The encode-decode method in HoTT, relationally

Fredrik Nordvall Forsberg

MSP group, Strathclyde

STP @ Dundee, 7 October 2015

Relational reasoning à la Burstall

Burstall's insight: fold-ing lists (1969)

Theorem Given $A, B : U, b : B, f : A \rightarrow B \rightarrow B$, define

• fold f b[] = b

• fold f b (a :: as) = f a (fold f b as)

Burstall's insight: fold-ing lists (1969)

Theorem Given $A, B : U, b : B, f : A \rightarrow B \rightarrow B$, define

• fold f b[] = b

Then for all A, B, b, f as above, and F : List $A \rightarrow B \rightarrow U$,

• if
$$\frac{F \text{ as } r}{F[] b}$$
 and $\frac{F \text{ as } r}{F(a :: as)(f a r)}$,

Burstall's insight: fold-ing lists (1969)

Theorem Given $A, B : U, b : B, f : A \rightarrow B \rightarrow B$, define

• fold f b[] = b

Then for all A, B, b, f as above, and F: List $A \rightarrow B \rightarrow U$,

• if
$$\frac{Fasr}{F[]b}$$
 and $\frac{Fasr}{F(a::as)(far)}$,

• then for all *as* : List *A*, we have *F* as (fold *f* b as).

Proof Induction on *as* : List *A*.

Induction for functions

• every $f: X \to Y$ gives rise to graph relation y = f x

• recursive f may be simulated by an inductive F x y

Induction for functions

• every $f: X \to Y$ gives rise to graph relation y = f x

• recursive f may be simulated by an inductive F x y

(partial correctness) soundness

 $\operatorname{snd}_{f}(F): (\Pi x:X) (\Pi y:Y) F x y \to (y = f x)$

(typically: mechanical; proof by induction on F)

Induction for functions

• every $f: X \to Y$ gives rise to graph relation y = f x

• recursive f may be simulated by an inductive F x y

(partial correctness) soundness

 $\operatorname{snd}_{f}(F): (\Pi x:X) (\Pi y:Y) F x y \to (y = f x)$

(typically: mechanical; proof by induction on F)

(totality) completeness

$$\operatorname{cmp}_{f}(F) : (\Pi x : X) (\Pi y : Y) (y = f x) \to F x y$$

alternatively, by appeal to J

```
\operatorname{cmp}_{f}(F) : (\Pi x : X) F x (f x)
```

(typically: not mechanical; proof by induction on the data x)

Abstraction principle

- in proof (elimination): replace induction on lists with induction on graph; definitional equalities encapsulated in instantiation of inductive premises;
- in specification (introduction/definition): reduce fold induction to datatype induction; definitional equalities justify constructors (axioms, inference rules) of graph.

cf.

- Bove-Capretta (1999): termination of non-structural recursion via domain predicates
- Bertot-Magaud (2000): Changement de représentation des données
- McBride-McKinna (2004): The View from the Left

Implemented instances

- TCL2 NQTHM/ACL2: Boyer-Moore "recursion analysis".
- ADL: TFP (Slind); Krauss *et al.*.
- COQ: Function (Forest *et al.*), Program, Equations (Sozeau); esp. for non-structural recursion.
- EPIGRAM: native support for views (soundness built in); have to write programs witnessing views (proofs of completeness) by hand.
- AGDA, 🦻 IDRIS: (so far) need to proceed entirely by hand.

Idea: extend the technique to implementations of HoTT.

Homotopy Type Theory

Synthetic homotopy theory via Type Theory

- New interpretation of Martin-Löf Type Theory into (abstract) homotopy theory.
- Intuitively:
 - ► Types ~→ spaces.
 - $a: A \rightsquigarrow$ points of A.

- Identity type $a =_A b \rightsquigarrow$ space of paths from *a* to *b* in *A*.
- Univalence Axiom: equality of types is homotopy equivalence.
- Logical methods capture homotopical concepts; synthetic homotopy theory.
- Getting closer to a well-behaved implementation (CUBICALTT, Coquand *et al.*).

