Lecture 6: A Decision Procedure?

Dr John Levine

CS103 Machines, Languages and Computation October 12th 2015

Homework for Tutorial this week

- Read Chapter 2 of Gödel, Escher, Bach
- Do Assignment 2, parts (d) and (e)
- Part (d) is a proof by induction
- Part (e) asks why proof by induction is like toppling an infinite line of dominoes
- Try to complete Assignment 1, part (d)
- What is the decision procedure for MIU?
- Hand in your workbooks by 3pm tomorrow

Infinite Sets

- Sets can have an infinite number of elements.
- The most important is the set of natural numbers, N.
- $N=\{0,1,2,3, \ldots\}$
- Property 1: There is a first element: in this case, 0 .
- Property 2: Each element has a natural successor: if I'm looking at element a, the next element is $a+1$.
- Not all infinite sets have these two properties.
- But if our infinite set does have these two properties, then we can do proof by induction.

Proof by Induction

- Often used to prove statements of the form:

$$
\text { "for all } n \in N \text {, some property holds of } n \text { " }
$$

- First, prove true for the first case, which is easy enough: just find the smallest possible value of n for which the formula makes sense, and see if the formula holds.
- Next, assume the formula is true for some arbitrary value, k. The inductive step consists of proving that the formula must be true for the value $k+1$.
- The "domino effect" makes the formula true for all n.

Example of Proof by Induction

- The sum of the first n non-zero integers $=n \cdot(n+1) / 2$
- In other words, $1+2+3+\ldots+n=n .(n+1) / 2$
- Proof by induction:
- First case is $n=1 . \quad 1=1 .(1+1) / 2$, which is true.
- Assume k th case is true:

$$
\begin{equation*}
1+2+3+\ldots+k=k .(k+1) / 2 \tag{1}
\end{equation*}
$$

- Now prove the $(k+1)$ th case is true:

$$
\begin{equation*}
1+2+3+\ldots+k+(k+1)=(k+1) \cdot(k+2) / 2 \tag{2}
\end{equation*}
$$

Example of Proof by Induction

- The sum of the first n non-zero integers $=n .(n+1) / 2$
- In other words, $1+2+3+\ldots+n=n .(n+1) / 2$
- Proof by induction:
- First case is $n=1 . \quad 1=1 .(1+1) / 2$, which is true.
- Assume k th case is true:

$$
\begin{equation*}
1+2+3+\ldots+k=k \cdot(k+1) / 2 \tag{1}
\end{equation*}
$$

- Now prove the $(k+1)$ th case is true:

$$
\begin{equation*}
1+2+3+\ldots+k+(k+1)=(k+1) \cdot(k+2) / 2 \tag{2}
\end{equation*}
$$

Example of Proof by Induction

- Substitute the right-hand side of (1) into (2):
- $1+2+3+\ldots+k+(k+1)=(k+1) .(k+2) / 2$
- $k \cdot(k+1) / 2+(k+1)=(k+1) \cdot(k+2) / 2$
- $\left(k^{2}+k\right) / 2+(k+1)=(k+1) \cdot(k+2) / 2$
- $k^{2} / 2+k / 2+k+1=(k+1) \cdot(k+2) / 2$
- $k^{2} / 2+3 k / 2+1=(k+1) \cdot(k+2) / 2$
- $k^{2} / 2+3 k / 2+1=\left(k^{2}+3 k+2\right) / 2$
- $k^{2} / 2+3 k / 2+1=k^{2} / 2+3 k / 2+1$.

Assignment 2, Part (d)

- Use induction to produce a proof that the sum of the first n odd numbers is n^{2} :

$$
\begin{array}{ll}
n=1: & 1=1 \\
n=2: & 1+3=4 \\
n=3: & 1+3+5=9 \\
n=4: & 1+3+5+7=16
\end{array}
$$

A Decision Procedure for MIU?

Assignment 1, parts (c) and (d):
(c) What is meant by a decision procedure for strings of the MIU system?
(d) Can you write a simple decision procedure for strings of the MIU system?

A Decision Procedure?

- All theorems start with an M with the rest being a mixture of U and I - we can write this as $M\left(\left.U^{*}\right|^{\star}\right)^{*}$
- Is this enough to characterise all the theorems of the MIU-system?
- If not, can we somehow make the description of theorems more restrictive?
- What we want is a decision procedure, i.e. a test for theoremhood that tells us if a string is a theorem and gives us an answer in a finite amount of time

Decidable Problems

- Say we have a question to which the answer is "yes" or "no", such as "Is k a prime number?" or "Is string S a theorem of the MIU-system?"
- If we have a procedure for all cases which can tell us whether the answer is "yes" or "no" in a finite amount of time, then the problem is called decidable.
- If no such procedure exists, then the problem is called undecidable.
- Note that the program that searches is not a decision procedure (why?)

The Challenge

- Can we come up with a decision procedure for strings which are theorems of the MIU-system?
- String $=M\left(\left.U^{*}\right|^{*}\right)^{*}$ is a start, but some strings seem to be very difficult to find...
- Is there any pattern to the theorems my program can produce?
- If there is, can we inspect the rules to find the reason for such a pattern being there?

A possible approach: I-count

- Rule 3 allows III to become a U; let's relax the system and allow U and III to be interchangeable in our string
- This relaxation allows a U to be counted as 3 I's
- Now let the l-count of a string be the number of times we see an I in a string, counting U as 3 I's
- For example, the l-count of MIIUIIU is 10
- What do our 4 rules do to the l-count of a string?

How the rules change the I-Count

- Let's see how the four rules change the l-count of a string:
I. $x \mathrm{I} \rightarrow x \mathrm{IU} \quad \#$ add 3 to the I-count
II. M $x \rightarrow \mathrm{M} x x$ \# multiply the I-count by 2
III. x III $y \rightarrow x \mathrm{U} y$ \# no change to the I-count IV. $x \mathrm{UU} y \rightarrow x y \quad \#$ subtract 6 from the I-count
- Starting from an I-count of 1 (i.e. the axiom, MI), what values of the l-count are possible?
- Can we make an I-count of 3 (e.g. MU)?

Possible values of I-count

- So, all we can do to the l-count is add 3 to it, double it, or subtract 6 from it
- Starting from 1 , what numbers can you make?
- What numbers are impossible to make?
- Can you use this to make your decision procedure?
- Extra question: if you start with MIII as the axiom rather than MI, how does this change things?
- Reminder: hand in your workbook by 3pm tomorrow

