University of

Strathclyde

Lecture 16: Functions and Demons

Dr John Levine

CS103 Machines, Languages and Computation
November 26th 2015



Universityof &3

Strathclyde

The Second Half of the Class

« Assignment 6: Recursion and Languages: how to use
recursion to allow for potentially unbounded sentences.

« Assignment 7: Recursion and Strings: how to specify
an infinite set of strings using a finite set of rules.

« Assignment 8: Recursion and Logical Definitions: what
does it mean to be someone’s ancestor?

« Assignment 9: The A-calculus: how can we create and
use computable functions using only symbols?

« Assignment 10: Recursion and Function Definitions:
how can we use recursion to create functions?



Universityof &3

Strathclyde

Science

The Second Half of the Class

« Assignment 6: Recursion and Languages: how to use
recursion to allow for potentially unbounded sentences.

« Assignment 7: Recursion and Strings: how to specify
an infinite set of strings using a finite set of rules.

« Assignment 8: Recursion and Logical Definitions: what
does it mean to be someone’s ancestor?

« Assignment 9: The A-calculus: how can we create and
use computable functions using only symbols?

e Assignment 10: Recursion and Function Definitions:
how can we use recursion to create functions?



Universityof &3

Strathclyde

Science

Writing Functions in Python

« To write a function in Python, we have to specify what
output is to be returned for a given input:

def f1(x):
return 3*x + 1



University of

Strathclyde

Science

Writing Functions in Python

« To write a function in Python, we have to specify what
output is to be returned for a given input:

def f1(x):
return 3*x + 1

« We need to include the return statement for all
possible outputs:

def f2(x):
if X % 2 ==
return x // 2
else:
return 3*x + 1



<
Strathclyde

Science

Computing using Lazy Demons

* Imagine an infinite line of lazy demons:

« Each demon will do one (and only one!) calculation for
you — after that, they get tired and fall asleep

 How can you make the demons do proper calculations
for you, like computing the factorial function?



Universityof &3

Strathclyde

Science

Recursive Functions

Recall the factorial function:
factorial(7) = 7x6x5x4x3x2x1=5040

To get a line of lazy demons to calculate the factorial
function, we can do it like this:

Rule 1: if | give you O, then return 1.

Rule 2: if | give you an integer, n, then ask the demon
one down the line to calculate the factorial of n-1, and
then multiply that value by n.



Universityof &3

Strathclyde

Science

Factorial Function in Python

 In Python, we can code the two rules for the factorial
function like this:

def factorial(n):
if n == 0:
return 1
else:
return n * factorial(n-1)

« We say that this Python function is recursive because
a call to the function occurs within the function itself

* Recursive code is code which calls itself



University of

Strathclyde

Science

Factorial Function in Python

 In Python, we can code the two rules for the factorial
function like this:

def factorial(n):
if n ==
return 1
else:
return n * factorial(n-1)

« We say that this Python function is recursive because
a call to the function occurs within the function itself

* Recursive code is code which calls itself



Universityof &3

Strathclyde

Science

Another Recursive Function

* In Python, lists are used to hold an arbitrary number
of objects of any type — e.g. ['spam’, 42, 'fish’, True]

« How can we get our demons to calculate the length of
a list of items?

Rule 1: if | give you the empty list, return O.

Rule 2: if | give you a non-empty list, then discard the
first element, ask the demon one down the line to give
you the length of the resulting list, then add 1 to that.



Strathclyde

Science

Length Function in Python

 In Python, we can code the two rules for the length
function like this:

def length(1l):
if 1 == []:
return 0

else:
return 1 + length(1[1:])

« The code 1[1:] will return the list 1 with the first item
removed—-soiflis[1,2,3],1[1:] will return [2,3]



Strathclyde

Science

Length Function in Python

 In Python, we can code the two rules for the length
function like this:

def length(l):
if 1 == []:
return 0

else:
return 1 + length(1[1:])

« The code 1[1:] will return the list 1 with the first item
removed—-soiflis[1,2,3],1[1:] will return [2,3]



Universityof &3

Strathclyde

Science

Calling Diagram for Length

 We use a calling diagram to show how length works:



Universityof &3

Strathclyde

Science

Calling Diagram for Length

 We use a calling diagram to show how length works:

length([1, 2, 3, 4])



Universityof &3

Strathclyde

Science

Calling Diagram for Length

 We use a calling diagram to show how length works:

length([1, 2, 3, 4])
=> 1 + length([2, 3, 4])



Universityof &3

Strathclyde

Science

Calling Diagram for Length

 We use a calling diagram to show how length works:

length([1, 2, 3, 4])
=> 1 + length([2, 3, 4])
=> 1 + 1 + length([3, 4])



Universityof &3

Strathclyde

Science

Calling Diagram for Length

 We use a calling diagram to show how length works:

length([1, 2, 3, 4])

=> 1 + length([2, 3, 4])
=> 1+ 1 + length([3, 4])
=>1+ 1+ 1+ length([4])



Calling Diagram for Length

Universityof &3

Strathclyde

Science

We use a calling diagram to show how length works:

length([1, 2, 3, 4])

=>

1

1
1
1

+

+
+
+

length([2, 3, 4])

1 + length([3, 4])

1 + 1 + length([4])
1+1+ 1+ length([])



Calling Diagram for Length

Universityof &3

Strathclyde

Science

We use a calling diagram to show how length works:

length([1, 2, 3, 4])
+ length([2, 3, 4])

=>

1

B B g
+ + +

+

1

R T

+

+
+
+

length([3, 4])

1 + length([4])
1+ 1 + length([])
1+1+ 0




Calling Diagram for Length

Universityof &3

Strathclyde

Science

We use a calling diagram to show how length works:

length([1, 2, 3, 4])
+ length([2, 3, 4])

=>

1

DR R R R

+

+ + +

1

R T

+

+
+
+

length([3, 4])

1 + length([4])
1+ 1 + length([])
1+1+ 0




Universityof &3

E_Sﬁ;frﬁgthclyde
Another Example

| want to count all the occurrences of 'fish' in a list;
count_fish(['spam', 'fish', 3, 'fish']) => 2

« How can we get our demons to do this?
Rule 1: if | give you the empty list, return O.

Rule 2: if | give you a list which starts with 'fish', discard
the first item, ask the demon one down the line to
count the fish in resulting list, then add 1 to that.

Rule 3: if | give you any other list, discard the first item,
ask the demon one down the line to count the fish in
the resulting list, then return that number.



Python exercises to try

* Write the Python code for count_fish(1)
« Write a recursive version of collatz(n)

v' Reminder: no lecture tomorrow!
v Next lecture on Monday 30th November
v" Tutorials on Thursday 3rd December

v’ Class Test on Friday 4th December

University of

Strathclyde

Science



