OpenCL Acceleration of Digital Forensic Methods

Ethan Bayne, Robert Ian Ferguson, John Isaacs

School of Science, Engineering and Technology, Abertay University, Kydd Building, Bell Street, Dundee, DD1 1HG

Abstract

String searching plays a critical role in the digital forensic (DF) methods used to analyse digital corpora for evidence
to assist an investigation. As the storage capacity on modern devices continues to grow, the current generation of DF
tools struggle to efficiently perform analyses on the growing sizes of forensic data. This struggle presents a requirement
for further research to be conducted on providing low-cost and effective techniques of improving file-carving performance.

One strategy to mitigate this is to employ general purpose computing on graphics processing units (GPGPU) to
handle the processing of data in a parallel fashion. Currently, only some of the research on GPGPU processing has
been transferred to the field of DF, mostly based around Compute Unified Device Architecture (CUDA)—a closed-
source GPGPU framework with limited hardware compatibility. This project researches an alternative open-source
GPGPU framework, Open Computing Language (OpenCL), to accelerate file carving with a wider compatibility across
devices. The proposed OpenCL solution demonstrates processing improvements over traditional single-threaded central
processing unit (CPU) processing models that are currently used to perform string searching in file carving and other

DF techniques.

Keywords: , Digital forensics, String searching, File carving, GPGPU, GPU, IGP, Parallel programming

1. Introduction

The growth of storage capacities available on modern
computers is seen as one of the largest concerns within the
digital forensic (DF) community, as the current generation
of tools are failing to efficiently process increasing sizes of
digital corpora. This is primarily due to the amount of
processing power required to inspect each segment of data
within the forensic image. As a result, the time needed
to investigate cases has increased significantly and, as an
inevitable side effect, caused large backlogs of forensic
investigations. This issue highlights the urgent need for
more powerful methods of processing digital evidence.

String searching is a vital underlying task of many
techniques used to ascertain evidence in DF investigations;
however, performing string searching is computationally
intensive. While suggestions have been made over the past
few years to improve processing speeds through the use
of distributed computing techniques (Ayers, 2009), this
study presents an alternative processing solution utilising
parallel processing and graphics processing units (GPUs)
that may prove more efficient and cost-effective for DF
professionals. Results ascertained from this study show
significant performance gains from the proposed parallel
processing solution when compared to a traditional central
processing unit (CPU) processing model.

Email addresses: e.bayne@abertay.ac.uk (Ethan Bayne),
i.ferguson@abertay.ac.uk (Robert Ian Ferguson),
j.isaacs@abertay.ac.uk (John Isaacs)

-50 -

Proceedings of Cyberforensics 2014

Modern GPUs, such as the Nvidia GeForce 670, con-
tain 1,344 independent general purpose processing cores,
which are able to compute large amounts of data in a
short time due to an efficient parallel processing design.
When considering the computational power of these de-
vices, GPUs prove to be very affordable processing plat-
forms when employed in scientific investigations. At the
time of writing, hardware vendors AMD and Intel have
both released desktop- and laptop-based CPUs with pow-
erful integrated graphics processors (IGPs) (Intel Corpo-
ration, 2013; Advanced Micro Devices, 2014). These re-
leases have opened up the possibility of efficient parallel
processing without the need for a discrete GPU. Simi-
larly, CPUs paired with powerful IGPs can be witnessed
on devices other than desktop machines—modern tablets
and phones also show similar technological developments.
Consequently, in order to utilise the advantages of these
technologies, a compatible general purpose computing on
graphics processing unit (GPGPU) framework, such as
Open Computing Language (OpenCL), must be explored.

Significant research has been conducted on the bene-
fits of utilising GPGPU programming to assist in calculat-
ing highly demanding processing tasks; yet, only some ad-
vances made in this research have been transferred to the
field of DF. Efforts have been primarily focused on util-
ising Complete Unified Device Architecture (CUDA)—a
closed-source GPGPU programming framework offered by
Nvidia exclusively for use on their line of GPUs (Marziale
et al., 2007; Skrbina & Stojanovski, 2012; Collange & Dan-

http://www.cyberforensics.org.uk

dass, 2009; Zha & Sahni, 2011a). The largest setback of
the existing developments is the incompatibility of CUDA
applications with the GPU technologies offered by other
hardware vendors, including the new breed of IGPs found
on CPUs offered by Intel and AMD.

