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The Rules of the Game 

• Lectures are Mon 10 in RC 345, Fri 10 in RC 641 
 

• Tutorials: Thu 10 in JA 505, Thu 1 in TG 223 
 

• Lectures run Weeks 1-11 (no lectures in Week 12) 
 

• Class materials will appear on the class web page: 
 

  http://www.cis.strath.ac.uk/~johnl/CS103 
 

• Facebook page: MLAC 2015 
 

• Email: John.Levine@strath.ac.uk 
 

• Room LT1420, extension 4524 



Tutorial Allocation 

• You attend one tutorial per week 
 

• The Thursday 1pm tutorial is for those students taking: 

- BSc Computer Science 
 

• The Thursday 10am tutorial is for those students taking: 

- MEng Computer Science 

- BSc Mathematics and Computer Science 

- MEng Computer and Electronic Systems 

- BEng Computer and Electronic Systems 

- BSc Software Engineering 

- BSc Business Information Systems 

- Everyone else not already mentioned 



Course Book 

“Gödel, Escher, Bach: an Eternal 

Golden Braid” 

by 

Douglas R. Hofstadter 
 

Publisher: Penguin Books Ltd 

ISBN: 0140289208 

Cost: £18.99 (amazon.co.uk) 
 

You will need your own copy of 

this book as we will be reading  

from it every week. 



Non-Computable Functions 

• The first 5 weeks of the course will build up towards 

the proof that non-computable functions exist: 

 

 If P is the set of all computer programs and F is the set 

of all functions f: n → m  such that n,m are members of 

the set of natural numbers N, then │F│ > │P│ and 

therefore there are some functions in F for which no 

computer program can exist. 
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What is a Mathematical Proof? 

• In mathematics, a proof is a logical argument showing 

that some statement (a theorem) is necessarily true. 
 

• A statement is an expression that is either true or false, 

such as “all even integers > 2 can be expressed as the 

sum of two prime numbers” (Goldbach’s conjecture) 
 

• A proof starts with axioms, which are statements 

whose truth can be taken for granted, such as “any 

even number can be exactly divided by 2”. 
 

• Logical deduction is the process of creating new true 

statements from the given axioms. 



A Simple Proof 

Theorem: adding two even numbers always gives an 

even number. 
 

• Proof: let the sum be s = a + b where a and b are any 

two even numbers 
 

• Let p = a/2 and q = b/2. Because a and b are even, p 

and q are both whole numbers (integers) 
 

• The sum is now: s = 2p + 2q 
 

• We can rewrite this as:  s = 2(p + q) 
 

• Because p and q are integers, (p + q) is also an integer 
 

• s is 2 times an integer, and so this means that s must 

be an even number.  ■ 



Types of Proof 

• Direct proof is where the conclusion is established by 

logically combining the axioms, definitions and earlier 

theorems. 
 

• Proof by contradiction is where it is shown that if some 

statement were false, a logical contradiction occurs, 

hence the statement must be true. 
 

• Proof by induction is where a “base case” is proved, 

and an “induction rule” used to prove an (often infinite) 

series of other cases. Since the base case is true, the 

infinity of other cases must also be true. 



Prime Numbers 

• The usual definition of a prime number is “any integer 

greater than 1 that divides exactly only by itself and 1” 
 

• 1 is not prime, because of The Fundamental Theorem 

of Arithmetic (due to Euclid): “Every positive integer 

greater than one can be written uniquely as a product 

of primes” 
 

• Those numbers which can be written as a product of 

prime factors are known as composite numbers 
 

• So, all integers > 1 are either prime or composite 



Prime Numbers 

1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

51 52 53 54 55 56 57 58 59 60 

61 62 63 64 65 66 67 68 69 70 

71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 

91 92 93 94 95 96 97 98 99 100 



Prime Numbers 

2 3 5 7 

11 13 17 19 

23 29 

31 37 

41 43 47 

53 59 

61 67 

71 73 79 

83 89 

97 



Proof by Contradiction 

Theorem: There are infinitely many prime numbers. 
 

• Proof: assume that there are finitely many prime 

numbers, and call the biggest prime number N. 
 

• Now form the number K = 1 x 2 x 3 x … x N-1 x N. 
 

• K divides exactly by every integer up to N. 
 

• Now form the number M = K + 1. 
 

• M can’t be a multiple of 2, as it leaves 1 over when you 

divide it by 2. 
 

