
CPU covert channel accessible from JavaScript

James Sutherland, Natalie Coull and Allan MacLeod

University of Abertay, Dundee, UK

1307716@live.abertay.ac.uk, N.Coull@abertay.ac.uk, A.MacLeod@abertay.ac.uk

Abstract: The combination of dedicated cryptographic instructions on modern processors and the revelation
that government agencies had devoted substantial resources to a variety of hardware backdoors raised
interesting questions about possible techniques to compromise or ensure their integrity. This paper describes
how modifications to a processor implementing the x86/x64 instruction set can be used to construct a
backdoor through which an unprivileged user merely viewing a modified webpage can expose AES encryption
keys to an attacker, without disrupting normal operation of the processor or being detectable by normal
investigative methods. As a proof of concept, this was used to capture an AES encryption key for later covert
retrieval: first, encrypting a file using standard tools, then viewing a web page modified for the purpose. With
no visible anomalies, the encryption key used had been captured by the web server and emailed to the
demonstrating attacker. Potential countermeasure techniques are also examined, including those which
could be implemented in software alone and verified to be operating effectively using typical test equipment.

Keywords: Covert channel, backdoor, processor, JavaScript, data exfiltration

1 Introduction

Hardware backdoors have been a popular topic recently, perhaps encouraged by the Snowden

revelations and speculation about possible NSA activities in the field. In particular, Daniel J Bernstein

asked publicly [1] “Thought experiment in malicious chip design: What would be the easiest way for

an Intel CPU to leak AESKEYGENASSIST inputs to an attacker?”

This is an instruction in Intel’s AES-NI instruction set extension, used to access an on-chip AES

encryption engine; this particular instruction generates the expanded AES key schedule given the

key 128 bits at a time, giving it direct access to the key itself (the other AES-NI instructions operate

on the expanded key schedule instead, complicating key extraction slightly.)

Loïc Duflot showed in 2008 [2] that a processor can be modified to incorporate a backdoor for

later use by unprivileged applications running on the affected system. This enables privilege

escalation from user to kernel mode through execution of a modified x86 instruction with specific

values in each of four registers. Biham, Carmeli and Shamir found [3] that incorrect calculation of a

single multiplication when performing RSA decryption operations can, in certain circumstances,

function as a covert channel disclosing the target’s private key to the attacker.

The essence of a backdoor is that an attacker has control over the target device initially, and

wishes to be able to regain some control or access in future. In the case of a CPU design-level

backdoor, this would typically entail having compromised the original design or manufacture of the

processor, or covertly modified or replaced it with a modified device of your own. Later, the attacker

would have limited access, which could be used to access the backdoor and obtain additional access

or information — in this case, recover cryptographic keys previously used on the processor and

covertly retained.

Given full control over the software executed, even in an unprivileged mode, the covert channel

would be quite trivial: any otherwise-invalid operation code, or atypical usage of a valid one, would

suffice. This, however, requires the ability to execute custom software directly on the target system,

which entails a substantial level of access; making the backdoor instruction available through

sandboxed interpreted code such as JavaScript imposes much tighter constraints. The NSA are

known to have used the insertion of JavaScript [4] for similar purposes already.

- 59 -Proceedings of Cyberforensics 2014 http://www.cyberforensics.org.uk

The proof of concept backdoor presented here consists of a processor modification (which could

have been embedded in the design or manufacture stage, or incorporated in a replacement

counterfeit processor, by a resourceful attacker such as the NSA), simulated in software in the Bochs

system simulator, and a trivial webpage with embedded JavaScript to access this backdoor.

2 Implementation

To render the backdoor accessible from JavaScript, yet extremely difficult to detect without prior

knowledge of the specific implementation, a standard mathematical operation is required — one

which the JavaScript implementation will be very likely to map directly to the equivalent machine

instruction. To implement the backdoor, this instruction will be modified to respond differently to a

particular set of operands. Duflot’s demonstration targeted a specific x86 instruction, SALC (‘set

register AL’s contents according to the Carry processor flag’, opcode 0xD6) in conjunction with

specific register contents, which is of course not directly accessible from JavaScript or indeed any

other high-level language.