This paper investigates whether OpenCL technologies
could assist DF investigation. The aim of the experi-
ments undertaken in this paper is to measure the effec-
tiveness of offloading processor-intensive tasks to the GPU
using OpenCL and CUDA processing frameworks, while
comparing the resulting performance with single-threaded
CPU processing. Second, this paper analyses the potential
processing obstacles of the proposed solution through ex-
perimentation with different storage technologies and var-
ious mid- to high-end system specifications. The authors
of this paper are unaware of any existing research that
proposes the use of OpenCL GPGPU processing for string
searching in the context of DF investigations, making this
implementation unique in the field.

2. Background and Related Work

Existing research using CUDA GPGPU processing
has demonstrated promising results, suggesting that an
OpenCL implementation may produce a similar outcome.
Research that focused on measuring the potential differ-
ences between CUDA and OpenCL (Fang et al., 2011;
Karimi et al., 2010) demonstrates that CUDA shows a
slight performance advantage over its open-source coun-
terpart. This means that with OpenCL, a minor sacrifice
in performance currently exists to obtain a wider com-
patibility across devices from various vendors. Findings
from these studies also indicate that much of the exist-
ing research on CUDA may be relevant and transferable
in facilitating future OpenCL research due to the similar
approaches utilised by each technology to interface with
the GPU.

Skrbina and Stojanovski (2012) present a theoretical
insight into the planning and processes involved in imple-
menting a GPGPU solution to file carving. The authors
explore how CUDA could be utilised within the context
of DF investigations, examining the differences between
string matching and pattern matching algorithms for use
in GPGPU applications. The paper concludes that the
most appropriate algorithms for parallel applications are
the Boyer-Moore (Boyer & Moore, 1977) and Aho-Corasick
(Aho & Corasick, 1975) algorithms for handling single- and
multi-string searches, respectively. The findings presented
were nevertheless based on theoretical grounding from al-
gorithm characteristics and they have not been proven as
fact in an actual experiment.

One empirical study conducted utilising GPGPU pro-
cessing in DF is presented by Marziale, Richard and Rous-
sev (2007), who led an investigation of modifying Scalpel,
an existing open-source file carving tool. The study
compares the time taken to complete various searches

-51-

Proceedings of Cyberforensics 2014

through different sized forensic images using the unmodi-
fied and modified GPU versions of Scalpel. Results show
significant improvement with the modified version, and
Marziale, Richard and Roussev concluded that incorporat-
ing GPGPU processing is a viable option for significantly
increasing processing performance in existing DF tools. At
the time of the research, however, the CUDA framework
was still in beta. The authors acknowledge that the beta
release possessed a number of bugs and the beta compiler
did not fully optimise the code; these factors limit the pro-
posed solution’s potential achievable performance.

When incorporating a fast multi-pattern matching al-
gorithm, opposing research from Zha and Sahni (2011a)
states that the performance gain achievable from file carv-
ing is limited by the time required to read data from the
disk rather than the time required to search for head-
ers and footers. Zha and Sahni conducted experiments
through modifying Scalpel as well as integrating a series
of Boyer-Moore and Aho-Corasick algorithms for handling
string matching. The authors’ experiments indicate that
multi-threaded acceleration using a dual-core CPU did
not improve the required processing time, concluding with
an arguable assumption there are no advantages of using
other accelerators such as GPUs, despite conducting no ac-
tual experiments with GPGPU processing. Later research
from the same authors (Zha & Sahni, 2011b, 2013) shows
that incorporating similar algorithmic techniques using
GPGPU processing produced notable improvements over
single-threaded CPU approaches, besting multithreaded
CPU processing in some scenarios. Results of these later
studies form the argument that the authors’ previous re-
search on processing techniques to improve file carving had
not been thoroughly investigated.

In a thesis, Mohan (2010) adopted another fascinating
method of utilising GPGPU processing in file identifica-
tion, utilising an MD6 file-hashing method on a CUDA
GPGPU framework to identify similar files, both individ-
ually and those contained within archives. His results
demonstrate a significant performance increase over tra-
ditional CPU processing, which led us to conclude that
the parallel nature of GPUs is well suited for the large-
scale processing of MD6 file hashing. Despite the author’s
findings, this method of discovery requires a search list
of known file hash signatures, limiting its usefulness when
performing exploratory examinations on unknown incrim-
inating files.

