully scales to more complicated
encode-decode proofs.
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functions by proofs by induction over the graph of the function.

By choosing a clever encoding of the graph, we can get away with
less work.

Work in progress: hopefully scales to more complicated
encode-decode proofs.

Thanks!
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