
Lecture 11: Languages and Recursion

Dr John Levine

CS103 Machines, Languages and Computation

November 2nd 2015

The First Half of the Class

• The first half of the class was about the fact that all

computers are equivalent and that non-computable

functions exist:

 If P is the set of all computer programs and F is the set

of all functions f: n → m such that n,m are members of

the set of natural numbers N, then │F│ > │P│ and

therefore there are some functions in F for which no

computer program can exist.

• We now know why this is: P is infinite but countable,

and F is infinite and uncountable.

• One of the most famous non-computable functions is

called “The Halting Problem”

• Given a computer program, P, and a set of inputs to

that program, I, decide (in finite time) whether or not

the program halts or runs forever:

• H = 1 means the program halts, H = 0 means that it

runs forever

• It can be shown that no program can exist for f (P,I)

The Halting Problem

H = f (P,I)
P

I
H

The Second Half of the Class

• Week 7: Recursion and Languages: how to use

recursion to allow for potentially unbounded sentences.

• Week 8: Recursion and Strings: how to specify an

infinite set of strings using a finite set of rules.

• Week 9: Recursion and Logical Definitions: what does

it mean to be someone’s ancestor?

• Week 10: The λ-calculus: how can we create and use

computable functions using only symbols?

• Week 11: Recursion and Function Definitions: how can

we use recursion to create functions?

What is Recursion?

• Recursion is a method of defining structures in which

the structure being defined may be used within its own

definition.

• The term is also used more generally to describe a

process of repeating objects in a self-similar way.

• Recursion leads to “nested” structures. Sometimes the

nature of the nesting is clear, but often we have to look

hard to find it and encode the recursive process.

• Recursion can be found in many places: in languages,

logical definitions, data structures, programs, …

http://upload.wikimedia.org/wikipedia/en/c/c4/Droste_effect_with_monitor.jpg

Recursion by Example

• How do we define the members of the set of natural

numbers, N = { 0, 1, 2, 3, …}?

• We can do it by recursion:

 0 is a member of N

 If n is a member of N, n+1 is a member of N

• We need both statements: either one on its own is not

enough to complete the definition.

• Notice the very strong similarity between this definition

and proof by induction, as introduced in Lecture 4.

What are Languages?

• Languages are devices used to transfer information

between people, and between people and machines

• Statements in a language consist of sequences of

symbols, such as “John ate a frog” or “let x = sqrt(k)+1”

• Languages have structure: we can’t just produce the

symbols in a random order

• We can recognise legal and illegal sentences:

 John ate a big frog. 

 big ate John frog a. 

 let x = sqrt(+) * if(k) 

Syntax and Semantics

• Languages have structure: we can’t just produce the

symbols in a random order

• The structure of a language is called syntax and can

be specified using a grammar

• The meaning of an expression of language is called

the semantics of the expression (e.g. “let x=3” is an

instruction to set the value of variable x to be 3)

• For the moment, let’s concentrate on the structure of

language and look at some of the repeating structures

we can find…

Types of Languages

• Natural languages which have evolved for human

communication: English, French, Italian, Chinese.

• Invented languages for communication: Esperanto,

Loglan, Klingon.

• Computer languages: Java, Lisp, C, Algol, Fortran,

Basic, Cobol, Pascal, ML, Haskell, Perl, Python, …

• Formal languages: mathematical logic

• Invented languages, e.g. L = an
 bn cn – used to find out

what languages we can describe with our grammars

Context-Free Grammars

• Most computer languages can be specified used

context-free grammars

• Rules are of the form:

 Symbol → list of Symbols and Terminal Symbols

 e.g.

 Exp → “if” Cond “then” Exp

 Exp → “print” Var

 Cond → Var “=” Value

 Var → “a” | “b” | “c” | … | “y” | “z” (| means “or”)

 Value → “0” | “1”

Coping with Repeating Structure

 Exp → “if” Cond “then” Exp

 Exp → “print” Var

 Cond → Var “=” Value

 Var → “x” | “y” | “z”

 Value → “0” | “1”

• This grammar can generate repeating structures:

 if a=0 then

 if b=1 then

 if c=0 then

 if d=0 then …

Recursion

• Recursion occurs when you define something in terms

of itself, e.g. the rule “Exp → “if” Cond “then” Exp”

• From GEB: “Hofstadter’s Law: it always takes longer

than you expect, even when you take into account

Hofstadter’s law.”

• Python factorial function:

 def factorial (n):

 arif n == 0:

 ararreturn 1

 arelse:

 ararreturn n * factorial (n - 1)

Recursion

• Recursion occurs when you define something in terms

of itself, e.g. the rule “Exp → “if” Cond “then” Exp”

• From GEB: “Hofstadter’s Law: it always takes longer

than you expect, even when you take into account

Hofstadter’s law.”

• Python factorial function:

 def factorial (n):

 arif n == 0:

 ararreturn 1

 arelse:

 ararreturn n * factorial (n - 1)

Silly Sentences

Silly Sentences

• This is a game by Dorling Kindersley containing jigsaw

pieces with words on them.

• On the box, it says “Grammar skills practice for the first

three years at school”.

• You can assemble the pieces to create random (but

grammatical) sentences, such as:

 The yellow crocodile ate a rubber clock.

 The old fat hairy princess snores.

 Brian ate a big purple frog.

Silly Sentences

• Can we write a program to generate legal sentences?

• We can make use of production rules, similar to the

rules of the MIU system:

 Sentence → NounPhrase Verb1

 NounPhrase → Name

 Name → “Brian”

 Name → “Beryl”

 Verb1 → “snores”

 Verb1 → “smells”

• Words in “…” are called terminal symbols

Sentence Generation Algorithm

• Start with “Sentence”.

• Find the left-most non-terminal symbol.

• Expand it using a random rule that applies.

• Repeat from 2 until all the symbols are terminals.

 “Sentence” →“NounPhrase Verb1”

 “NounPhrase Verb1” → “Name Verb1”

 “Name Verb1” → “Brian Verb1”

 “Brian Verb1” → “Brian snores”

A Larger Grammar

 Sentence → NounPhrase Verb2 NounPhrase

 NounPhrase → Name

 NounPhrase → Article NounGroup

 NounGroup → Noun

 NounGroup → Adjective Noun

 Name → “Brian” | “Beryl”

 Verb2 → “ate” | “fed” | “chased” | “kissed”

 Article → “a” | “the”

 Adjective → “big” | “purple” | “ugly” | “fat” | “eccentric”

 Noun → “frog” | “dog” | “clock” | “monster” | “princess”

Derivation of a Sentence

• We can derive sentences with grammars just like we

did with the MIU-system:

 Sentence

 NounPhrase Verb2 NounPhrase

 Name Verb2 NounPhrase

 “Brian” Verb2 NounPhrase

 “Brian” “ate” NounPhrase

 “Brian” “ate” Article NounGroup

 “Brian” “ate” “a” NounGroup

 “Brian” “ate” “a” Adjective Noun

 “Brian” “ate” “a” “big” Noun

 “Brian” “ate” “a” “big” “frog” ■

Assignment 6

• Generate some random sentences using the grammar.

• The grammar can generate “Brian ate a big frog” or

“Brian ate a purple frog”.

• But I want it to generate “Brian ate a big purple frog”.

• Or even “Brian ate a big fat ugly purple eccentric frog”.

• Can you modify my grammar so it can generate noun

phrases containing any number of adjectives, without

increasing the number of rules?

• Reading: Chapter 5 of Gödel, Escher, Bach.

