
Lecture 16: Functions and Demons

Dr John Levine

CS103 Machines, Languages and Computation

November 26th 2015

The Second Half of the Class

• Assignment 6: Recursion and Languages: how to use

recursion to allow for potentially unbounded sentences.

• Assignment 7: Recursion and Strings: how to specify

an infinite set of strings using a finite set of rules.

• Assignment 8: Recursion and Logical Definitions: what

does it mean to be someone’s ancestor?

• Assignment 9: The λ-calculus: how can we create and

use computable functions using only symbols?

• Assignment 10: Recursion and Function Definitions:

how can we use recursion to create functions?

The Second Half of the Class

• Assignment 6: Recursion and Languages: how to use

recursion to allow for potentially unbounded sentences.

• Assignment 7: Recursion and Strings: how to specify

an infinite set of strings using a finite set of rules.

• Assignment 8: Recursion and Logical Definitions: what

does it mean to be someone’s ancestor?

• Assignment 9: The λ-calculus: how can we create and

use computable functions using only symbols?

• Assignment 10: Recursion and Function Definitions:

how can we use recursion to create functions?

• To write a function in Python, we have to specify what

output is to be returned for a given input:

 def f1(x):
 return 3*x + 1

Writing Functions in Python

• To write a function in Python, we have to specify what

output is to be returned for a given input:

 def f1(x):
 return 3*x + 1

• We need to include the return statement for all

possible outputs:

 def f2(x):
 if x % 2 == 0:
 return x // 2
 else:
 return 3*x + 1

Writing Functions in Python

• Imagine an infinite line of lazy demons:

• Each demon will do one (and only one!) calculation for

you – after that, they get tired and fall asleep

• How can you make the demons do proper calculations

for you, like computing the factorial function?

Computing using Lazy Demons

• Recall the factorial function:

 factorial(7) = 7 x 6 x 5 x 4 x 3 x 2 x 1 = 5040

• To get a line of lazy demons to calculate the factorial

function, we can do it like this:

 Rule 1: if I give you 0, then return 1.

 Rule 2: if I give you an integer, n, then ask the demon

one down the line to calculate the factorial of n-1, and

then multiply that value by n.

Recursive Functions

• In Python, we can code the two rules for the factorial

function like this:

 def factorial(n):
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

• We say that this Python function is recursive because

a call to the function occurs within the function itself

• Recursive code is code which calls itself

Factorial Function in Python

• In Python, we can code the two rules for the factorial

function like this:

 def factorial(n):
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

• We say that this Python function is recursive because

a call to the function occurs within the function itself

• Recursive code is code which calls itself

Factorial Function in Python

• In Python, lists are used to hold an arbitrary number

of objects of any type – e.g. ['spam', 42, 'fish', True]

• How can we get our demons to calculate the length of

a list of items?

 Rule 1: if I give you the empty list, return 0.

 Rule 2: if I give you a non-empty list, then discard the

first element, ask the demon one down the line to give

you the length of the resulting list, then add 1 to that.

Another Recursive Function

• In Python, we can code the two rules for the length

function like this:

def length(l):
 if l == []:
 return 0
 else:
 return 1 + length(l[1:])

• The code l[1:] will return the list l with the first item

removed – so if l is [1,2,3], l[1:] will return [2,3]

Length Function in Python

• In Python, we can code the two rules for the length

function like this:

def length(l):
 if l == []:
 return 0
 else:
 return 1 + length(l[1:])

• The code l[1:] will return the list l with the first item

removed – so if l is [1,2,3], l[1:] will return [2,3]

Length Function in Python

• We use a calling diagram to show how length works:

Calling Diagram for Length

• We use a calling diagram to show how length works:

 length([1, 2, 3, 4])

Calling Diagram for Length

• We use a calling diagram to show how length works:

 length([1, 2, 3, 4])
 => 1 + length([2, 3, 4])

Calling Diagram for Length

• We use a calling diagram to show how length works:

 length([1, 2, 3, 4])
 => 1 + length([2, 3, 4])
 => 1 + 1 + length([3, 4])

Calling Diagram for Length

• We use a calling diagram to show how length works:

 length([1, 2, 3, 4])
 => 1 + length([2, 3, 4])
 => 1 + 1 + length([3, 4])
 => 1 + 1 + 1 + length([4])

Calling Diagram for Length

• We use a calling diagram to show how length works:

 length([1, 2, 3, 4])
 => 1 + length([2, 3, 4])
 => 1 + 1 + length([3, 4])
 => 1 + 1 + 1 + length([4])
 => 1 + 1 + 1 + 1 + length([])

Calling Diagram for Length

• We use a calling diagram to show how length works:

 length([1, 2, 3, 4])
 => 1 + length([2, 3, 4])
 => 1 + 1 + length([3, 4])
 => 1 + 1 + 1 + length([4])
 => 1 + 1 + 1 + 1 + length([])
 => 1 + 1 + 1 + 1 + 0

Calling Diagram for Length

• We use a calling diagram to show how length works:

 length([1, 2, 3, 4])
 => 1 + length([2, 3, 4])
 => 1 + 1 + length([3, 4])
 => 1 + 1 + 1 + length([4])
 => 1 + 1 + 1 + 1 + length([])
 => 1 + 1 + 1 + 1 + 0
 => 4

Calling Diagram for Length

• I want to count all the occurrences of 'fish' in a list:
count_fish(['spam', 'fish', 3, 'fish']) => 2

• How can we get our demons to do this?

 Rule 1: if I give you the empty list, return 0.

 Rule 2: if I give you a list which starts with 'fish', discard

the first item, ask the demon one down the line to

count the fish in resulting list, then add 1 to that.

 Rule 3: if I give you any other list, discard the first item,

ask the demon one down the line to count the fish in

the resulting list, then return that number.

Another Example

• Write the Python code for count_fish(l)

• Write a recursive version of collatz(n)

 Reminder: no lecture tomorrow!

 Next lecture on Monday 30th November

 Tutorials on Thursday 3rd December

 Class Test on Friday 4th December

Python exercises to try

