The encode-decode method in HoTT, relationally

Fredrik Nordvall Forsberg

Burstall's insight: fold-ing lists (1969)

Theorem Given $A, B: \mathcal{U}, b: B, f: A \rightarrow B \rightarrow B$, define

- fold $f b[]=b$
- fold $f b(a:: a s)=f a($ fold $f b a s)$

Burstall's insight: fold-ing lists (1969)

Theorem Given $A, B: \mathcal{U}, b: B, f: A \rightarrow B \rightarrow B$, define

- fold $f b[]=b$
- fold $f b(a:: a s)=f a($ fold $f b a s)$

Then for all A, B, b, f as above, and $F:$ List $A \rightarrow B \rightarrow \mathcal{U}$,

- if $\frac{F[b}{F\left[\text { and } \frac{F \text { asr }}{F(a:: a s)(f a r)}, ~\right.}$

Burstall's insight: fold-ing lists (1969)

Theorem Given $A, B: \mathcal{U}, b: B, f: A \rightarrow B \rightarrow B$, define

- fold $f b[]=b$
- fold $f b(a:: a s)=f a($ fold $f b a s)$

Then for all A, B, b, f as above, and $F:$ List $A \rightarrow B \rightarrow \mathcal{U}$,

- if $\frac{F[b}{F\left[\text { and } \frac{F \text { asr }}{F(a:: a s)(f a r)}, ~\right.}$
- then for all as : List A, we have F as (fold $f b$ as).

Proof Induction on as : List A.

Induction for functions

- every $f: X \rightarrow Y$ gives rise to graph relation $y=f x$
- recursive f may be simulated by an inductive $F x y$

Induction for functions

- every $f: X \rightarrow Y$ gives rise to graph relation $y=f x$
- recursive f may be simulated by an inductive $F x y$
- (partial correctness) soundness

$$
\operatorname{snd}_{f}(F):(\Pi x: X)(\Pi y: Y) F x y \rightarrow(y=f x)
$$

(typically: mechanical; proof by induction on F)

Induction for functions

- every $f: X \rightarrow Y$ gives rise to graph relation $y=f x$
- recursive f may be simulated by an inductive $F x y$
- (partial correctness) soundness

$$
\operatorname{snd}_{f}(F):(\Pi x: X)(\Pi y: Y) F x y \rightarrow(y=f x)
$$

(typically: mechanical; proof by induction on F)

- (totality) completeness

$$
\operatorname{cmp}_{f}(F):(\Pi x: X)(\Pi y: Y)(y=f x) \rightarrow F x y
$$

alternatively, by appeal to J

$$
\operatorname{cmp}_{f}(F):(\Pi x: X) F x(f x)
$$

(typically: not mechanical; proof by induction on the data x)

Abstraction principle

- in proof (elimination): replace induction on lists with induction on graph; definitional equalities encapsulated in instantiation of inductive premises;
- in specification (introduction/definition): reduce fold induction to datatype induction; definitional equalities justify constructors (axioms, inference rules) of graph.
cf.
- Bove-Capretta (1999): termination of non-structural recursion via domain predicates
- Bertot-Magaud (2000): Changement de représentation des données
- McBride-McKinna (2004): The View from the Left

Implemented instances

- ЯCL2 NQTHM/ACL2: Boyer-Moore "recursion analysis".
- 高 HoL: TFP (Slind); Krauss et al..
- CoQ: Function (Forest et al.), Program, Equations (Sozeau); esp. for non-structural recursion.
- Epigram: native support for views (soundness built in); have to write programs witnessing views (proofs of completeness) by hand.
- AgDA, ${ }^{*}$ Idris: (so far) need to proceed entirely by hand.

Idea: extend the technique to implementations of HoTT.

Homotopy Type Theory

 }
Synthetic homotopy theory via Type Theory

- New interpretation of Martin-Löf Type Theory into (abstract) homotopy theory.
- Intuitively:
- Types \rightsquigarrow spaces.
- a : $A \rightsquigarrow$ points of A.

- Identity type $a={ }_{A} b \rightsquigarrow$ space of paths from a to b in A.
- Univalence Axiom: equality of types is homotopy equivalence.
- Logical methods capture homotopical concepts; synthetic homotopy theory.
- Getting closer to a well-behaved implementation (CUBICALTT, Coquand et al.).

