
Lecture 12: Strings and Recursion

Dr John Levine

CS103 Machines, Languages and Computation

November 6th 2015

The Second Half of the Class

• Week 7: Recursion and Languages: how to use

recursion to allow for potentially unbounded sentences.

• Week 8: Recursion and Strings: how to specify an

infinite set of strings using a finite set of rules.

• Week 9: Recursion and Logical Definitions: what does

it mean to be someone’s ancestor?

• Week 10: The λ-calculus: how can we create and use

computable functions using only symbols?

• Week 11: Recursion and Function Definitions: how can

we use recursion to create functions?

The Second Half of the Class

• Week 7: Recursion and Languages: how to use

recursion to allow for potentially unbounded sentences.

• Week 8: Recursion and Strings: how to specify an

infinite set of strings using a finite set of rules.

• Week 9: Recursion and Logical Definitions: what does

it mean to be someone’s ancestor?

• Week 10: The λ-calculus: how can we create and use

computable functions using only symbols?

• Week 11: Recursion and Function Definitions: how can

we use recursion to create functions?

What is Recursion?

• Recursion is a method of defining structures in which

the structure being defined may be used within its own

definition.

• The term is also used more generally to describe a

process of repeating objects in a self-similar way.

• Recursion leads to “nested” structures. Sometimes the

nature of the nesting is clear, but often we have to look

hard to find it and encode the recursive process.

• Recursion can be found in many places: in languages,

logical definitions, data structures, programs, …

Context-Free Grammars

• Most computer languages can be specified used

context-free grammars

• Rules are of the form:

 Symbol → list of Symbols and Terminal Symbols

 e.g.

 Exp → “if” Cond “then” Exp

 Exp → “print” Var

 Cond → Var “=” Value

 Var → “a” | “b” | “c” | … | “y” | “z” (| means “or”)

 Value → “0” | “1”

Coping with Repeating Structure

 Exp → “if” Cond “then” Exp

 Exp → “print” Var

 Cond → Var “=” Value

 Var → “x” | “y” | “z”

 Value → “0” | “1”

• This grammar can generate repeating structures:

 if a=0 then

 if b=1 then

 if c=0 then

 if d=0 then …

Coping with Repeating Structure

 Exp → “if” Cond “then” Exp

 Exp → “print” Var

 Cond → Var “=” Value

 Var → “x” | “y” | “z”

 Value → “0” | “1”

• This grammar can generate repeating structures:

 if a=0 then

 if b=1 then

 if c=0 then

 if d=0 then …

A Larger Grammar

 Sentence → NounPhrase Verb2 NounPhrase

 NounPhrase → Name

 NounPhrase → Article NounGroup

 NounGroup → Noun

 NounGroup → Adjective Noun

 Name → “Brian” | “Beryl”

 Verb2 → “ate” | “fed” | “chased” | “kissed”

 Article → “a” | “the”

 Adjective → “big” | “purple” | “ugly” | “fat” | “eccentric”

 Noun → “frog” | “dog” | “clock” | “monster” | “princess”

Derivation of a Sentence

• We can derive sentences with grammars just like we

did with the MIU-system:

 Sentence

 NounPhrase Verb2 NounPhrase

 Name Verb2 NounPhrase

 “Brian” Verb2 NounPhrase

 “Brian” “ate” NounPhrase

 “Brian” “ate” Article NounGroup

 “Brian” “ate” “a” NounGroup

 “Brian” “ate” “a” Adjective Noun

 “Brian” “ate” “a” “big” Noun

 “Brian” “ate” “a” “big” “frog” ■

Assignment 6

• Generate some random sentences using the grammar.

• The grammar can generate “Brian ate a big frog” or

“Brian ate a purple frog”.

• But I want it to generate “Brian ate a big purple frog”.

• Or even “Brian ate a big fat ugly purple eccentric frog”.

• Can you modify my grammar so it can generate noun

phrases containing any number of adjectives, without

increasing the number of rules?

• Reading: Chapter 5 of Gödel, Escher, Bach.

Recursive Rules

• A rule is recursive if the same symbol appears on both

sides of the rule:

 S → “a” S (recursive rule)

 S → “b” (non-recursive rule)

• Such rules allow unlimited looping to occur:

 S

 “a” S

 “a” “a” S

 “a” “a” “a” S

 “a” “a” “a” “a” S

 “a” “a” “a” “a” “b” ■

Generating Strings

• Sometimes we want use our rules to generate strings,

as in the MIU-system:

 S → aS (recursive rule)

 S → b (non-recursive rule)

• Such rules allow unlimited looping to occur:

 S

 aS

 aaS

 aaaS

 aaaaS

 aaaab ■

Regular Expressions

• We can describe infinite sets of strings using regular

expressions.

• For example: M(I*U*)* is this set of strings:

 {M, MI, MU, MII, MIU, MUI, MUU, MIII, MIIU, MIUI, …}

• In a regular expression:

 X* means “X repeated zero or more times”

 X+ means “X repeated at least once”

 Xn means “X repeated exactly n times”

 X (with no superscript) means “exactly one X”

• X can be a character or another regular expression

Grammars and Languages

• We can use regular expressions to describe the set of

strings generated by a grammar.

• Such a set of strings is often referred to as a language.

• For example:

 S → aS

 S → b

• Exercise: describe the language (i.e. the set of strings)

generated by this grammar as a regular expression.

• Answer: a*b.

Assignment 7

• Finish reading Chapter 5 of Gödel, Escher, Bach.

• Write a grammar which can generate strings of the

form a+b+, e.g. ab, aaab, abbbb, abbb, but not aaa,

bbb (+ means “repeated at least once”).

• Write a grammar which can generate strings of the

form (a+b+)+, e.g. ab, aabb, aaaabbaabb, abababbb,

but not aaaa, aabbaa, bbabbaaabb, etc.

• Can you write a grammar to can generate strings of

the form anbn, e.g. ab, aabb, aaabbb, aaaabbbb, but

not abbb, aaab, aaaabb, etc?