- Other logical ideas are also suggested by the homotopy interpretation.
- Higher inductive types: generated by both point and (higher) path constructors.
- E.g. circle \mathbb{S}^1 generated by

base : \mathbb{S}^1 loop : base = base

- Other logical ideas are also suggested by the homotopy interpretation.
- Higher inductive types: generated by both point and (higher) path constructors.
- E.g. circle \mathbb{S}^1 generated by

base : \mathbb{S}^1 loop : base = base

- Other logical ideas are also suggested by the homotopy interpretation.
- Higher inductive types: generated by both point and (higher) path constructors.

base

- Other logical ideas are also suggested by the homotopy interpretation.
- Higher inductive types: generated by both point and (higher) path constructors.

• Proofs are more subtle; blind approach not very useful.

Proving homotopy equivalences

Proving

$$f: A \simeq B: g$$

becomes: construct inhabitants of

 $(\Pi b:B) f(g b) = b$

$$(\Pi a : A) g(f a) = a$$

Actual use case: the encode-decode method

$$e_x: P(x) \simeq C(x): d_x$$

where:

- x : T for HIT T,
- $P(x) \equiv$ path space, defined in terms of equality,
- C(x) ≡ covering space, defined by HIT-recursion and the univalence axiom.

- $T \equiv \mathbb{S}^1$
- $P(x) \equiv base = x$
- C(x) given by
 - $C(base) \equiv \mathbb{Z}$
 - $C(loop) : C(base) = C(base) \equiv ua(succ)$
 - *i.e.* $loop_C^* z \equiv succ z$.

- $T \equiv \mathbb{S}^1$
- $P(x) \equiv base = x$
- C(x) given by
 C(base) ≡ Z
 C(loop) : C(base) = C(base) ≡ ua(succ)
 i.e. loop^{*}_Cz ≡ succ z.
- for $p: P(x), e_x p \equiv p_C^* 0$.

- $T \equiv \mathbb{S}^1$
- $P(x) \equiv base = x$
- C(x) given by
 C(base) ≡ Z
 C(loop) : C(base) = C(base) ≡ ua(succ)
 i.e. loop^{*}_Cz ≡ succ z.
- for $p: P(x), e_x p \equiv p_C^* 0$.
- for c : C(x), $d_x c$ given by
 - $d_{base} \equiv z \mapsto loop^z$
 - ▶ d_{loop} : loop^{*}(d_{base}) = d_{base}
 - given by a translation-invariance lemma.

- $T \equiv \mathbb{S}^1$
- $P(x) \equiv base = x$
- C(x) given by
 C(base) ≡ Z
 C(loop) : C(base) = C(base) ≡ ua(succ)
 i.e. loop^{*}_Cz ≡ succ z.

• for
$$p: P(x), e_x p \equiv p_C^* 0$$
.

- for c : C(x), $d_x c$ given by
 - $d_{base} \equiv z \mapsto loop^z$
 - $\blacktriangleright \ d_{loop}: loop^{\star}(d_{base}) = d_{base}$
 - given by a translation-invariance lemma.

Prove
$$e_x = d_x^{-1}$$
 (tricky!) and conclude:
 $\Omega(\mathbb{S}^1, \text{base}) :\equiv (\text{base} = \text{base}) \equiv P(\text{base}) \simeq C(\text{base}) \equiv \mathbb{Z}$

Proving $e_x = d_x^{-1}$ in terms of graphs

Introduce graphs, for $x : \mathbb{S}^1$

$$E_x : P(x) \to C(x) \to \mathcal{U}$$

 $D_x : C(x) \to P(x) \to \mathcal{U}$

with, for all $x : \mathbb{S}^1$

 $\begin{array}{l} \operatorname{snd}_{e_x}(E_x) : (\operatorname{\Pi} p : P(x)) \ (\operatorname{\Pi} c : C(x)) \ E_x \ p \ c \to (c = e_x \ p) \\ \operatorname{cmp}_{e_x}(E_x) : (\operatorname{\Pi} p : P(x)) \ (\operatorname{\Pi} c : C(x)) \ (c = e_x \ p) \to E_x \ p \ c \\ \operatorname{snd}_{d_x}(D_x) : (\operatorname{\Pi} c : C(x)) \ (\operatorname{\Pi} p : P(x)) \ D_x \ c \ p \to (p = d_x \ c) \\ \operatorname{cmp}_{d_x}(D_x) : (\operatorname{\Pi} c : C(x)) \ (\operatorname{\Pi} p : P(x)) \ (p = d_x \ c) \to D_x \ c \ p \end{array}$

Finally, prove

(†) $(\Pi x : \mathbb{S}^1) (\Pi p : P(x)) (\Pi c : C(x)) E_x p c \Leftrightarrow D_x c p$