Collange et al. (2009) adopted a similar approach,
proposing the use of GPUs in file carving to look for file
identifiers. They use a CUDA GPGPU implementation
to calculate and compare hashes of data to distinguish
potential image file identifiers located on hard disk drives
(HDD). The authors make a strong statement that, with
the computational power of the hardware, GPUs make
an ideal platform on which to perform parallel hash
calculations, potentially delivering a powerful and usable
file identification technique for DF investigation. Although
Collange et al. eliminate the requirement of knowing

http://www.cyberforensics.org.uk

complete file hashes, the proposed approach still requires
and is dependent on the CPU to verify the matches found
as valid image files; this potentially slows the overall
performance when faced with forensic images containing
significant amounts of data.

3. Overview

In this section, we introduce the themes used in this
study, beginning with a brief introduction to OpenCL be-
fore discussing the core differences—in both programming
methods and architecture—between CPU and GPU.

8.1. OpenCL and GPU Architecture

OpenCL is a heterogeneous programming framework
managed by the non-profit technology consortium, Khronos
Group (2013). The framework is widely compatible across
a variety of devices offered by various vendors, including
leading companies such as Intel, AMD, ATI and Nvidia.
OpenCL allows developers to create applications that can
perform diverse levels of parallelism across single or multi-
ple processing devices, such as the typical CPUs and GPUs
found on computers and mobile platforms.

CPU processing is a traditional programming concept
that usually operates by executing commands in a serial
or limited parallel fashion on a system’s CPU. CPUs
perform parallel operations through a task parallelism
model, which acts by allocating multiple tasks to numerous
threads with each task containing an array of different
complex instructions. Each thread executed on a CPU
is required to be individually programmed and managed
explicitly by the program.

In contrast, GPGPU processing employs the collabo-
ration of a system’s GPU to perform calculations on a
massively parallel basis; this is accomplished through util-
ising a Single Instruction Multiple Data (SIMD) model to
achieve high levels of efficiency. The model differs from the
task parallelism model by allocating thousands of simplis-
tic threads to numerous multiprocessors, with all threads
managed at the hardware level. To accomplish this, addi-
tional code in the form of a kernel is required. The purpose
of the kernel is to provide instructions to direct the GPU
in processing the data. The instructions that form kernels
tend to be far more simplistic in functionality, generally of-
fering limited logical and mathematical functions. When
compared to the complex functions that can be handled
by the CPU, GPGPU kernel instructions can be some-
what limited. This can be forgiven in scientific applica-
tions due to the GPGPU processing model being capa-
ble of efficiently executing repetitive instructions on large
amounts of data.

Similarly, when comparing the hardware architecture
of both CPUs and GPUs in Fig. 1, it can be seen that the
architectures have been designed around optimising their
processing models. The current conventional CPUs are, in
all regards, designed to efficiently handle the diversity of

-52-

Proceedings of Cyberforensics 2014

tasks encountered in everyday computing. Modern CPUs
typically range between two arithmetic logic unit (ALU)
cores and eight ALU cores from higher-end offerings.
These cores possess a range of arithmetic instruction
functions, which can process a variety of tasks with ease.
CPUs are paired with a large cache for caching data from
the main system memory. Ultimately, CPU architecture
is optimised for the perpendicular processing of complex
tasks with minimal latency; however, the architecture
is not well equipped to handle large sets of superficial
calculations.

GPUs have, in comparison, thousands of ALU cores.
Groups of these cores form multiprocessor units capable
of performing thousands of highly intensive calculations
simultaneously. GPUs are superior to CPUs in handling
massively parallel computing tasks due to the sheer volume
of ALU cores; yet, unlike CPUs, GPUs currently have
limited algorithmic instruction functions, which hamper
their ability to handle diverse tasks. GPUs typically have
smaller caches, which hinder the ability to handle complex
datasets. GPUs have a large dedicated memory used to
hold data for processing, and this memory is typically
optimised to reduce latency from reading and writing
to the processing units. This architecture allows GPUs
to be more suited to handle large quantities of simple
yet intensive calculative workloads, such as its primary
function of producing graphics and assisting in scientific
calculations of processor-intensive datasets.

