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Abstract: The combination of dedicated cryptographic instructions on modern processors and the revelation 
that government agencies had devoted substantial resources to a variety of hardware backdoors raised 
interesting questions about possible techniques to compromise or ensure their integrity. This paper describes 
how modifications to a processor implementing the x86/x64 instruction set can be used to construct a 
backdoor through which an unprivileged user merely viewing a modified webpage can expose AES encryption 
keys to an attacker, without disrupting normal operation of the processor or being detectable by normal 
investigative methods. As a proof of concept, this was used to capture an AES encryption key for later covert 
retrieval: first, encrypting a file using standard tools, then viewing a web page modified for the purpose. With 
no visible anomalies, the encryption key used had been captured by the web server and emailed to the 
demonstrating attacker. Potential countermeasure techniques are also examined, including those which 
could be implemented in software alone and verified to be operating effectively using typical test equipment. 
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1  Introduction 

Hardware backdoors have been a popular topic recently, perhaps encouraged by the Snowden 

revelations and speculation about possible NSA activities in the field. In particular, Daniel J Bernstein 

asked publicly [1] “Thought experiment in malicious chip design: What would be the easiest way for 

an Intel CPU to leak AESKEYGENASSIST inputs to an attacker?” 

This is an instruction in Intel’s AES-NI instruction set extension, used to access an on-chip AES 

encryption engine; this particular instruction generates the expanded AES key schedule given the 

key 128 bits at a time, giving it direct access to the key itself (the other AES-NI instructions operate 

on the expanded key schedule instead, complicating key extraction slightly.) 

Loïc Duflot showed in 2008 [2] that a processor can be modified to incorporate a backdoor for 

later use by unprivileged applications running on the affected system. This enables privilege 

escalation from user to kernel mode through execution of a modified x86 instruction with specific 

values in each of four registers. Biham, Carmeli and Shamir found [3] that incorrect calculation of a 

single multiplication when performing RSA decryption operations can, in certain circumstances, 

function as a covert channel disclosing the target’s private key to the attacker. 

The essence of a backdoor is that an attacker has control over the target device initially, and 

wishes to be able to regain some control or access in future. In the case of a CPU design-level 

backdoor, this would typically entail having compromised the original design or manufacture of the 

processor, or covertly modified or replaced it with a modified device of your own. Later, the attacker 

would have limited access, which could be used to access the backdoor and obtain additional access 

or information — in this case, recover cryptographic keys previously used on the processor and 

covertly retained. 

Given full control over the software executed, even in an unprivileged mode, the covert channel 

would be quite trivial: any otherwise-invalid operation code, or atypical usage of a valid one, would 

suffice. This, however, requires the ability to execute custom software directly on the target system, 

which entails a substantial level of access; making the backdoor instruction available through 

sandboxed interpreted code such as JavaScript imposes much tighter constraints. The NSA are 

known to have used the insertion of JavaScript [4] for similar purposes already. 
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The proof of concept backdoor presented here consists of a processor modification (which could 

have been embedded in the design or manufacture stage, or incorporated in a replacement 

counterfeit processor, by a resourceful attacker such as the NSA), simulated in software in the Bochs 

system simulator, and a trivial webpage with embedded JavaScript to access this backdoor. 

2  Implementation 

To render the backdoor accessible from JavaScript, yet extremely difficult to detect without prior 

knowledge of the specific implementation, a standard mathematical operation is required — one 

which the JavaScript implementation will be very likely to map directly to the equivalent machine 

instruction. To implement the backdoor, this instruction will be modified to respond differently to a 

particular set of operands. Duflot’s demonstration targeted a specific x86 instruction, SALC (‘set 

register AL’s contents according to the Carry processor flag’, opcode 0xD6) in conjunction with 

specific register contents, which is of course not directly accessible from JavaScript or indeed any 

other high-level language. 

All JavaScript numbers are defined to be IEEE-754 64 bit double-precision values — there is no 

integer type — and the use of a dyadic non-commutative instruction such as FDIV ensures the two 

operands will be presented to the CPU in the same order in which they are encoded in JavaScript. A 

specific ordered pairing of 64 bit floating point values represents almost a 128 bit shared secret for 

activation of the backdoor: ignoring the reserved and special bit sequences used in floating point 

representations of NaN and infinities, an adversary would have to determine which of almost 2128 

possible value-pairs is being used. 

Ethan Heilman’s response [5] to Bernstein’s enquiry proposed the use of 64-bit integer 

multiplication as the instruction for accessing the backdoor, but being a commutative instruction, 

this would be slightly harder to recognise in hardware — the implementation would have to respond 

to either order of the two component values — and would also not map cleanly to JavaScript, which 

has no integer type and no standardised support for handling 64 bit integers, since the IEEE-754 

format it uses has only 53 bits of precision (the mantissa). 

The proof of concept discussed here incorporates these changes in the Bochs open-source 

system simulator. Unlike most virtualisation products, which rely heavily on executing the simulated 

system’s instructions directly on the host processor wherever possible, Bochs simulates every 

instruction in software, bringing a substantial performance overhead but giving the flexibility needed 

to modify the simulated processor’s instruction set in this way. 