• Or a multiple of 3, 4, 5 , … , N-1, N. 
 

• So either M is prime, or it has a prime divisor > N.  ■ 



Formal Systems 

• The proofs we’ve seen are a mixture of formal symbol 

manipulation (e.g. rewrite "s = kx + ky" as "s = k(x + y)") 

and more informal logical argument (e.g. the smallest 

divisor of M must be prime). 
 

• To be totally sure of our arguments, we can try to make 

all of the steps be formal symbol manipulation. 
 

• If we have symbol manipulation rules which can only 

produce true statements from true statements, our 

proofs are cast-iron guaranteed. 
 

• This could also allow computers to construct proofs! 



Assignment 1 (taken from GEB) 

• We are given the axiom MI and we have to make the 

theorem MU, using these four inference rules: 
 

I.  xI → xIU 

II.  M x → M x x 

III.  x III y → x U y 

IV.  x UU y → x y 
 

• Hofstadter asks: can you make MU? 
 

• Levine asks: given some arbitrary string, can I write a 

computer program to determine whether or not it is a 

theorem? 



Approaches to MU 

• Begin by trying out the system, to see how it works 
 

• Start deriving a few theorems: 
 

 MI → MII   (Rule II) 

 MII → MIIII   (Rule II) 

 MIIII → MUI   (Rule III) 

 MUI → MUIU   (Rule I) 

 MUIU → MUIUUIU  (Rule II) 

 MUIUUIU → MUIIU  (Rule IV) 
 

• Exercise: try to derive MUIUIU 



Answer to the Exercise 

• Here’s one way of doing it: 
 

 MI → MII   (Rule II) 

 MII → MIIII   (Rule II) 

 MIIII → MUI   (Rule III) 

 MUI → MUIUI  (Rule II) 

 MUIUI → MUIUIU  (Rule I) 
 

• But can we derive MU? 
 

• Maybe we can write a program to do it for us? 



A Program that Searches? 

MI 

MIU MII 

MIIII MIIU MIUIU 

MIIUIIU MIIIIU MUI MIIIIIIII MIU 

MUIU MUIUI 



A Program that Searches? 

MI 

MIU MII 

MIIII MIIU MIUIU 

MIIUIIU MIIIIU MUI MIIIIIIII MIU 

MUIU MUIUI 

MU??? 



Observing the System 

After working with the system for a while, we start making 

observations about the system: 
 

• All theorems start with an M with the rest being a 

mixture of U and I – we can write this as M(U*I*)* 
 

• So some strings are definitely not theorems, such as 

IIUM, MUMII, MUMUMUII, and so on 
 

• There are infinitely many theorems – Rule II alone is 

enough to ensure this 
 

• Rules I and II make longer strings, Rules III and IV 

make shorter strings 



A Decision Procedure? 

• All theorems start with an M with the rest being a 

mixture of U and I – we can write this as M(U*I*)* 
 

• Is this enough to characterise all the theorems of the 

MIU-system? 
 

• If not, can we somehow make the description of 

theorems more restrictive? 
 

• What we want is a decision procedure, i.e. a test for 

theoremhood that tells us if a string is a theorem and 

gives us an answer in a finite amount of time 



Decidable Problems 

• Say we have a question to which the answer is “yes” 

or “no”, such as “Is k a prime number?” or “Is string S 

a theorem of the MIU-system?” 
 

• If we have a procedure for all cases which can tell us 

whether the answer is “yes” or “no” in a finite amount 

of time, then the problem is called decidable. 
 

• If no such procedure exists, then the problem is called 

undecidable. 
 

• Note that the program that searches is not a decision 

procedure (why?) 



The Challenge 

• Can we come up with a decision procedure for strings 

which are theorems of the MIU-system? 
 

• String = M(U*I*)* is a start, but some strings seem to 

be very difficult to find… 
 

• Is there any pattern to the theorems my program can 

produce? 
 

• If there is, can we inspect the rules to find the reason 

for such a pattern being there? 



More Homework 

• Assignment 1 
 

− Part (c): [fairly easy] define what is meant by the 

term decision procedure in the context of the MIU 

system 
 

− Part (d): [hard!] try to define a decision procedure 

for the MIU system 
 

• Assignment 2 
 

− Part (c): [moderate] without looking, try to reproduce 

the proof that there are an infinite number of primes 
 

• Hand your workbook in to the office by 3pm on Tuesday 

 


