
Lecture 4: MI → MU?

Dr John Levine

CS103 Machines, Languages and Computation

October 5th 2015

The Rules of the Game

• Lectures are Mon 10 in RC 345, Fri 10 in RC 641

• Tutorials: Thu 10 in JA 505, Thu 1 in TG 223

• Lectures run Weeks 1-11 (no lectures in Week 12)

• Class materials will appear on the class web page:

 http://www.cis.strath.ac.uk/~johnl/CS103

• Facebook page: MLAC 2015

• Email: John.Levine@strath.ac.uk

• Room LT1420, extension 4524

Tutorial Allocation

• You attend one tutorial per week

• The Thursday 1pm tutorial is for those students taking:

- BSc Computer Science

• The Thursday 10am tutorial is for those students taking:

- MEng Computer Science

- BSc Mathematics and Computer Science

- MEng Computer and Electronic Systems

- BEng Computer and Electronic Systems

- BSc Software Engineering

- BSc Business Information Systems

- Everyone else not already mentioned

Course Book

“Gödel, Escher, Bach: an Eternal

Golden Braid”

by

Douglas R. Hofstadter

Publisher: Penguin Books Ltd

ISBN: 0140289208

Cost: £18.99 (amazon.co.uk)

You will need your own copy of

this book as we will be reading

from it every week.

Non-Computable Functions

• The first 5 weeks of the course will build up towards

the proof that non-computable functions exist:

 If P is the set of all computer programs and F is the set

of all functions f: n → m such that n,m are members of

the set of natural numbers N, then │F│ > │P│ and

therefore there are some functions in F for which no

computer program can exist.

Non-Computable Functions

• The first 5 weeks of the course will build up towards

the proof that non-computable functions exist:

 If P is the set of all computer programs and F is the set

of all functions f: n → m such that n,m are members of

the set of natural numbers N, then │F│ > │P│ and

therefore there are some functions in F for which no

computer program can exist.

What is a Mathematical Proof?

• In mathematics, a proof is a logical argument showing

that some statement (a theorem) is necessarily true.

• A statement is an expression that is either true or false,

such as “all even integers > 2 can be expressed as the

sum of two prime numbers” (Goldbach’s conjecture)

• A proof starts with axioms, which are statements

whose truth can be taken for granted, such as “any

even number can be exactly divided by 2”.

• Logical deduction is the process of creating new true

statements from the given axioms.

A Simple Proof

Theorem: adding two even numbers always gives an

even number.

• Proof: let the sum be s = a + b where a and b are any

two even numbers

• Let p = a/2 and q = b/2. Because a and b are even, p

and q are both whole numbers (integers)

• The sum is now: s = 2p + 2q

• We can rewrite this as: s = 2(p + q)

• Because p and q are integers, (p + q) is also an integer

• s is 2 times an integer, and so this means that s must

be an even number. ■

Types of Proof

• Direct proof is where the conclusion is established by

logically combining the axioms, definitions and earlier

theorems.

• Proof by contradiction is where it is shown that if some

statement were false, a logical contradiction occurs,

hence the statement must be true.

• Proof by induction is where a “base case” is proved,

and an “induction rule” used to prove an (often infinite)

series of other cases. Since the base case is true, the

infinity of other cases must also be true.

Prime Numbers

• The usual definition of a prime number is “any integer

greater than 1 that divides exactly only by itself and 1”

• 1 is not prime, because of The Fundamental Theorem

of Arithmetic (due to Euclid): “Every positive integer

greater than one can be written uniquely as a product

of primes”

• Those numbers which can be written as a product of

prime factors are known as composite numbers

• So, all integers > 1 are either prime or composite

Prime Numbers

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Prime Numbers

2 3 5 7

11 13 17 19

23 29

31 37

41 43 47

53 59

61 67

71 73 79

83 89

97

Proof by Contradiction

Theorem: There are infinitely many prime numbers.

• Proof: assume that there are finitely many prime

numbers, and call the biggest prime number N.

• Now form the number K = 1 x 2 x 3 x … x N-1 x N.