Higher inductive types

- Other logical ideas are also suggested by the homotopy interpretation.
- Higher inductive types: generated by both point and (higher) path constructors.
- E.g. circle \mathbb{S}^{1} generated by

$$
\begin{aligned}
& \text { base }: \mathbb{S}^{1} \\
& \text { loop }: \text { base = base }
\end{aligned}
$$

Higher inductive types

- Other logical ideas are also suggested by the homotopy interpretation.
- Higher inductive types: generated by both point and (higher) path constructors.
- E.g. circle \mathbb{S}^{1} generated by

$$
\begin{aligned}
& \text { base }: \mathbb{S}^{1} \\
& \text { loop }: \text { base = base }
\end{aligned}
$$

base

Higher inductive types

- Other logical ideas are also suggested by the homotopy interpretation.
- Higher inductive types: generated by both point and (higher) path constructors.
- E.g. circle \mathbb{S}^{1} generated by

```
base: \mathbb{S }
    loop : base = base
```


base

Higher inductive types

- Other logical ideas are also suggested by the homotopy interpretation.
- Higher inductive types: generated by both point and (higher) path constructors.
- E.g. circle \mathbb{S}^{1} generated by

$$
\begin{aligned}
& \text { base }: \mathbb{S}^{1} \\
& \text { loop }: \text { base = base }
\end{aligned}
$$

- Eliminator must respect/act on higher constructors.
base
- Proofs are more subtle; blind approach not very useful.

Proving homotopy equivalences

Proving

$$
f: A \simeq B: g
$$

becomes: construct inhabitants of

$$
\begin{aligned}
& (\Pi b: B) f(g b)=b \\
& (\Pi a: A) g(f a)=a
\end{aligned}
$$

Actual use case: the encode-decode method

$$
e_{x}: P(x) \simeq C(x): d_{x}
$$

where:

- $x: T$ for HIT T,
- $P(x) \equiv$ path space, defined in terms of equality,
- $C(x) \equiv$ covering space, defined by HIT-recursion and the univalence axiom.

Example for showing $\pi_{1}\left(\mathbb{S}^{1}\right) \simeq \mathbb{Z}$

 Here:- $T \equiv \mathbb{S}^{1}$
- $P(x) \equiv$ base $=x$
- $C(x)$ given by
- C (base) $\equiv \mathbb{Z}$
- C (loop) : C (base) $=C($ base $) \equiv \mathrm{ua}($ succ $)$
- i.e. $\operatorname{loop}_{C}^{\star} z \equiv \operatorname{succ} z$.

Example for showing $\pi_{1}\left(\mathbb{S}^{1}\right) \simeq \mathbb{Z}$

 Here:- $T \equiv \mathbb{S}^{1}$
- $P(x) \equiv$ base $=x$
- $C(x)$ given by
- C (base) $\equiv \mathbb{Z}$
- C (loop) : C (base) $=C$ (base) \equiv ua(succ)
- i.e. $\operatorname{loop}_{C}^{\star} z \equiv \operatorname{succ} z$.
- for $p: P(x), \mathrm{e}_{x} p \equiv p_{C}^{\star} 0$.

Example for showing $\pi_{1}\left(\mathbb{S}^{1}\right) \simeq \mathbb{Z}$

 Here:- $T \equiv \mathbb{S}^{1}$
- $P(x) \equiv$ base $=x$
- $C(x)$ given by
- C (base) $\equiv \mathbb{Z}$
- C (loop) : C (base) $=C$ (base) $\equiv \mathrm{ua}($ succ $)$
- i.e. $\operatorname{loop}_{C}^{\star} z \equiv \operatorname{succ} z$.
- for $p: P(x), \mathrm{e}_{x} p \equiv p_{C}^{\star} 0$.
- for $c: C(x), \mathrm{d}_{x} c$ given by
- $\mathrm{d}_{\text {base }} \equiv z \mapsto$ loop z
- $\mathrm{d}_{\text {loop }}: \operatorname{loop}^{\star}\left(\mathrm{d}_{\text {base }}\right)=\mathrm{d}_{\text {base }}$
- given by a translation-invariance lemma.