3.2. File Carving

File carving is employed as an essential method of
analysing forensic images for content when a file system’s
directory has been corrupted or destroyed. Recognised as
“a science and an art unto itself” (Altheide & Carvey,
2011), the technique is used to analyse forensic images
by attempting to recognise file content from otherwise
unstructured streams of data. Typically, this is achieved
by comparing the stream of data with a database of
known file headers and footers (also referred to as magic
numbers). File carving can often reconstruct a copy
of discovered files by identifying and assembling data
between headers and footers; however, dangers, such as
file fragmentation, can render the recovered file unusable
or incomplete. Unusable and incomplete files are often

ALY || AU %
Control H
ALU || ALU 3
Cache 3
DRAM DRAM

CPU Architecture GPU Architecture

Figure 1: CPU and GPU architecture

http://www.cyberforensics.org.uk

referred to as false positives in file carving results, as
investigators cannot interpret them.

Good file carving practices employ various techniques
to improve performance. Reading from storage devices
tends to be the most time-consuming task and, as a
forensic image could be terabytes in size, file carvers must
minimise the number of reads of the original image in order
to optimise performance. One method used to mitigate
this is an optimised algorithm to aid in the search for and
identification of file headers and footers in the file carving
process. File carvers can also use techniques to validate
files carved using what is known about the structure
of a file, which improves the accuracy of results and
minimises the number of false positive results presented
to the investigator.

Fragmentation issues within file carving have been a
prominent area of research in recent years. The Dig-
ital Forensics Research Workshop (DFRWS) File Carv-
ing Challenge (Carrier et al., 2006) asked researchers to
produce algorithms to detect fragmented files with low
false positive rates. In response, Garfinkel (2007) demon-
strates that after conducting extensive fragmentation re-
search on more than 300 used hard drives, file fragmen-
tation itself is relatively rare. Interestingly, Garfinkel also
noted that fragmentation rates typically decrease as stor-
age sizes available on devices increase. On this basis, it
could be argued whether developing fragmentation detec-
tion algorithms would benefit investigations at the expense
of adding additional processing burdens.

4. Experimental Study

This study investigates OpenCL GPGPU technologies,
benchmarking the technology’s performance in processing
forensic images by using two common DF techniques on
a range of test platforms. Results from OpenCL were
then compared to the performance gained with comparable
solutions utilising CUDA and CPU processing to measure
and conclude whether an OpenCL GPGPU framework
could provide a reliable foundation to analyse digital
evidence and decrease the time required to process forensic
images without affecting accuracy.

4.1. Our Approach

To analyse the performance of OpenCL file carving, a
program was developed using Microsoft Visual C# along-
side the Cudafy .NET (Hybrid DSP, 2013) framework to
manage GPU operations. Cudafy .NET provides a com-
prehensive set of libraries and methods to allow C# appli-
cations to interface with GPUs. The framework also hosts
emulation features, which simulate the processing of GPU
kernels on the CPU, providing excellent simulation and
debugging functionality. The most significant advantage
of using Cudafy .NET in this experimental study is kernel
creation, as it comes with the ability to translate a ker-
nel written in C# to both CUDA and OpenCL languages

-53-

Proceedings of Cyberforensics 2014

300MB Data

Segment

| v

Target

Forensic Image File GPU Processing

CPU Processing

Extracted Files Location List

Figure 2: CPU and GPU processing methods

without the need to write separate kernels for the solution.
The authors of this study reviewed the kernels generated
by Cudafy .NET for efficiency as well as to ensure that
both the OpenCL and CUDA kernels followed the same
underlying code when carrying out instructions.

The solution’s processing approach to the problem is
outlined in Fig. 2. Both CPU and GPU approaches follow
a similar set of motions, requiring only one single read of
the forensic image.

The CPU process starts by reading the data from the
forensic image in 300-MB segments; the CPU then system-
atically processes the data by searching for a predefined
list of targets using a string search algorithm. If file carv-
ing is employed, the matches found are validated against
what is known about the file structure before the file is
reconstructed from the data segment. Once all the data
segments are processed, the results are presented back to
the user.

The GPU implementations differ by synchronously
processing the 300-MB data segments on the GPU. In this
scenario, the GPU analyses data segments and produces a
list of target locations that are sent back to the CPU. The
CPU is then able to perform any additional file carving
tasks with the locations while the GPU processes the
next data segment. When all segments are processed, the
results are presented back to the user.

Two string search algorithms were used to process
the raw data obtained from the forensic images. The
GPGPU algorithm was simply a linear search of bytes in
a data stream, looking for the first byte of each specified
target in parallel; this method relies heavily on the GPU
architecture to accelerate the search for multiple targets
within the data stream. Upon discovering the first byte of
a target, the GPU would then verify the sequential bytes
of the stream against the target to validate a match.