For these purposes, the attack captures just the 128-bit operand used each time the 

AESKEYGENASSIST instruction is invoked to generate the round 1 part of a key schedule: with 128-bit 

AES, this will be the entire key. (The 192 and 256 bit variants split the key between the first and 

second invocations of this instruction, so capturing the second operand as well would cover these 

variants.) These are stored in a hidden buffer within the processor for later retrieval. 

The modified FDIV implementation then returns the data from this hidden buffer, 32 bits at a 

time, as the result of dividing a particular random pair of floating-point numbers. For this 

experiment, the arbitrary value 1.91207592522993x10306 was used for both halves of the pair. 

Where an unmodified processor would return the correct result of this division — in this case, 1 — 

the modified one instead returns the next 32 bit portion of the concealed key each time, converted 

to an equivalent floating point value. Repeating the calculation four times and concatenating the 

results yields the original key. 
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3  Results 

As expected, an unmodified Windows XP system image booted and functioned correctly on the 

simulated system. After encrypting a file using the Win32 port of OpenSSL on the command line, a 

JavaScript script running under the included copy of Internet Explorer retrieved the key and was able 

to pass that data back to the server it was hosted on using a simple HTTP request — modifying the 

URL by which a GIF file containing a single transparent pixel was retrieved — with no user-visible 

effects. (Passing values back to the server in this fashion is routinely used for legitimate purposes, 

such as Google’s PageSpeed ‘beacon’ used for profiling the performance of web pages, and insertion 

of random numbers in URLs is commonly used as a cache-busting mechanism for banner ads, so this 

would be very unlikely to attract the attention of any intruder detection system.) 

Once implemented, loading a web page containing an IMG tag and the fragment of JavaScript 

shown in figure 1 resulted in the server receiving the HTTP request shown in figure 2 — the four 

hexadecimal numbers are the AES key used, split into four 32 bit integers. 

 
// Perform the rigged FDIV four times: 
var a=1.91207592522993E+306/1.91207592522993E+306; 
var b=1.91207592522993E+306/1.91207592522993E+306; 
var c=1.91207592522993E+306/1.91207592522993E+306; 
var d=1.91207592522993E+306/1.91207592522993E+306; 
if (a!==1) {  // Result will be 1 on untampered CPU 
  var k=a.toString(16) 
   +','+b.toString(16) 
   +','+c.toString(16) 
   +','+d.toString(16);  // Concatenate the 4 values 
 
  // Now put that key in the URL of the first image: 
  document.images[0].src='?n='+k; 
} 

 

Figure 1: Javascript exploit activation code  

 
 

GET /floatback.php?n=efbeadde,77665544,bbaa9988,ffeeddcc HTTP/1.1 
 

Figure 2: Resulting HTTP request to server  

4  Discussion 

The instructions targeted in this proof of concept are complex enough to make verification of their 

behaviour extremely difficult — indeed, Intel’s implementation of FDIV on the original Pentium 

processors contained a substantially less subtle flaw, such that approximately one in 233 divisions 

yielded incorrect results, as opposed to one in 2128 in this version, but still went undetected until 

after a substantial number of affected processors had been sold and used. 

The two instructions concerned are also very likely to be heavily reliant on microcode (the flawed 

Pentium FDIV implementation relied on a 2,048 entry lookup table which was incorrectly loaded 

during manufacture), which raises the possibility that such a backdoor could be implemented in a 

malicious microcode update, rather than by modifications to the CPU itself. 
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A hardware implementation would be relatively trivial — a bitwise comparison of floating point 

multiplier operands, a low bit-rate path from the AES unit to the floating point unit (probably using 

the shift register in the existing processor test facilities) 

5  Mitigation and detection 

One common mitigation strategy against covert channels for data leakage is to separate applications 

in multiple virtual machines, as used in the Qubes operating system [6]. Sensitive cryptographic 

operations could be confined to one virtual machine, with no network access, while other activities 

take place in another, isolated from the cryptographic keys. Because the covert channel is 

unprivileged and unknown to the virtualisation platform, the stored key remains in place for the 

modified FDIV instruction to return later, regardless of context switches or other operations in the 

meantime. If the hypervisor had some mechanism to clear all processor state, including the hidden 

storage used for the covert channel, this would become an effective countermeasure to this attack. 

Waksman and Sethumadhavan [7] propose design-level countermeasures to CPU backdoors, some 

of which would be effective at defeating this attack: in particular, they used frequent power-cycling 

of individual portions of the processor to defeat covert data retention. Without power, data cannot 

be retained for more than a brief time in volatile memory. They propose additional measures to 

ensure no non-volatile memory can be present: repeated use of the untrusted operation, AES key 

schedule expansion in this case, would trigger repeated writes to the non-volatile memory, rapidly 

exceeding the lifespan of any current flash-type storage. 

As simulated in their research, however, this requires significant design changes to the processor; 

moreover, experiments [8] show that a momentary interruption of power is not sufficient to clear 

data, with 50% of bits remaining after 44ms without power in typical six-transistor static RAM 

(SRAM) on a 65nm device at −40∘C; at a more typical 25∘C, however, 90% of bits are lost within 1ms. 