All JavaScript numbers are defined to be IEEE-754 64 bit double-precision values — there is no

integer type — and the use of a dyadic non-commutative instruction such as FDIV ensures the two

operands will be presented to the CPU in the same order in which they are encoded in JavaScript. A

specific ordered pairing of 64 bit floating point values represents almost a 128 bit shared secret for

activation of the backdoor: ignoring the reserved and special bit sequences used in floating point

representations of NaN and infinities, an adversary would have to determine which of almost 2128

possible value-pairs is being used.

Ethan Heilman’s response [5] to Bernstein’s enquiry proposed the use of 64-bit integer

multiplication as the instruction for accessing the backdoor, but being a commutative instruction,

this would be slightly harder to recognise in hardware — the implementation would have to respond

to either order of the two component values — and would also not map cleanly to JavaScript, which

has no integer type and no standardised support for handling 64 bit integers, since the IEEE-754

format it uses has only 53 bits of precision (the mantissa).

The proof of concept discussed here incorporates these changes in the Bochs open-source

system simulator. Unlike most virtualisation products, which rely heavily on executing the simulated

system’s instructions directly on the host processor wherever possible, Bochs simulates every

instruction in software, bringing a substantial performance overhead but giving the flexibility needed

to modify the simulated processor’s instruction set in this way.

For these purposes, the attack captures just the 128-bit operand used each time the

AESKEYGENASSIST instruction is invoked to generate the round 1 part of a key schedule: with 128-bit

AES, this will be the entire key. (The 192 and 256 bit variants split the key between the first and

second invocations of this instruction, so capturing the second operand as well would cover these

variants.) These are stored in a hidden buffer within the processor for later retrieval.

The modified FDIV implementation then returns the data from this hidden buffer, 32 bits at a

time, as the result of dividing a particular random pair of floating-point numbers. For this

experiment, the arbitrary value 1.91207592522993x10306 was used for both halves of the pair.

Where an unmodified processor would return the correct result of this division — in this case, 1 —

the modified one instead returns the next 32 bit portion of the concealed key each time, converted

to an equivalent floating point value. Repeating the calculation four times and concatenating the

results yields the original key.

- 60 -Proceedings of Cyberforensics 2014 http://www.cyberforensics.org.uk

3 Results

As expected, an unmodified Windows XP system image booted and functioned correctly on the

simulated system. After encrypting a file using the Win32 port of OpenSSL on the command line, a

JavaScript script running under the included copy of Internet Explorer retrieved the key and was able

to pass that data back to the server it was hosted on using a simple HTTP request — modifying the

URL by which a GIF file containing a single transparent pixel was retrieved — with no user-visible

effects. (Passing values back to the server in this fashion is routinely used for legitimate purposes,

such as Google’s PageSpeed ‘beacon’ used for profiling the performance of web pages, and insertion

of random numbers in URLs is commonly used as a cache-busting mechanism for banner ads, so this

would be very unlikely to attract the attention of any intruder detection system.)

Once implemented, loading a web page containing an IMG tag and the fragment of JavaScript

shown in figure 1 resulted in the server receiving the HTTP request shown in figure 2 — the four

hexadecimal numbers are the AES key used, split into four 32 bit integers.

// Perform the rigged FDIV four times:
var a=1.91207592522993E+306/1.91207592522993E+306;
var b=1.91207592522993E+306/1.91207592522993E+306;
var c=1.91207592522993E+306/1.91207592522993E+306;
var d=1.91207592522993E+306/1.91207592522993E+306;
if (a!==1) { // Result will be 1 on untampered CPU
 var k=a.toString(16)
 +','+b.toString(16)
 +','+c.toString(16)
 +','+d.toString(16); // Concatenate the 4 values

 // Now put that key in the URL of the first image:
 document.images[0].src='?n='+k;
}

Figure 1: Javascript exploit activation code

GET /floatback.php?n=efbeadde,77665544,bbaa9988,ffeeddcc HTTP/1.1

Figure 2: Resulting HTTP request to server

4 Discussion

The instructions targeted in this proof of concept are complex enough to make verification of their

behaviour extremely difficult — indeed, Intel’s implementation of FDIV on the original Pentium

processors contained a substantially less subtle flaw, such that approximately one in 233 divisions

yielded incorrect results, as opposed to one in 2128 in this version, but still went undetected until

after a substantial number of affected processors had been sold and used.

The two instructions concerned are also very likely to be heavily reliant on microcode (the flawed

Pentium FDIV implementation relied on a 2,048 entry lookup table which was incorrectly loaded

during manufacture), which raises the possibility that such a backdoor could be implemented in a

malicious microcode update, rather than by modifications to the CPU itself.