Example for showing $\pi_{1}\left(\mathbb{S}^{1}\right) \simeq \mathbb{Z}$

 Here:- $T \equiv \mathbb{S}^{1}$
- $P(x) \equiv$ base $=x$
- $C(x)$ given by
- C (base) $\equiv \mathbb{Z}$
- C (loop) : C (base) $=C$ (base) $\equiv \mathrm{ua}($ succ $)$
- i.e. $\operatorname{loop}_{C}^{\star} z \equiv \operatorname{succ} z$.
- for $p: P(x), \mathrm{e}_{x} p \equiv p_{C}^{\star} 0$.
- for $c: C(x), \mathrm{d}_{x} c$ given by
- $\mathrm{d}_{\text {base }} \equiv z \mapsto$ loop 2
- $\mathrm{d}_{\text {loop }}: \operatorname{loop}^{\star}\left(\mathrm{d}_{\text {base }}\right)=\mathrm{d}_{\text {base }}$
- given by a translation-invariance lemma.
- Prove $e_{x}=d_{x}^{-1}$ (tricky!) and conclude:

$$
\Omega\left(\mathbb{S}^{1}, \text { base }\right): \equiv(\text { base }=\text { base }) \equiv P(\text { base }) \simeq C(\text { base }) \equiv \mathbb{Z}
$$

Proving $e_{x}=d_{x}^{-1}$ in terms of graphs

Introduce graphs, for x : \mathbb{S}^{1}

$$
\begin{aligned}
& E_{x}: P(x) \rightarrow C(x) \rightarrow \mathcal{U} \\
& D_{x}: C(x) \rightarrow P(x) \rightarrow \mathcal{U}
\end{aligned}
$$

with, for all x : \mathbb{S}^{1}

$$
\begin{array}{r}
\operatorname{snd}_{e_{x}}\left(E_{x}\right):(\Pi p: P(x))(\Pi c: C(x)) E_{x} p c \rightarrow\left(c=e_{x} p\right) \\
\operatorname{cmp}_{e_{x}}\left(E_{x}\right):(\Pi p: P(x))(\Pi c: C(x))\left(c=e_{x} p\right) \rightarrow E_{x} p c \\
\operatorname{snd}_{d_{x}}\left(D_{x}\right):(\Pi c: C(x))(\Pi p: P(x)) D_{x} c p \rightarrow\left(p=d_{x} c\right) \\
\operatorname{cmp}_{d_{x}}\left(D_{x}\right):(\Pi c: C(x))(\Pi p: P(x))\left(p=d_{x} c\right) \rightarrow D_{x} c p
\end{array}
$$

Finally, prove

$$
(\dagger)\left(\Pi x: \mathbb{S}^{1}\right)(\Pi p: P(x))(\Pi c: C(x)) E_{x} p c \Leftrightarrow D_{x} c p
$$

The encode-decode equivalence

The equivalence $e_{x}: P(x) \simeq C(x): d_{x}$ now follows:

$$
\mathrm{E}_{x} p\left(\mathrm{e}_{x}(p)\right) \text { by } \mathrm{cmp}_{\mathrm{e}_{x}}\left(\mathrm{E}_{x}\right)
$$

The encode-decode equivalence

The equivalence $e_{x}: P(x) \simeq C(x): d_{x}$ now follows:

$$
\begin{array}{ll}
\mathrm{E}_{x} p\left(\mathrm{e}_{x}(p)\right) & \text { by } \\
\mathrm{D}_{x}\left(\mathrm{e}_{x}(p)\right) p & \text { by } \\
(\dagger)
\end{array}
$$

The encode-decode equivalence

The equivalence $e_{x}: P(x) \simeq C(x): d_{x}$ now follows:

$$
\begin{array}{lll}
\mathrm{E}_{x} p\left(\mathrm{e}_{x}(p)\right) & \text { by } & \operatorname{cmp}_{\mathrm{e}_{x}}\left(\mathrm{E}_{x}\right) \\
\mathrm{D}_{x}\left(\mathrm{e}_{x}(p)\right) p & \text { by } & (\dagger) \\
\mathrm{d}_{x}\left(\mathrm{e}_{x}(p)\right)=p & \text { by } & \operatorname{snd}_{\mathrm{d}_{x}}\left(\mathrm{D}_{x}\right)
\end{array}
$$