For CPU processing, a modified multiple-string Boyer-
Moore search algorithm was chosen specifically for the ex-
perimental study to mimic Foremost, a widely used file
carver available for Linux. As the proposed solution was
built for Windows, a direct comparison between the pro-
posed solution and Foremost would be unfair due to oper-
ating system differences. Therefore, the algorithm used for
comparison was founded through Foremost’s source code,
allowing the study to compare the performance achieved
by the proposed GPU implementation in the CPU algo-

http://www.cyberforensics.org.uk

rithm, as employed by Foremost. The Boyer-Moore algo-
rithm operates by searching a stream of data for the last
byte of the target. When the algorithm discovers the last
byte, the rest of the target is validated. Searching through
the data stream is accelerated by the creation of a skip ta-
ble. The skip table acts as a reference on the range to find
the next possible match, depending on the value read; this
significantly reduces the time required to search through
the data stream for target matches.

4.2. Experimental Fvaluation

Testing took place within two distinct case studies:
case study A recorded the time required to perform string
analysis to identify a series of seven search targets; whilst
case study B measured the algorithm’s performance in the
context of a realistic file carving problem by analysing
the time required to carve JPEG files with a set of three
defined headers and footers. File carving in case study B
differed from case study A in performing validations and
reconstructions of JPEG files from the data when search
targets were identified.

Each target specified in the search parameters adds
an additional calculative workload to the processor. Case
study B was designed to search for fewer targets as well
as to analyse how both CPU and GPU processing times
would be affected by a reduction in specified targets.

Two forensic images were used in this experimental
study: a 20-GB storage device containing large amounts
of different media files and a 150-GB Windows 7 image,
which contained a copious amount of different file types.
The latter 150-GB image test was not conducted on the
solid state drive (SSD) devices due to storage constraints.

Each case study analysed the performance gain achiev-
able by examining the forensic images on SSD and HDD
storage devices, respectively. Each test analysing the
forensic image was performed twenty times, and analy-
sis was conducted on the average mean derived from the
twenty times produced. A reboot was performed between
each run to account for any caching effects from skewed
results.

As DF is a scientific field, results are required to be
accurate and reproducible. To facilitate the compliance
of this goal, Foremost was used to identify the content
of the forensic images before testing was carried out. As
Foremost is a recognised and established tool within DF,
the results derived from the tool are assumed accurate,

serving as a benchmark for the accuracy of the proposed
solution.

To measure performance gain; a range of mid- to high-
end computers of varying performance levels were used to
benchmark the algorithms of each case study. The test
platforms were all equipped with SSD and HDD storage
devices to measure algorithm performance with different
storage technologies. SSD storage devices are known to
achieve faster data throughput, as they can read and write
data with lower access time and less latency than HDD
drives. However, it was assumed that there would be a
correlation between the type of storage device used and
performance gain achieved from GPU acceleration, as, in
both case studies, the forensic image is read once in a single
pass to minimise the impact of storage device activity.

Table 1 shows system specifications of the computers
that served as test platforms along with their allocated
platform identifiers. Where possible, the hardware varied
to identify potential setbacks in processing times. Test
platforms A and B are desktop computers. Test platforms
C and D are the same laptop, tested first with the Intel
Haswell processor’s IGP and second with the laptop’s
discrete Nvidia GPU. The Haswell processor’s IGP shares
video memory with the main system memory. While it
is also slower than the high-speed memory found on the
dedicated GPUs of test platforms A and B, a slight benefit
was assumed, as there would be no physical transfer of
data from system memory to discrete GPU memory.

4.8. Case Study A - String Search

Results of the low-level string matching stage using
SSD drives are shown in Table 2. From these results,
significant performance gains can be observed across all
tests with GPGPU acceleration from both OpenCL and
CUDA frameworks. OpenCL processing shows average
performance gains of 89.06% when compared to the results
achieved from the same test done by CPU processing,
which is only marginally slower than the 90.10% average
performance gain achieved by CUDA processing.

