
Lecture 14: Rules and Recursion

Dr John Levine

CS103 Machines, Languages and Computation

November 13th 2015

Knowledge and Inference

• Using symbolic systems to represent knowledge about

the world and make legal inferences:

 1. Tom is a cat.

 2. Jerry is a mouse.

 3. Cats chase mice.

 4. Therefore, Tom chases Jerry.

• Given facts 1, 2 and 3, fact 4 is a logical consequent

• How can we represent facts and rules?

• How can we make legal inferences?

Knowledge and Inference

• Using symbolic systems to represent knowledge about

the world and make legal inferences:

 1. cat(tom)

 2. mouse(jerry)

 3. cat(X), mouse(Y) → chases(X,Y)

 4. chases(tom, jerry)

• Given facts 1, 2 and 3, fact 4 is a logical consequent

• We can derive fact 4 using just symbolic manipulation

based on the form of the strings.

• We don’t have to know what the symbols mean!

Knowledge and Inference

• Using symbolic systems to represent knowledge about

the world and make legal inferences:

 1. foo(dur)

 2. bar(doh)

 3. foo(X), bar(Y) → spong(X,Y)

 4. spong(dur, doh)

• Given facts 1, 2 and 3, fact 4 is a logical consequent

• We can derive fact 4 using just symbolic manipulation

based on the form of the strings.

• We don’t have to know what the symbols mean!

Facts and Rules

Here’s an example database of facts and rules (taken

from Assignment 8 in the third workbook):

 cat(tom)

 mouse(jerry)

 dog(spike)

 dog(tyke)

 father(spike,tyke)

 hits(tom,tyke)

 cat(X), mouse(Y) → fights(X,Y)

 dog(X), cat(Y) → hates(X,Y)

 fights(X,Y) → fights(Y,X)

 hits(X,Z), father(Y,Z) → hits(Y,X)

Deriving Facts

• To derive a new fact, we apply a rule to some existing

facts, setting the variables in the rule consistently

• We write a derivation like this:

 rule to be applied

 existing facts to be used

 variable values

 → new fact

• We are then allowed to use the new fact in further

derivations.

Example Derivation 1

• Derive fights(tom,jerry)

 cat(X), mouse(Y) → fights(X,Y)

 cat(tom), mouse(jerry)

 [X = tom, Y = jerry]

 → fights(tom, jerry)

Example Derivation 2

• Derive fights(jerry,tom)

 cat(X), mouse(Y) → fights(X,Y)

 cat(tom), mouse(jerry)

 [X = tom, Y = jerry]

 → fights(tom, jerry)

 fights(X,Y) → fights(Y,X)

 fights(tom, jerry)

 [X = tom, Y = jerry]

 → fights(jerry, tom)

Knowledge Engineering

• The process of turning known facts about the world

into facts and rules is called knowledge engineering

• A simple approach:

1. Identify all the objects in the world – Tom, Jerry,

1. Spike, Tyke. These are the things that appear

1. inside the brackets. Give them all names.

2. Identify the sets these can belong in – the set of all

2. cats, the set of all mice, the set of all small things –

2. these are the predicates, e.g. cat(tom).

3. Identify relationships between objects – these are

3. the relations, e.g. hates(spike,tom).

Exercise

• Translate these sentences into facts and rules, using

the knowledge engineering approach suggested:

 Ford is an alien.

 Arthur is a human.

 Marvin is an android.

 Humans are lifeforms.

 Aliens are lifeforms.

 Androids are cleverer than lifeforms.

• Can you derive the fact that Marvin is cleverer than

Arthur?

Exercise

• Objects: ford, arthur, marvin.

• Sets: alien, human, android, lifeform.

• Relations: is-cleverer-than(X,Y).

 alien(ford)

 human(arthur)

 android(marvin)

 human(X) → lifeform(X)

 alien(X) → lifeform(X)

 android(X), lifeform (Y) → is-cleverer-than(X,Y)

Exercise

• Can you derive the fact that Marvin is cleverer than

Arthur?

 human(X) → lifeform(X)

 human(arthur)

 [X = arthur]

 → lifeform(arthur)

 android(X), lifeform(Y) → is-cleverer-than(X,Y)

 android(marvin), lifeform(arthur)

 [X = marvin, Y = arthur]

 → is-cleverer-than(marvin, arthur)

Recursive Logical Definitions

• Consider part of the Simpsons’ family tree:

 parent(orville,grampa) parent(homer,bart)

 parent(yuma,grampa) parent(marge,bart)

 parent(grampa,homer) parent(homer,lisa)

 parent(mona,homer) parent(marge,lisa)

 parent(jackie,marge) parent(homer,maggie)

 parent(clancy,marge) parent(marge,maggie)

• Who are Bart’s ancestors?

• How can we define the ancestor(X,Y) relation?

Recursive Logical Definitions

• To find Bart’s ancestors we first add his parents to the

list of ancestors (Homer and Marge).

• Now we find Homer’s ancestors and add those to the

list, and then find Marge’s ancestors and add those to

the list.

• This procedure would go on forever, if it weren’t for the

fact that our knowledge of the Simpsons’ family tree is

limited (e.g. we don’t know who Orville’s parents are).

• We can write our definition in our rules…

Recursive Logical Definitions

 parent(X,Y) → ancestor(X,Y).

 parent(X,Y), ancestor(Y,Z) → ancestor(X,Z)

• Another way of coding the second rule, also using

recursion:

 ancestor(X,Y), ancestor(Y,Z) → ancestor(X,Z)

Using the Rules Forwards

• Derive ancestor(orville, bart)

 parent(X,Y) → ancestor(X,Y)

 parent(homer, bart)

 [X = homer, Y = bart]

 → ancestor(homer, bart)

 parent(X,Y), ancestor(Y,Z) → ancestor(X,Z)

 parent(grampa, homer), ancestor(homer, bart)

 [X = grampa, Y = homer, Z = bart]

 → ancestor(grampa, bart)

 parent(X,Y), ancestor(Y,Z) → ancestor(X,Z)

 parent(orville, grampa), ancestor (grampa, bart)

 [X = orville, Y = grampa, Z = bart]

 → ancestor(orville, bart)

Using the Rules Backwards

ancestor(orville,bart)

parent(orville,bart)


parent(orville,Y), ancestor(grampa,bart)

 [Y = grampa]

parent(grampa,bart)


parent(grampa,Y), ancestor(homer,bart)

 [Y = homer]

parent(homer,bart)



• We can also start from the fact to be proved and

work backwards:







Assignment 8

• Assignment 8 gives you practice in writing derivations

and doing knowledge engineering with recursive rules

• Please hand your workbooks in to the office by 3pm on

Wednesday

• Labs next week: coding algorithms in Python

• Class Test results and feedback on Monday (promise)