The encode-decode equivalence

The equivalence $e_{x}: P(x) \simeq C(x): d_{x}$ now follows:

$$
\begin{array}{llll}
\mathrm{E}_{x} p\left(\mathrm{e}_{x}(p)\right) & \text { by } & \mathrm{cmp}_{\mathrm{e}_{x}}\left(\mathrm{E}_{x}\right) \\
\mathrm{D}_{x}\left(\mathrm{e}_{x}(p)\right) p & \text { by } & (\dagger) \\
\mathrm{d}_{x}\left(\mathrm{e}_{x}(p)\right)=p & \text { by } & \operatorname{snd}_{\mathrm{d}_{x}}\left(\mathrm{D}_{x}\right)
\end{array}
$$

The other direction is entirely symmetric.
Note No explicit equational reasoning!
Also Note Each step is logical equivalence, homotopy equivalences not needed for argument.

Logical equivalence vs homotopy equivalence

- By soundness and completeness, we get a logical equivalence

$$
F x y \Leftrightarrow(y=f x)
$$

- Can this be improved to a homotopy equivalence

$$
F x y \simeq(y=f x) ?
$$

Logical equivalence vs homotopy equivalence

- By soundness and completeness, we get a logical equivalence

$$
F x y \Leftrightarrow(y=f x)
$$

- Can this be improved to a homotopy equivalence

$$
F x y \simeq(y=f x) ?
$$

- Yes, if snd and cmp are coherent in a suitable way:

$$
\operatorname{coh}_{f}(F): \operatorname{transport}_{F x}(\text { snd } p)(p)=c m p x
$$

(cf. HoTT Book Issue \#718 [for $f=\mathrm{id}]$, Rijke/Escardó).

- Can usually be proven for the inductively defined graph.

Logical equivalence vs homotopy equivalence

- By soundness and completeness, we get a logical equivalence

$$
F x y \Leftrightarrow(y=f x)
$$

- Can this be improved to a homotopy equivalence

$$
F x y \simeq(y=f x) ?
$$

- Yes, if snd and cmp are coherent in a suitable way:

$$
\operatorname{coh}_{f}(F): \operatorname{transport}_{F x}(\text { snd } p)(p)=c m p x
$$

(cf. HoTT Book Issue \#718 [for $f=\mathrm{id}]$, Rijke/Escardó).

- Can usually be proven for the inductively defined graph.
- However...
this is not what we are doing!

Idea: how to prove (\dagger) (cf. Bertot/Magaud)

- (\dagger) is an equivalence of specifications
- $F x y \simeq(y=f x)$ is one way to proceed, not the only one!
- for suitable choices of D, E, (\dagger) becomes easy or even vacuous to prove
- (easy) by (higher) induction on D, E; not necessarily a homotopy equivalence
- (vacuous) take $\mathrm{D}_{x} p c \equiv \mathrm{E}_{x} \subset p(!)$
- Difficulty moves into proofs of completeness.

Choices and tradeoffs

	inductive E inductive D	inductive E $D c p \equiv E p c$	inductive E HIT D
$\operatorname{snd}_{\mathrm{e}_{x}}\left(\mathrm{E}_{x}\right)$			
$\operatorname{cmp}_{\mathrm{e}_{x}}\left(\mathrm{E}_{x}\right)$	mechanical	mechanical	mechanical
$\operatorname{coh}_{\mathrm{e}_{x}}\left(\mathrm{E}_{x}\right)$	easy	induction	mechanical
$\operatorname{snd}_{\mathrm{d}_{x}}\left(\mathrm{D}_{x}\right)$		hard	
$\operatorname{cmp}_{\mathrm{d}_{x}}\left(\mathrm{D}_{x}\right)$	impossible?	induction $+\mathbb{Z}$ is a set	
$(\dagger) D \Leftrightarrow E$	easy induction	vacuous	hard

\mathbb{Z} is a set!

- Because \mathbb{Z} has decidable equality, it has trivial higher structure by Hedberg's Theorem.
- For all $p, q: x=\mathbb{Z} y$, we have $p=q$.
- In the terminology of $\mathrm{HoTT}, \mathbb{Z}$ is a set.
- By soundness, coherence and the univalence axiom, $E_{\text {base }} p c=\left(\mathrm{e}_{x}(p)=_{\mathbb{Z}} c\right)$.
- Hence also $E_{\text {base }} p c$ is trivial.
- In particular loop ${ }^{\star} e=e$ for all $e: E_{\text {base }} p c$.
- This makes HIT-induction respecting paths vacous!