The equivalence $e_x : P(x) \simeq C(x) : d_x$ now follows:

 $E_x p(e_x(p))$ by $cmp_{e_x}(E_x)$

The equivalence $e_x : P(x) \simeq C(x) : d_x$ now follows:

$$\begin{array}{lll} \mathsf{E}_x \, \rho \left(\mathsf{e}_x(\rho) \right) & \text{by } \operatorname{cmp}_{\mathsf{e}_x}(\mathsf{E}_x) \\ \mathsf{D}_x \left(\mathsf{e}_x(\rho) \right) \, \rho & \text{by } (\dagger) \end{array}$$

The equivalence $e_x : P(x) \simeq C(x) : d_x$ now follows:

$$\begin{array}{lll} \mathsf{E}_x \, \rho \left(\mathsf{e}_x(\rho)\right) & \text{by} & \mathsf{cmp}_{\mathsf{e}_x}(\mathsf{E}_x) \\ \mathsf{D}_x \left(\mathsf{e}_x(\rho)\right) \, \rho & \text{by} & (\dagger) \\ \mathsf{d}_x(\mathsf{e}_x(\rho)) = \rho & \text{by} & \mathsf{snd}_{\mathsf{d}_x}(\mathsf{D}_x) \end{array}$$

The equivalence $e_x : P(x) \simeq C(x) : d_x$ now follows:

$$\begin{array}{lll} \mathsf{E}_x \, \rho \left(\mathsf{e}_x(\rho) \right) & \text{by} & \mathsf{cmp}_{\mathsf{e}_x}(\mathsf{E}_x) \\ \mathsf{D}_x \left(\mathsf{e}_x(\rho) \right) \, \rho & \text{by} & (\dagger) \\ \mathsf{d}_x(\mathsf{e}_x(\rho)) = \rho & \text{by} & \mathsf{snd}_{\mathsf{d}_x}(\mathsf{D}_x) \end{array}$$

The other direction is entirely symmetric.

Note No explicit equational reasoning!

Also Note Each step is logical equivalence, homotopy equivalences not needed for argument.

Logical equivalence vs homotopy equivalence

• By soundness and completeness, we get a logical equivalence

$$F x y \Leftrightarrow (y = f x)$$

• Can this be improved to a homotopy equivalence

$$F x y \simeq (y = f x)?$$

Logical equivalence vs homotopy equivalence

• By soundness and completeness, we get a logical equivalence

 $F x y \Leftrightarrow (y = f x)$

• Can this be improved to a homotopy equivalence

$$F x y \simeq (y = f x)?$$

• Yes, if *snd* and *cmp* are coherent in a suitable way:

 $\operatorname{coh}_{f}(F)$: transport_{*Fx*}(*snd p*)(*p*) = *cmp x*

(*cf.* HoTT Book Issue #718 [for f = id], Rijke/Escardó).

• Can usually be proven for the inductively defined graph.

Logical equivalence vs homotopy equivalence

• By soundness and completeness, we get a logical equivalence

 $F x y \Leftrightarrow (y = f x)$

• Can this be improved to a homotopy equivalence

$$F x y \simeq (y = f x)?$$

• Yes, if *snd* and *cmp* are coherent in a suitable way:

 $\operatorname{coh}_{f}(F)$: transport_{*Fx*}(*snd p*)(*p*) = *cmp x*

(*cf.* HoTT Book Issue #718 [for f = id], Rijke/Escardó).

- Can usually be proven for the inductively defined graph.
- However...

this is not what we are doing!

Idea: how to prove (†) (cf. Bertot/Magaud)

- (†) is an equivalence of specifications
- $F x y \simeq (y = f x)$ is one way to proceed, not the only one!
- for suitable choices of D, E, (†) becomes easy or even vacuous to prove
 - (easy) by (higher) induction on D, E; not necessarily a homotopy equivalence
 - (vacuous) take $D_x p c \equiv E_x c p$ (!)
- Difficulty moves into proofs of completeness.

Choices and tradeoffs

	inductive E inductive D	inductive E $Dcp \equiv Epc$	inductive E HIT D
$\operatorname{snd}_{e_x}(E_x)$			
$cmp_{e_x}(E_x)$	mechanical	mechanical	mechanical
$\operatorname{coh}_{e_x}(E_x)$			
$\operatorname{snd}_{d_x}(D_x)$	easy	induction	mechanical
$cmp_{d_x}(D_x)$	impossible?	induction + \mathbb{Z} is a set	
$(\dagger)D \Leftrightarrow E$	easy induction	vacuous	hard

\mathbb{Z} is a set!