Similarly, the second phase, which tested algorithm
performance on HDD storage drives with the same search
parameters, as shown in Table 3, yielded significant per-
formance gains, with averages of 77.67% for OpenCL and
79.45% for CUDA. These figures show a conclusive drop
in performance gain between CPU and GPU technologies
when compared to the results achieved from SSD drives,

Test Platform A

B

C D

Desktop
Windows 8.1 Pro
Intel Core i5-2500k
Quad Core @ 4.2GHz
16GB DDR3 1600MHz
Nvidia 670 GTX (2GB GDDRS5)
1344 Core @ 915MHz

Type
Operating System
Processor
Processor Specification
Memory
GPU
GPU Specification
SSD Storage
HDD Storage

120GB SATA3 SSD
2TB SATA3 7200RPM HDD

Desktop

Windows 8.1 Pro

Intel Core i3-2120
Dual Core @ 3.3GHz
8GB DDR3 1600MHz

Nvidia 580 GTX (1.5GB GDDRS5)
512 Core @ 612MHz
120GB SATA3 SSD
1TB SATA2 5400RPM HDD

Laptop
Windows 8.1 Pro
Intel Core i7-4700MQ
Quad Core @ 2.4GHz
8GB DDR3 1600MHz
Nvidia 740m (2GB DDR3)
384 Core @ 810MHz

Laptop
Windows 8.1 Pro
Intel Core i7-4700MQ
Quad Core @ 2.4GHz
8GB DDR3 1600MHz
Intel HD 4600 (Haswell)
20 Core @ 1200MHz
120GB mSATA SSD
750GB SATA2 5400RPM HDD

120GB mSATA SSD
750GB SATA2 5400RPM HDD

Table 1: Test bed specifications

-54 -

Proceedings of Cyberforensics 2014

http://www.cyberforensics.org.uk

which was unexpected due to both CPU and GPU ap-
proaches requiring a single read of the storage device data.
Therefore, it is affected by the same time required to read
the forensic image. However, it was noticeable that test
platform A performed significantly better in this test than
the other platforms.

4.4. Case Study B - File Carving

The results for carving JPEG images from forensic
images obtained from SSD tests 1 and 2 are presented in
Table 4. The results across the tests are promising, with
an average performance gain of 63.94% in OpenCL tests
and with CUDA processing surpassing the OpenCL results
by only a few seconds; in some cases, CUDA achieved an
average performance gain of 68.01%.

Table 5 shows the test results achieved by using the test
platform’s HDD storage to read the forensic image. The
OpenCL figures of test 2 show the test platforms produce
a slower average performance gain of 47.51%, around 16%
slower than comparative results derived from SSD tests.
Likewise, this drop in performance is observed in test
platforms utilising CUDA, which show average gains of
51.42%, around 17% slower than the performance achieved
in SSD tests.

Comparing both string matching and file carving case
studies, the performance gap between SSD and HDD
tests is far larger in file carving than in string searching.
Analysing further, it can be seen that CPU tests require
significantly more time to complete string analysis than file
carving; though it can be observed that GPU processing
results have less time divergence between string analysis
and file carving. Furthermore, OpenCL and CUDA pro-
cessing tests demonstrate a drop in performance between
11% and 17% when conducting tests on HDD storage de-
vices.

4.5. Discussion

It is evident from the experiments that the performance
of both string matching and file carving with parallelised
GPU processing on sequential data is far superior to that
achieved with a single-threaded Boyer-Moore algorithm
approach on CPUs.

With the increase in specified targets in case study
A, we can observe that both GPGPU technologies pro-
duced higher performance gains than what was observed
in case study B. With a greater number of search targets,
it was observed that CPU performance decreased signifi-
cantly, mainly due to the single-threaded processing limi-
tation and reduced efficiency of the Boyer-Moore algorithm
when handling a multitude of search targets. Consequen-
tially, from this comparison we can also measure how ef-
fectively GPGPU processing handles the increased number
of search targets, showing that GPGPU processing results
have less time divergence between string analysis and file
carving; this shows superior scalability to that offered by
CPU implementation.

-B5 -

Proceedings of Cyberforensics 2014

Test 1: 20GB Storage Device

Test Platform CPU OpenCL CUDA
A 722.23 102.30 92.30
B 846.81 71.18 62.00
C 824.71 84.44 79.20
D 814.65 89.08

Table 2: Case study A - SSD platform time results (secs)

Test 1: 20GB Storage Device

Test Platform CPU OpenCL CUDA
A 752.39 144.24 135.04
B 1031.99 256.85 247.21
C 1060.51 289.59 279.51
D 1075.78 294.22

Test 2: 150GB Win7 Image

Test Platform CPU OpenCL CUDA
A 7385.17 1149.42 1076.13
B 10430.77 1993.14 1917.48
C 9910.25 2275.85 2187.31
D 10249.38 2280.76

