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The Rules of the Game 

• CS103: Machines, Languages and Computation 
 

• 20 credits, both semesters 
 

• Two lecturers: 

• John Levine (Semester 1) 

• Anders Claesson (Semester 2) 
 

• Assessed by 4 class tests (30%) and an exam (70%) 
 

• Exemption from the exam is possible if you do well in 

the class tests 



The Rules of the Game 

• Lectures are Mon 10 in RC 345, Fri 10 in RC 641 
 

• Tutorials: Thu 10 JA 505, Thu 1 in TG 227 
 

• Lectures run Weeks 1-11 (no lectures in Week 12) 
 

• Class materials will appear on the class web page: 
 

  http://www.cis.strath.ac.uk/~johnl/CS103 
 

• Facebook page: MLAC 2015 
 

• Email: John.Levine@strath.ac.uk 
 

• Room LT1420, extension 4524 



Tutorial Allocation 

• You attend one tutorial per week, starting next week 
 

• The Thursday 1pm tutorial is for those students taking: 

- BSc Computer Science 
 

• The Thursday 10am tutorial is for those students taking: 

- MEng Computer Science 

- BSc Mathematics and Computer Science 

- MEng Computer and Electronic Systems 

- BEng Computer and Electronic Systems 

- BSc Software Engineering 

- BSc Business Information Systems 

- Everyone else not already mentioned 



Weekly Exercises 

• Every week, you do a classwork assignment consisting 

of reading and some pen-and-paper exercises. 
 

• This should take about 1-3 hours and can be done on 

the train, in bed, between other lectures, etc. 
 

• The first three classwork assignments are contained in 

a workbook which will be handed out today. 
 

• You hand in the workbook to the departmental office 

every week (details at the end of this lecture). 



Class Tests  

• The classwork is assessed by means of a class test: a 

mini-exam in the usual lecture slot 
 

• There are 4 class tests for CS103: two this semester 

and two next semester 
 

• The Semester 1 tests are on Friday 30th October and 

Friday 4th December. 
 

• Feedback and results will be available 2 weeks after 

the test date. 



Course Book 

“Gödel, Escher, Bach: an Eternal 

Golden Braid” 

by 

Douglas R. Hofstadter 
 

Publisher: Penguin Books Ltd 

ISBN: 0140289208 

Cost: £18.99 (amazon.co.uk) 
 

You will need your own copy of 

this book as we will be reading  

from it every week. 



All Computers are Equivalent 

• In mathematical terms, all computers are equivalent (in 

the same way that all cars are equivalent). 
 

• If you have a problem which can be solved on one 

computer, then it can be solved on all of them! This 

fundamental idea is called The Church-Turing Thesis. 
 

• There are some problems which cannot be solved on 

any computer, no matter how powerful the computer is. 
 

• The mathematical properties of all computers can be 

exactly modelled by very simple abstract devices. 



Non-Computable Functions 

• The first 5 weeks of the course will build up towards 

the proof that non-computable functions exist: 

 

 If P is the set of all computer programs and F is the set 

of all functions f: n → m  such that n,m are members of 

the set of natural numbers N, then │F│ > │P│ and 

therefore there are some functions in F for which no 

computer program can exist. 
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What is a Mathematical Proof? 

• In mathematics, a proof is a logical argument showing 

that some statement (a theorem) is necessarily true 
 

• A statement is an expression that is either true or false, 

such as “for every integer n > 0, the sum of the first n 

odd numbers is equal to n2
 ” or “all even numbers can 

be expressed as the sum of two prime numbers” 
 

• The first of these can be proved – we will prove it later 

in the class 
 

• The latter statement has not been proved – it is known 

as “Goldbach’s Conjecture” 
 



Infinite sets and proof 

• The theorems we are trying to prove often have to hold 

true for infinite sets of numbers 
 

• Example: prove that the sum of any two even numbers 

is also an even number 
 

• The two numbers chosen can be any two members of 

the set of all of the even numbers (an infinite set) 
 

• We deal with this by not naming specific numbers, but 

by using letters to stand for any two even numbers 
 

• If our argument works just using those letters, we know 

it will work for any two specific even numbers 



A Simple Proof 

Theorem: adding two even numbers always gives an 

even number. 
 

• Proof: let the sum be s = a + b where a and b are any 

two even numbers 
 

• Let p = a/2 and q = b/2. Because a and b are even, p 

and q are both whole numbers (integers) 
 

• The sum is now: s = 2p + 2q 
 

• We can rewrite this as:  s = 2(p + q) 
 

• Because p and q are integers, (p + q) is also an integer 
 

• s is 2 times an integer, and so this means that s must 

be an even number.  ■ 



Types of Proof 

• Direct proof is where the conclusion is established by 

logically combining the axioms, definitions and earlier 

theorems. 
 

• Proof by contradiction is where it is shown that if some 

statement were false, a logical contradiction occurs, 

hence the statement must be true. 
 

• Proof by induction is where a “base case” is proved, 

and an “induction rule” used to prove an (often infinite) 

series of other cases. Since the base case is true, the 

infinity of other cases must also be true. 



Formal Systems 

• The proof we’ve just seen is a mixture of formal symbol 

manipulation (e.g. rewrite "s = kx + ky" as "s = k(x + y)") 

and more informal logical argument 
 

• To be totally sure of our arguments, we can try to make 

all of the steps be formal symbol manipulation 
 

• If we have symbol manipulation rules which can only 

produce true statements from true statements, our 

proofs are cast-iron guaranteed 
 

• This could also allow computers to construct proofs! 



Gödel, Escher, Bach, Chapter 1 

• In Chapter 1 of GEB ("The MU Puzzle") we are given 

the axiom MI and we have to make the theorem MU, 

using these four purely symbolic rules: 
 

I.  xI → xIU 

II.  M x → M x x 

III.  x III y → x U y 

IV.  x UU y → x y 
 

• Hofstadter asks: can you make MU? 
 

• Levine asks: given some arbitrary string, can I write a 

computer program to determine whether or not it is a 

theorem? 



Homework 

In the workbook, try these exercises (in this order): 
 

• Assignment 2, parts (a) and (b) 
 

• Assignment 1, parts (a) and (b) 
 

Please hand in your workbooks to the department office 

by 3pm on Tuesday 29th September 
 

Reminder of your tutorial for next week: 
 

Thu 1pm in TG 227 for BSc Computer Science students 
 

Thu 10am in JA 505 for everyone else 