Completeness because \mathbb{Z} is a set

- For $D_{x} c p \equiv E_{x} p c$, we need

$$
\operatorname{cmp}_{D_{x}}\left(\mathrm{~d}_{x}\right):\left(\Pi x: \mathbb{S}^{1}\right)(\Pi c: C(x)) E_{x}\left(\mathrm{~d}_{x} c\right) c
$$

Completeness because \mathbb{Z} is a set

- For $D_{x} c p \equiv E_{x} p c$, we need

$$
\operatorname{cmp}_{D_{x}}\left(\mathrm{~d}_{x}\right):\left(\Pi x: \mathbb{S}^{1}\right)(\Pi c: C(x)) E_{x}\left(\mathrm{~d}_{x} c\right) c
$$

- which by HIT-induction on \mathbb{S}^{1}, and the above observation reduces to

$$
(\Pi c: C(\text { base })) E_{\text {base }}\left(\mathrm{d}_{\mathrm{base}} c\right) c
$$

Completeness because \mathbb{Z} is a set

- For $D_{x} c p \equiv E_{x} p c$, we need

$$
\operatorname{cmp}_{D_{x}}\left(\mathrm{~d}_{x}\right):\left(\Pi x: \mathbb{S}^{1}\right)(\Pi c: C(x)) E_{x}\left(\mathrm{~d}_{x} c\right) c
$$

- which by HIT-induction on \mathbb{S}^{1}, and the above observation reduces to

$$
(\Pi z: \mathbb{Z}) E_{\text {base }}\left(\mathrm{d}_{\text {base }} z\right) z
$$

Completeness because \mathbb{Z} is a set

- For $D_{x} c p \equiv E_{x} p c$, we need

$$
\operatorname{cmp}_{D_{x}}\left(\mathrm{~d}_{x}\right):\left(\Pi x: \mathbb{S}^{1}\right)(\Pi c: C(x)) E_{x}\left(\mathrm{~d}_{x} c\right) c
$$

- which by HIT-induction on \mathbb{S}^{1}, and the above observation reduces to

$$
(\Pi z: \mathbb{Z}) E_{\text {base }}\left(\operatorname{loop}^{z}\right) z
$$

Completeness because \mathbb{Z} is a set

- For $D_{x} c p \equiv E_{x} p c$, we need

$$
\operatorname{cmp}_{D_{x}}\left(\mathrm{~d}_{x}\right):\left(\Pi x: \mathbb{S}^{1}\right)(\Pi c: C(x)) E_{x}\left(\mathrm{~d}_{x} c\right) c
$$

- which by HIT-induction on \mathbb{S}^{1}, and the above observation reduces to

$$
(\Pi z: \mathbb{Z}) E_{\text {base }}\left(\text { loop }^{z}\right) z
$$

- by completeness for E, this reduces to

$$
(\Pi z: \mathbb{Z})\left(\operatorname{loop}^{z}\right)^{\star} 0=z
$$

which is easily proven by (normal) induction on $z: \mathbb{Z}$.

Completeness because \mathbb{Z} is a set

- For $D_{x} c p \equiv E_{x} p c$, we need

$$
\operatorname{cmp}_{D_{x}}\left(\mathrm{~d}_{x}\right):\left(\Pi x: \mathbb{S}^{1}\right)(\Pi c: C(x)) E_{x}\left(\mathrm{~d}_{x} c\right) c
$$

- which by HIT-induction on \mathbb{S}^{1}, and the above observation reduces to

$$
(\Pi z: \mathbb{Z}) E_{\text {base }}\left(\operatorname{loop}^{z}\right) z
$$

- by completeness for E, this reduces to

$$
(\Pi z: \mathbb{Z})\left(\operatorname{loop}^{z}\right)^{\star} 0=z
$$

which is easily proven by (normal) induction on $z: \mathbb{Z}$.

- No (non-trivial) HIT-induction needed to prove $\pi_{1}\left(\mathbb{S}^{1}\right) \simeq \mathbb{Z}$!

Summary

- Burstall's insight: replace proofs relying on reduction behaviour of functions by proofs by induction over the graph of the function.
- By choosing a clever encoding of the graph, we can get away with less work.
- Work in progress: hopefully scales to more complicated encode-decode proofs.

Summary

Thanks!

