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Homework for Tutorial next week 

• Read Chapter 2 of Gödel, Escher, Bach 
 

• Do Assignment 2, parts (d) and (e) 
 

- Part (d) is a proof by induction 
 

- Part (e) asks why proof by induction is like toppling 

an infinite line of dominoes 
 

• Try to make progress with Assignment 1, part (d) 
 

- What is the decision procedure for MIU? 
 

• Hand in your workbooks by 3pm on Tue (13th Oct) 



Non-Computable Functions 

• The first 5 weeks of the course will build up towards 

the proof that non-computable functions exist: 

 

 If P is the set of all computer programs and F is the set 

of all functions f: n → m  such that n,m are members of 

the set of natural numbers N, then │F│ > │P│ and 

therefore there are some functions in F for which no 

computer program can exist. 
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What is a Set? 

• In mathematics, a set can be thought of as any 

collection of distinct things considered as a whole. 
 

• Though a simple idea, it is nevertheless one of the 

most important and fundamental concepts in modern 

mathematics. 
 

• It is the language in which modern mathematics is 

described. 
 

• Set theory can be viewed as the foundation upon 

which nearly all of mathematics can be built. 



What is a Set? 

• Example set: S = {8, 6, 2} 
 

• Or in words: S = the set of ages of John’s children 
 

• Order is not important: {2, 8, 6} = {8, 6, 2} 
 

• If a is a member of S, we write a ∈ S  
 

• If two sets, R and S, have exactly the same members, 

they are identical, and we write R = S 
 

• If S contains all the elements of R, then R is a subset of 

S, and we write R ⊆ S 



Describing Sets 

• We can describe sets by listing the items explicitly 
 

• Or we can use words: “Let S be the set of all even 

numbers less than 10” 
 

• Or we can use “…” notation:  S = {1, 2, 3, … , 100} 
 

• Sets can contain elements other than integers: the set 

of all colours on the French flag = {red, white, blue} 
 

• Sets can contain other sets:  S = {{1, 2, 3}, {a, b, c}} 
 

• Using “such that” notation: S = {n2 | n is an integer < 5} 



Infinite Sets 

• Sets can have an infinite number of elements. 
 

• The most important is the set of natural numbers, N. 
 

• N = {0, 1, 2, 3, …} 
 

• Each element has a natural successor: if I’m looking at 

element a then I know the next element is a+1. 
 

• This set is certainly infinite, but it is described as being 

countably infinite. 
 

• The size or cardinality of a countably infinite set is the 

“smallest” sort of infinity there is. 



Dealing with Infinity in Proofs 

If we want to prove that some property holds for all  

elements of N, then we have a number of strategies: 
 

• Use letters instead of numbers; if we can show that the 

property holds without choosing a specific integer, then 

it must be true for all integers. 
 

• Use a “counting” argument and show that all cases are 

covered: e.g. prove the proposition for even numbers, 

then prove it for odd numbers, then prove it for zero. 
 

• Use Proof by Induction (the domino proof) 



Proof by Induction 

• Often used to prove statements of the form: 
 

    “for all n ∈ N, some property holds of n” 
 

• First, prove true for the first case, which is easy enough: 

just find the smallest possible value of n for which the 

formula makes sense, and see if the formula holds. 
 

• Next, assume the formula is true for some arbitrary 

value, k. The inductive step consists of proving that the 

formula must be true for the value k+1. 
 

• The “domino effect” makes the formula true for all n. 



Example of Proof by Induction 

• The sum of the first n non-zero integers = n.(n + 1) /2 
 

• In other words, 1 + 2 + 3 + … + n = n.(n + 1) /2 
 

• Proof by induction: 
 

• First case is n = 1.  1 = 1.(1+1) /2, which is true. 
 

• Assume k th case is true: 
 

 1 + 2 + 3 + … + k = k.(k + 1) /2   (1) 
 

• Now prove the (k +1) th case is true: 
 

 1 + 2 + 3 + … + k + (k +1) = (k +1).(k + 2) /2 (2) 
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Example of Proof by Induction 

• Substitute the right-hand side of (1) into (2): 
 

• 1 + 2 + 3 + … + k + (k +1) = (k +1).(k + 2) /2 (2) 
 

• k.(k + 1) /2 + (k +1) = (k +1).(k + 2) /2 
 

• (k2
 + k) /2 + (k +1) = (k +1).(k + 2) /2 

 

• k2/2 + k  /2 + k +1 = (k +1).(k + 2) /2 
 

• k2/2 + 3k /2 + 1 = (k +1).(k + 2) /2 
 

• k2/2 + 3k /2 + 1 = (k2 + 3k + 2) /2 
 

• k2/2 + 3k /2 + 1 = k2/2 + 3k /2 + 1.  ■ 



Assignment 2, Part (d) 

• Use induction to produce a proof that the sum of the 

first n odd numbers is n2: 
 

  n = 1: 1 = 1 

  n = 2: 1 + 3 = 4 

  n = 3: 1 + 3 + 5 = 9 

  n = 4: 1 + 3 + 5 + 7 = 16 

  . 

  . 

  . 



Assignment 2, Part (e) 

• Why is proof by induction like toppling an infinite line 

of dominoes? 