- 61 -Proceedings of Cyberforensics 2014 http://www.cyberforensics.org.uk

A hardware implementation would be relatively trivial — a bitwise comparison of floating point

multiplier operands, a low bit-rate path from the AES unit to the floating point unit (probably using

the shift register in the existing processor test facilities)

5 Mitigation and detection

One common mitigation strategy against covert channels for data leakage is to separate applications

in multiple virtual machines, as used in the Qubes operating system [6]. Sensitive cryptographic

operations could be confined to one virtual machine, with no network access, while other activities

take place in another, isolated from the cryptographic keys. Because the covert channel is

unprivileged and unknown to the virtualisation platform, the stored key remains in place for the

modified FDIV instruction to return later, regardless of context switches or other operations in the

meantime. If the hypervisor had some mechanism to clear all processor state, including the hidden

storage used for the covert channel, this would become an effective countermeasure to this attack.

Waksman and Sethumadhavan [7] propose design-level countermeasures to CPU backdoors, some

of which would be effective at defeating this attack: in particular, they used frequent power-cycling

of individual portions of the processor to defeat covert data retention. Without power, data cannot

be retained for more than a brief time in volatile memory. They propose additional measures to

ensure no non-volatile memory can be present: repeated use of the untrusted operation, AES key

schedule expansion in this case, would trigger repeated writes to the non-volatile memory, rapidly

exceeding the lifespan of any current flash-type storage.

As simulated in their research, however, this requires significant design changes to the processor;

moreover, experiments [8] show that a momentary interruption of power is not sufficient to clear

data, with 50% of bits remaining after 44ms without power in typical six-transistor static RAM

(SRAM) on a 65nm device at −40∘C; at a more typical 25∘C, however, 90% of bits are lost within 1ms.

(Retention times are shorter for dynamic RAM — DRAM — than for SRAM, so SRAM remanence

times can be used as an upper bound.)

A variation on this approach could be effective, however: putting a standard x86-architecture

system in ACPI sleep mode S2 or higher suspends power to the processor until a wakeup signal is

received. This could easily be verified in situ by simply checking the voltage: when in this sleep

mode, power will no longer be present on the processor’s voltage regulators on the system board,

and all data within the processor will have been lost within a small fraction of a second. Having

established that entering ACPI S2 or higher genuinely interrupts the processor’s power while in

effect, an interruption of 100 ms after any sensitive cryptographic operation would be sufficient to

defeat covert data retention within the CPU in future, with minimal impact on system usage — 100

ms is a comparable period to a single operating system timeslice.

A more sophisticated implementation of this backdoor could persist the target data in non-

volatile storage such as the system’s BIOS chip, or more durable volatile memory such as the

SMRAM (system management memory, a reserved section of main system memory protected from

access by anything other than the CPU operating in System Management Mode) but this would be

more difficult and significantly more observable: in particular, component-level monitoring of the

system board could detect such write activity taking place each time an AES key schedule is

generated, revealing the presence of such a compromise.

The specific covert channel of modified FDIV functionality accessed from JavaScript could be

detected when used — a suitably modified JavaScript interpreter could verify the results of each

division operation by multiplying the result by the divisor as a consistency check, with modest

overhead; indeed, this is essentially the mechanism which exposed the original Pentium ‘FDIV bug’

- 62 -Proceedings of Cyberforensics 2014 http://www.cyberforensics.org.uk

in 1994 [9]. That would only address JavaScript, and then only when in that modified browser,

however.

Using AES-NI’s hardware implementation of AES is normally preferable both for performance

reasons and security advantages such as resistance to timing attack, to which software

implementing AES appears particularly vulnerable with Bernstein demonstrating [10] full remote key

recovery, although timing-invariant software implementations have now been shown to be possible

[11]. Replacing the use of AESKEYGENASSIST with code to perform the key schedule expansion stage in

software while still using AES-NI hardware for encryption and decryption should preserve most of

these advantages while defeating any backdoor of this type.