Table 3: Case study A - HDD platform time results (secs)

Test 1: 20GB Storage Device

Test Platform CPU OpenCL CUDA
A 286.48 122.63 109.00
B 310.15 109.19 90.88
C 321.89 111.31 92.08
D 322.33 102.03

Table 4: Case study B - SSD platform time results (secs)

Test 1: 20GB Storage Device

Test Platform CPU OpenCL CUDA
A 330.01 166.31 152.85
B 497.74 283.24 267.04
C 520.59 306.64 288.82
D 520.87 300.20

Test 2: 150GB Win7 Image

Test Platform CPU OpenCL CUDA
A 3007.08 1314.86 1208.48
B 4367.35 2201.64 2060.89
C 4628.52 2381.65 2252.84
D 4624.98 2334.58

Table 5: Case study B - HDD platform time results (secs)

http://www.cyberforensics.org.uk

71.39%
CUDA
70.70%

61.35%

68.35%
65.42%
64.79%
57.20%

Case Study B

OpenCL

Testl: 20GB Storage Device

90.40%
92.68%
87.22%

CUDA

89.07%
89.76%
91.59%

Case Study A

OpenCL

Testl: 20GB Storage Device

85.83%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Test Platform D Test Platform C Test Platform B @ Test Platform A

Figure 3: Percentile performance gains in SSD tests

Storage devices had an overall impact on performance
in both case studies. This can be mostly deduced by
two significant performance-affecting factors in our experi-
ments: the type of storage technology—SSD or HDD—and
the interface to which the drive is connected. Experiment
results show a notable improvement in processing times
achieved with test platform A’s HDD on a SATA3 inter-
face compared to other test platform HDDs using SATA2,
as data transfer speeds on a SATA3 interface are two times
faster than its predecessor’s speeds. While the SATA3
interface does substantially improve the performance of
HDDs, it still lags behind SSD storage drive technology in
our tests.

When inspecting the performance gains delivered by
OpenCL and CUDA in tests (Figs. 3 and 4), no significant
variations exist; although, it is acknowledged that CUDA
processing does, overall, perform marginally faster in tests,
which supports the findings of the GPGPU performance
research from Fang, Varbanescu and Sips (2011), and
Karimi, Dickson and Hamze (2010). This study demon-
strates that both OpenCL and CUDA technologies could
significantly aid in processing the demands of DF investi-
gations; however, tests utilising OpenCL on an IGP illus-
trate similar performance gains to that of discrete GPUs,
which signifies it could be possible to have powerful DF
investigative tools on mobile platforms with IGPs.

5. Conclusion

OpenCL has demonstrated to be a fast and reliable
framework for intensive processing tasks within DF. The
recorded GPGPU platform results show that the proposed
OpenCL solution managed to process forensic images with
a negligible loss in performance when directly compared to
the widely researched CUDA alternative. With technology
trends indicating continued developments of more powerful
IGPs on CPUs as well as the deployment of ARM-
based processors in mobile and embedded systems; the

-56 -

Proceedings of Cyberforensics 2014

51.33%
CUDA $281%

Test 2: 150GE

OpenCL 48, 54%u

Case Study B

CUDA 44.52%

Test L: 20GB

OpenCL 41.10%

77.93%
CUDA 81625

Test 2: 150GB

OpencL 77.04%

73.60%
cubA 76.05%
182.05%

Case Study A

72.65%
OpenCL 72'7659f‘1%
80.83%
0% 20% 40% 60% B80% 100%

Test Platform D Test Platform C Test Platform B [Test Platform A

Storage Device [Windows 7 Image Starage Device |Windows 7 Image

Test 1: 20GB

Figure 4: Percentile performance gains in HDD tests

authors of this study believe that a more compatible and
open-sourced model of the OpenCL platform favours the
scientific requirements and development needs of DF' tools
and analyses.

This study also demonstrates how GPGPU technolo-
gies can speed up analyses on both desktops and laptops,
respectively. The results obtained from test platforms have
shown significant performance improvements throughout;
however, it is recognised that storage drive performance
can limit possible performance gains that can be achieved
through GPU acceleration. This finding is deemed signif-
icant, as it counters the critique that forensic analysis is
solely limited by storage device transfer speeds and not
processing power. The results from this study illustrate
that the limitation is a combination of processing power
and storage device transfer speeds.