(Retention times are shorter for dynamic RAM — DRAM — than for SRAM, so SRAM remanence 

times can be used as an upper bound.) 

A variation on this approach could be effective, however: putting a standard x86-architecture 

system in ACPI sleep mode S2 or higher suspends power to the processor until a wakeup signal is 

received. This could easily be verified in situ by simply checking the voltage: when in this sleep 

mode, power will no longer be present on the processor’s voltage regulators on the system board, 

and all data within the processor will have been lost within a small fraction of a second. Having 

established that entering ACPI S2 or higher genuinely interrupts the processor’s power while in 

effect, an interruption of 100 ms after any sensitive cryptographic operation would be sufficient to 

defeat covert data retention within the CPU in future, with minimal impact on system usage — 100 

ms is a comparable period to a single operating system timeslice. 

A more sophisticated implementation of this backdoor could persist the target data in non-

volatile storage such as the system’s BIOS chip, or more durable volatile memory such as the 

SMRAM (system management memory, a reserved section of main system memory protected from 

access by anything other than the CPU operating in System Management Mode) but this would be 

more difficult and significantly more observable: in particular, component-level monitoring of the 

system board could detect such write activity taking place each time an AES key schedule is 

generated, revealing the presence of such a compromise. 

The specific covert channel of modified FDIV functionality accessed from JavaScript could be 

detected when used — a suitably modified JavaScript interpreter could verify the results of each 

division operation by multiplying the result by the divisor as a consistency check, with modest 

overhead; indeed, this is essentially the mechanism which exposed the original Pentium ‘FDIV bug’ 
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in 1994 [9]. That would only address JavaScript, and then only when in that modified browser, 

however. 

Using AES-NI’s hardware implementation of AES is normally preferable both for performance 

reasons and security advantages such as resistance to timing attack, to which software 

implementing AES appears particularly vulnerable with Bernstein demonstrating [10] full remote key 

recovery, although timing-invariant software implementations have now been shown to be possible 

[11]. Replacing the use of  AESKEYGENASSIST with code to perform the key schedule expansion stage in 

software while still using AES-NI hardware for encryption and decryption should preserve most of 

these advantages while defeating any backdoor of this type. 

Detection of a hardware implementation of this backdoor would appear extremely difficult. A 

transistor-level reverse engineering effort of the AES and floating-point division portions of the 

processor would be able to identify the presence of such modifications, by breaking down each layer 

of the chip in turn with acid or mechanical erosion then using scanning electron microscopy to map 

them. Since this is both an extremely expensive process and a destructive one, testing even a sample 

of processors would be impractical. The precautions described earlier, however — verifying that 

entering ACPI sleep mode 2 and higher genuinely interrupts CPU power, using memory and other 

bus analysers to verify that no unexpected accesses take place as a result of use of cryptographic 

instructions, then causing 100ms power interruptions to the CPU after any sensitive cryptographic 

operation and before less trusted operations. (Excluding the existence of write operations would not 

be sufficient: some hardware components are read-sensitive, so a sequence of read operations on 

particular addresses could also be a mechanism for storage.) 

6  Future Work 

Capturing cryptographic keys from algorithms other than AES would be an interesting extension, 

though more difficult since it would require recognising particular sequences of machine 

instructions; obfuscation of algorithms to defeat such recognition would also be interesting. 

With integration of memory controllers on the processor die, it would be possible to implement a 

similar covert channel without the need for the attacker to have any instructions execute at all: in 

theory, the memory controller could respond to specific ‘magic’ values being written to memory by a 

device using DMA (such as a network card delivering an incoming packet) by substituting the data 

being exfiltrated. For packets such as an ICMP echo request (‘ping’) where the inbound packet is 

supposed to be returned unmodified, this would result in the attacker receiving the data directly. 

The practicality of this approach remains uncertain however. 

The proposed countermeasure of briefly putting the system in an ACPI sleep mode in which the 

processor no longer receives power merits further investigation. It is normal to enter and return 

from this sleep mode in under two seconds (a target set by Microsoft for hardware approval of retail 

systems), including powering down and reactivating associated devices. This does not seem onerous 

as an occasional sanitisation step to be performed on high-security systems after any sensitive 

operation — but if optimisation can reduce this by between one and two orders of magnitude, to be 

comparable with a scheduler time-slice, it could be routinely and automatically performed by the 

hypervisor in a system such as Qubes whenever a high security virtual machine handling sensitive 

data is releasing the processor for use by others. 

7  Conclusion 

A CPU backdoor is shown in simulation to allow covert retention and subsequent exfiltration of AES 

keys, with no apparent impact on the system functionality and an extremely low probability of the 

backdoor being discovered. 
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Putting the system into ACPI sleep state S2 or higher for as little as a few milliseconds should be an 

effective countermeasure to this attack, though this has not yet been investigated in practice.  

Detecting the presence of such a backdoor in a processor, or proving the absence thereof, would 

appear extremely difficult without knowledge of the specific numbers in use as a trigger. 
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