Detection of a hardware implementation of this backdoor would appear extremely difficult. A

transistor-level reverse engineering effort of the AES and floating-point division portions of the

processor would be able to identify the presence of such modifications, by breaking down each layer

of the chip in turn with acid or mechanical erosion then using scanning electron microscopy to map

them. Since this is both an extremely expensive process and a destructive one, testing even a sample

of processors would be impractical. The precautions described earlier, however — verifying that

entering ACPI sleep mode 2 and higher genuinely interrupts CPU power, using memory and other

bus analysers to verify that no unexpected accesses take place as a result of use of cryptographic

instructions, then causing 100ms power interruptions to the CPU after any sensitive cryptographic

operation and before less trusted operations. (Excluding the existence of write operations would not

be sufficient: some hardware components are read-sensitive, so a sequence of read operations on

particular addresses could also be a mechanism for storage.)

6 Future Work

Capturing cryptographic keys from algorithms other than AES would be an interesting extension,

though more difficult since it would require recognising particular sequences of machine

instructions; obfuscation of algorithms to defeat such recognition would also be interesting.

With integration of memory controllers on the processor die, it would be possible to implement a

similar covert channel without the need for the attacker to have any instructions execute at all: in

theory, the memory controller could respond to specific ‘magic’ values being written to memory by a

device using DMA (such as a network card delivering an incoming packet) by substituting the data

being exfiltrated. For packets such as an ICMP echo request (‘ping’) where the inbound packet is

supposed to be returned unmodified, this would result in the attacker receiving the data directly.

The practicality of this approach remains uncertain however.

The proposed countermeasure of briefly putting the system in an ACPI sleep mode in which the

processor no longer receives power merits further investigation. It is normal to enter and return

from this sleep mode in under two seconds (a target set by Microsoft for hardware approval of retail

systems), including powering down and reactivating associated devices. This does not seem onerous

as an occasional sanitisation step to be performed on high-security systems after any sensitive

operation — but if optimisation can reduce this by between one and two orders of magnitude, to be

comparable with a scheduler time-slice, it could be routinely and automatically performed by the

hypervisor in a system such as Qubes whenever a high security virtual machine handling sensitive

data is releasing the processor for use by others.

7 Conclusion

A CPU backdoor is shown in simulation to allow covert retention and subsequent exfiltration of AES

keys, with no apparent impact on the system functionality and an extremely low probability of the

backdoor being discovered.

- 63 -Proceedings of Cyberforensics 2014 http://www.cyberforensics.org.uk

Putting the system into ACPI sleep state S2 or higher for as little as a few milliseconds should be an

effective countermeasure to this attack, though this has not yet been investigated in practice.

Detecting the presence of such a backdoor in a processor, or proving the absence thereof, would

appear extremely difficult without knowledge of the specific numbers in use as a trigger.

References
[1] Daniel Bernstein (Twitter: hashbreaker).
https://twitter.com/hashbreaker/status/378258465291915264.
[2] Loïc Duflot. CPU bugs, CPU backdoors and consequences on security. In Sushil Jajodia and Javier
López, editors, ESORICS, volume 5283 of Lecture Notes in Computer Science, pages 580–599. Springer,
2008.
[3] Eli Biham, Yaniv Carmeli, and Adi Shamir. Bug attacks. In David Wagner, editor, CRYPTO, volume 5157
of Lecture Notes in Computer Science, pages 221–240. Springer, 2008.
[4] Bruce Schneier. Attacking Tor: How the NSA targets users’ online anonymity. [Online; accessed 06-
April-2014].
[5] Ethan Heilman. https://twitter.com/Ethan_Heilman/status/378282494992187392.
[6] J Rutkowska and R Wojtczuk. Qubes OS architecture, 2010.
[7] A. Waksman and S. Sethumadhavan. Silencing hardware backdoors. In Security and Privacy (SP), 2011
IEEE Symposium on, pages 49–63, May 2011.
[8] C. Cakir, M. Bhargava, and Ken Mai. 6T SRAM and 3T DRAM data retention and remanence
characterization in 65nm bulk CMOS. In Custom Integrated Circuits Conference (CICC), 2012 IEEE, pages
1–4, Sept 2012.
[9] Vaughan Pratt. Anatomy of the Pentium bug. In In TAPSOFT’95: Theory and Practice of Software
Development, pages 97–107. Springer Verlag, 1995.
[10] Daniel J. Bernstein. Cache-timing attacks on AES. Technical report, 2005.
[11] Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant AES-GCM. IACR Cryptology
ePrint Archive, report 2009/129, 2009.

- 64 -Proceedings of Cyberforensics 2014 http://www.cyberforensics.org.uk

https://twitter.com/hashbreaker/status/378258465291915264
https://twitter.com/Ethan_Heilman/status/378282494992187392