• K divides exactly by every integer up to N.

• Now form the number M = K + 1.

• M can’t be a multiple of 2, as it leaves 1 over when you

divide it by 2.

• Or a multiple of 3, 4, 5 , … , N-1, N.

• So either M is prime, or it has a prime divisor > N. ■

Formal Systems

• The proofs we’ve seen are a mixture of formal symbol

manipulation (e.g. rewrite "s = kx + ky" as "s = k(x + y)")

and more informal logical argument (e.g. the smallest

divisor of M must be prime).

• To be totally sure of our arguments, we can try to make

all of the steps be formal symbol manipulation.

• If we have symbol manipulation rules which can only

produce true statements from true statements, our

proofs are cast-iron guaranteed.

• This could also allow computers to construct proofs!

Assignment 1 (taken from GEB)

• We are given the axiom MI and we have to make the

theorem MU, using these four inference rules:

I. xI → xIU

II. M x → M x x

III. x III y → x U y

IV. x UU y → x y

• Hofstadter asks: can you make MU?

• Levine asks: given some arbitrary string, can I write a

computer program to determine whether or not it is a

theorem?

Approaches to MU

• Begin by trying out the system, to see how it works

• Start deriving a few theorems:

 MI → MII (Rule II)

 MII → MIIII (Rule II)

 MIIII → MUI (Rule III)

 MUI → MUIU (Rule I)

 MUIU → MUIUUIU (Rule II)

 MUIUUIU → MUIIU (Rule IV)

• Exercise: try to derive MUIUIU

Answer to the Exercise

• Here’s one way of doing it:

 MI → MII (Rule II)

 MII → MIIII (Rule II)

 MIIII → MUI (Rule III)

 MUI → MUIUI (Rule II)

 MUIUI → MUIUIU (Rule I)

• But can we derive MU?

• Maybe we can write a program to do it for us?

A Program that Searches?

MI

MIU MII

MIIII MIIU MIUIU

MIIUIIU MIIIIU MUI MIIIIIIII MIU

MUIU MUIUI

A Program that Searches?

MI

MIU MII

MIIII MIIU MIUIU

MIIUIIU MIIIIU MUI MIIIIIIII MIU

MUIU MUIUI

MU???

Observing the System

After working with the system for a while, we start making

observations about the system:

• All theorems start with an M with the rest being a

mixture of U and I – we can write this as M(U*I*)*

• So some strings are definitely not theorems, such as

IIUM, MUMII, MUMUMUII, and so on

• There are infinitely many theorems – Rule II alone is

enough to ensure this

• Rules I and II make longer strings, Rules III and IV

make shorter strings

A Decision Procedure?

• All theorems start with an M with the rest being a

mixture of U and I – we can write this as M(U*I*)*

• Is this enough to characterise all the theorems of the

MIU-system?

• If not, can we somehow make the description of

theorems more restrictive?

• What we want is a decision procedure, i.e. a test for

theoremhood that tells us if a string is a theorem and

gives us an answer in a finite amount of time

Decidable Problems

• Say we have a question to which the answer is “yes”

or “no”, such as “Is k a prime number?” or “Is string S

a theorem of the MIU-system?”

• If we have a procedure for all cases which can tell us

whether the answer is “yes” or “no” in a finite amount

of time, then the problem is called decidable.

• If no such procedure exists, then the problem is called

undecidable.

• Note that the program that searches is not a decision

procedure (why?)

The Challenge

• Can we come up with a decision procedure for strings

which are theorems of the MIU-system?

• String = M(U*I*)* is a start, but some strings seem to

be very difficult to find…

• Is there any pattern to the theorems my program can

produce?

• If there is, can we inspect the rules to find the reason

for such a pattern being there?

More Homework

• Assignment 1

− Part (c): [fairly easy] define what is meant by the

term decision procedure in the context of the MIU

system

− Part (d): [hard!] try to define a decision procedure

for the MIU system

• Assignment 2

− Part (c): [moderate] without looking, try to reproduce

the proof that there are an infinite number of primes

• Hand your workbook in to the office by 3pm on Tuesday

