
Lecture 15: The Lambda Calculus

Dr John Levine

CS103 Machines, Languages and Computation

November 23rd 2015

Lecture and Tutorial Plan

• Mon 23 Nov: introducing the lambda calculus

• Homework: Assignment 9 in the workbook

• Thu 26 Nov: tutorial on Assignments 8 and 9

• Fri 27 Nov: NO LECTURE

• Mon 30 Nov: writing recursive Python functions

• Homework: Assignment 10 in the workbook

• Thu 3 Dec: tutorial on Assignment 10, general revision

• Fri 4 Dec: Class Test 2, 10am, Assembly Hall

The Lambda Calculus

• What is the lambda calculus then?

 “A formal system for function definition, function

application and recursion.”

• Invented by Alonzo Church in the 1930s as part of an

investigation into the foundations of mathematics

• Now used as a device in the theory of programming

languages and computation (amongst others)

• Can be used to write programs and was the inspiration

for functional programming languages (Lisp, Haskell)

Simple Function Application

• We apply a function to an argument like this:

 function argument

• For example:

 even 4

 not True

 addthree 5

 length “fred”

 integer “abc”

 identity 456

 identity “fred”

Simple Function Application

• Functions return results:

 function argument → result

• For example:

 even 4 → True

 not True → False

 addthree 5 → 8

 length “fred” → 4

 integer “abc” → False

 identity 456 → 456

 identity “fred” → “fred”

Simple Function Application

• Functions have types:

 function (type → type) argument → result

• For example:

 even (int → bool) 4 → True

 not (bool → bool) True → False

 addthree (int → int) 5 → 8

 length (string → int) “fred” → 4

 integer (α → bool) “abc” → False

 identity (α → α) 456 → 456

 identity (α → α) “fred” → “fred”

The Basic Lambda Calculus

• We use the lambda calculus to construct anonymous

functions of a single variable:

 λx.x+3

• This is a function of a single bound variable (x)

• The body of the function is x+3

• When we apply this function to any integer n, it will

return the value n+3:

 (λx.x+3) 2 → 5

• How does it do this?

Beta Reduction

• To find the result of applying a lambda expression to

an argument, we use beta reduction:

 (λx.body) a => body with x replaced by a

• Examples:

 (λx.x+2) 3

 (λy.y+y) 5

 (λs.length s) “abc”

 (λk.k) “fred”

 (λx.λy.x+y) 2

Beta Reduction

• To find the result of applying a lambda expression to

an argument, we use beta reduction:

 (λx.body) a => body with x replaced by a

• Examples:

 (λx.x+2) 3 => 3+2 → 5

 (λy.y+y) 5 => 5+5 → 10

 (λs.length s) “abc” => length “abc” → 3

 (λk.k) “fred” => “fred”

 (λx.λy.x+y) 2 => λy.2+y

Lambda Expressions Have Types

• Lambda expressions are functions of a single variable

• They therefore have a type, just like simple functions

of a single variable:

 (λx.x+2) (int → int)

 (λy.y+y) (int → int)

 (λs.length s) (string → int)

 (λk.k) (α → α)

 (λx.λy.x+y) (int → (int → int))

Functions with Two Arguments

• What if we want to write a function of two variables?

 F(x,y) = sqrt (x*x + y*y)

• We have to pass in the arguments one at a time:

 (λx.λy.sqrt (x*x + y*y)) 3 4

• Apply the lambda expression to the arguments from

left to right:

 => (λy.sqrt (3*3 + y*y)) 4

 => sqrt (3*3 + 4*4))

 → 5

Functions as Arguments

• Sometimes, functions are arguments to other functions

• Example: mapcar in Lisp takes two arguments: a list of

items and a function to apply to those items

• We can write lambda expressions which bind functions

and then apply these to other lambda expressions:

 (λf.f 3) (λx.x+2)

 => (λx.x+2) 3

 => 3+2

 → 5

Assignment 9

1. Write the following functions as lambda expressions:

 (a) f(x) = x+5

 (b) f(v) = and(v,v)

 (c) f(x,y) = x+y

 (d) f(x,y,s) = (x+y)*(length s)

2. Perform beta reduction on the following:

 (a) (λx.even x) 2

 (b) (λs.(length s)+3) “abc”

 (c) (λa.λb.(length a)+(length b)) “fred” “eric”

 (d) (λv.λw.and(v,or(v,w))) True False

Assignment 9

3. Give the types of the lambda expressions in Q1 and

Q2.

4. (hard) Consider the function application as given on

the slide entitled “Functions as Arguments”:

 (λf.f 3) (λx.x+2)

 What is the type of the expression (λf.f 3) ?

Lecture and Tutorial Plan

• Mon 23 Nov: introducing the lambda calculus 

• Homework: Assignment 9 in the workbook

• Thu 26 Nov: tutorial on Assignments 8 and 9

• Fri 27 Nov: NO LECTURE

• Mon 30 Nov: writing recursive Python functions

• Homework: Assignment 10 in the workbook

• Thu 3 Dec: tutorial on Assignment 10, general revision

• Fri 4 Dec: Class Test 2, 10am, Assembly Hall