6. Future Work

The research presented in this paper has identified a
number of additional research possibilities, including fur-
ther trials of the Boyer-Moore and Aho-Corasick algo-
rithms for both CPU and GPU processing. It is believed
that further algorithm research is vital to achieve faster
multistring file carving with the proposed GPU frame-
work. Assessment of the benefits of utilising the proposed
OpenCL framework on a multi-GPU system has also been
proposed.

An application demonstrating the advantages of OpenCL
in DF investigations is being prepared for public release
and will be available at http://www.openforensics.com.

References

Advanced Micro Devices (2014). AMDs most advanced
APU ever. URL: http://www.amd.com/us/products/desktop/
processors/a-series/Pages/nextgenapu. aspx.

Aho, A. V., & Corasick, M. J. (1975). Efficient String Matching :
An Aid to Bibliographic Search. Communications of the ACM,
18, 333-340.

http://www.cyberforensics.org.uk

Altheide, C., & Carvey, H. (2011). Digital Forensics with Open
Source Tools. (1st ed.). Waltham: Syngress.

Ayers, D. (2009). A second generation computer forensic anal-
ysis system. Digital Investigation, 6, S34-S42. URL: http:
//linkinghub.elsevier.com/retrieve/pii/S1742287609000371.
do0i:10.1016/j.diin.2009.06.013.

Boyer, R. S., & Moore, J. S. (1977). A Fast String Searching
Algorithm. Communications of the ACM, 20, 762-772.

Carrier, B., Casey, E., & Venema, W. (2006). DFRWS 2006
File Carving Challenge. URL: http://www.dfrus.org/2006/
challenge/.

Collange, S., & Dandass, Y. (2009). Using graphics processors
for parallelizing hash-based data carving. System Sciences, (pp.
1-10). URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=4755790.

Fang, J., Varbanescu, A. L., & Sips, H. (2011). A Comprehensive
Performance Comparison of CUDA and OpenCL. Interna-
tional Conference on Parallel Processing, (pp. 216-225). URL:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=6047190. doi:10.1109/ICPP.2011.45.

Garfinkel, S. L. (2007). Carving contiguous and fragmented
files with fast object validation. Digital Investigation, 4,
2-12. URL: http://linkinghub.elsevier.com/retrieve/pii/
51742287607000369. do0i:10.1016/j.diin.2007.06.017.

Hybrid DSP (2013). CUDAfy .NET. URL: http://www.hybriddsp.
com/Products/CUDAfyNET . aspx.

Intel Corporation (2013). 4th Generation Intel Core Pro-
Cessors. URL: http://www.intel.com/content/www/us/en/
processors/core/4th-gen-core-processor-family.html.

Karimi, K., Dickson, N., & Hamze, F. (2010). A performance
comparison of CUDA and OpenCL. ArXiv e-prints, 1005.2581.
URL: http://arxiv.org/abs/1005.2581. arXiv:1005.2581.

Khronos Group (2013). OpenCL. URL: http://www.khronos.org/
opencl/.

Marziale, L., Richard, G. G., & Roussev, V. (2007). Massive
threading: Using GPUs to increase the performance
of digital forensics tools. Digital Investigation, 4,
73--81. URL: http://linkinghub.elsevier.com/retrieve/
pii/S1742287607000436. doi:10.1016/j.diin.2007.06.014.

Mohan, D. (2010). Faster file matching using GPGPUs. Ph.D.
thesis University of Delaware. URL: http://dspace.udel.
edu:8080/dspace/handle/19716/5905.

Nvidia (2013). CUDA Developer Zone. URL: https://developer.
nvidia.com/category/zone/cuda-zone.

Skrbina, N., & Stojanovski, T. (2012). Using parallel
processing for file carving. ArXiv e-prints, 1205.0103.
URL: http://adsabs.harvard.edu/abs/2012arXiv1205.0103S.
arXiv:1205.0103.

Zha, X., & Sahni, S. (2011a). Fast in-Place File Carving
for Digital Forensics. Forensics in Telecommunications,
Information, and Multimedia, (pp. 141--158).

Zha, X., & Sahni, S. (2011b). Multipattern String Matching
On A GPU. I[EEE Symposium on Computers and Communica-
tions, (pp. 277--282).

Zha, X., & Sahni, S. (2013). GPU-to-GPU and Host-to-Host
Multipattern String Matching on a GPU. I[EEE Transactions
on Computers, 62, 1156--1169.

-57-

Proceedings of Cyberforensics 2014

http://www.cyberforensics.org.uk