- Because Z has decidable equality, it has trivial higher structure by Hedberg's Theorem.
- For all $p, q : x =_{\mathbb{Z}} y$, we have p = q.
- In the terminology of HoTT, \mathbb{Z} is a set.
- By soundness, coherence and the univalence axiom, $E_{\text{base}} p c = (e_x(p) =_{\mathbb{Z}} c).$
- Hence also $E_{\text{base}} p c$ is trivial.
- In particular loop^{*}e = e for all $e : E_{\text{base}} p c$.
- This makes HIT-induction respecting paths vacous!

Completeness because $\ensuremath{\mathbb{Z}}$ is a set

• For $D_x c p \equiv E_x p c$, we need

```
\operatorname{cmp}_{D_x}(\operatorname{d}_x) : (\Pi x : \mathbb{S}^1) (\Pi c : C(x)) E_x(\operatorname{d}_x c) c
```

• For $D_x c p \equiv E_x p c$, we need

 $\operatorname{cmp}_{D_{x}}(\operatorname{d}_{x}):(\operatorname{\Pi} x:\mathbb{S}^{1})(\operatorname{\Pi} c:C(x)) E_{x}(\operatorname{d}_{x} c) c$

 $\bullet\,$ which by HIT-induction on $\mathbb{S}^1,$ and the above observation reduces to

 $(\Pi c : C(base)) E_{base} (d_{base} c) c$

• For $D_x c p \equiv E_x p c$, we need

 $\operatorname{cmp}_{D_{x}}(\operatorname{d}_{x}):(\operatorname{\Pi} x:\mathbb{S}^{1})(\operatorname{\Pi} c:C(x)) E_{x}(\operatorname{d}_{x} c) c$

• which by HIT-induction on $\mathbb{S}^1,$ and the above observation reduces to

 $(\Pi z : \mathbb{Z}) E_{\text{base}}(d_{\text{base}}z) z$

• For $D_x c p \equiv E_x p c$, we need

```
\operatorname{cmp}_{D_{x}}(\operatorname{d}_{x}):(\operatorname{\Pi} x:\mathbb{S}^{1})(\operatorname{\Pi} c:C(x)) E_{x}(\operatorname{d}_{x} c) c
```

 $\bullet\,$ which by HIT-induction on $\mathbb{S}^1,$ and the above observation reduces to

 $(\Pi z : \mathbb{Z}) E_{\text{base}}(\text{loop}^z) z$

• For $D_x c p \equiv E_x p c$, we need

 $\operatorname{cmp}_{D_{x}}(\operatorname{d}_{x}):(\operatorname{\Pi} x:\mathbb{S}^{1})(\operatorname{\Pi} c:C(x)) E_{x}(\operatorname{d}_{x} c) c$

 which by HIT-induction on S¹, and the above observation reduces to

 $(\Pi z : \mathbb{Z}) E_{\text{base}}(\text{loop}^z) z$

• by completeness for *E*, this reduces to

 $(\Pi z : \mathbb{Z}) (\operatorname{loop}^z)^* 0 = z$

which is easily proven by (normal) induction on $z : \mathbb{Z}$.

• For $D_x c p \equiv E_x p c$, we need

 $\operatorname{cmp}_{D_x}(\operatorname{d}_x):(\Pi x:\mathbb{S}^1)\ (\Pi c:C(x))\ E_x\ (\operatorname{d}_x c)\ c$

 which by HIT-induction on S¹, and the above observation reduces to

 $(\Pi z : \mathbb{Z}) E_{\text{base}}(\text{loop}^z) z$

• by completeness for *E*, this reduces to

 $(\Pi z : \mathbb{Z}) (\operatorname{loop}^z)^* 0 = z$

which is easily proven by (normal) induction on $z : \mathbb{Z}$.

• No (non-trivial) HIT-induction needed to prove $\pi_1(\mathbb{S}^1) \simeq \mathbb{Z}!$

Summary

- Burstall's insight: replace proofs relying on reduction behaviour of functions by proofs by induction over the graph of the function.
- By choosing a clever encoding of the graph, we can get away with less work.
- Work in progress: hopefully scales to more complicated encode-decode proofs.

Summary

