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Homework for Tutorial this week 

• Read Chapter 2 of Gödel, Escher, Bach 
 

• Do Assignment 2, parts (d) and (e) 
 

- Part (d) is a proof by induction 
 

- Part (e) asks why proof by induction is like toppling 

an infinite line of dominoes 
 

• Try to complete Assignment 1, part (d) 
 

- What is the decision procedure for MIU? 
 

• Hand in your workbooks by 3pm tomorrow 



Infinite Sets 

• Sets can have an infinite number of elements. 
 

• The most important is the set of natural numbers, N. 
 

• N = {0, 1, 2, 3, …} 
 

• Property 1: There is a first element: in this case, 0. 
 

• Property 2: Each element has a natural successor: if 

I’m looking at element a, the next element is a+1. 
 

• Not all infinite sets have these two properties.   
 

• But if our infinite set does have these two properties, 

then we can do proof by induction. 
 



Proof by Induction 

• Often used to prove statements of the form: 
 

    “for all n ∈ N, some property holds of n” 
 

• First, prove true for the first case, which is easy enough: 

just find the smallest possible value of n for which the 

formula makes sense, and see if the formula holds. 
 

• Next, assume the formula is true for some arbitrary 

value, k. The inductive step consists of proving that the 

formula must be true for the value k+1. 
 

• The “domino effect” makes the formula true for all n. 



Example of Proof by Induction 

• The sum of the first n non-zero integers = n.(n + 1) /2 
 

• In other words, 1 + 2 + 3 + … + n = n.(n + 1) /2 
 

• Proof by induction: 
 

• First case is n = 1.  1 = 1.(1+1) /2, which is true. 
 

• Assume k th case is true: 
 

 1 + 2 + 3 + … + k = k.(k + 1) /2   (1) 
 

• Now prove the (k +1) th case is true: 
 

 1 + 2 + 3 + … + k + (k +1) = (k +1).(k + 2) /2 (2) 



Example of Proof by Induction 

• The sum of the first n non-zero integers = n.(n + 1) /2 
 

• In other words, 1 + 2 + 3 + … + n = n.(n + 1) /2 
 

• Proof by induction: 
 

• First case is n = 1.  1 = 1.(1+1) /2, which is true. 
 

• Assume k th case is true: 
 

 1 + 2 + 3 + … + k = k.(k + 1) /2   (1) 
 

• Now prove the (k +1) th case is true: 
 

 1 + 2 + 3 + … + k + (k +1) = (k +1).(k + 2) /2 (2) 



Example of Proof by Induction 

• Substitute the right-hand side of (1) into (2): 
 

• 1 + 2 + 3 + … + k + (k +1) = (k +1).(k + 2) /2 (2) 
 

• k.(k + 1) /2 + (k +1) = (k +1).(k + 2) /2 
 

• (k2
 + k) /2 + (k +1) = (k +1).(k + 2) /2 

 

• k2/2 + k  /2 + k +1 = (k +1).(k + 2) /2 
 

• k2/2 + 3k /2 + 1 = (k +1).(k + 2) /2 
 

• k2/2 + 3k /2 + 1 = (k2 + 3k + 2) /2 
 

• k2/2 + 3k /2 + 1 = k2/2 + 3k /2 + 1.  ■ 



Assignment 2, Part (d) 

• Use induction to produce a proof that the sum of the 

first n odd numbers is n2: 
 

  n = 1: 1 = 1 

  n = 2: 1 + 3 = 4 

  n = 3: 1 + 3 + 5 = 9 

  n = 4: 1 + 3 + 5 + 7 = 16 

  . 

  . 

  . 



A Decision Procedure for MIU? 

Assignment 1, parts (c) and (d): 
 

(c) What is meant by a decision procedure for strings of 

the MIU system? 
 

(d) Can you write a simple decision procedure for strings 

of the MIU system? 



A Decision Procedure? 

• All theorems start with an M with the rest being a 

mixture of U and I – we can write this as M(U*I*)* 
 

• Is this enough to characterise all the theorems of the 

MIU-system? 
 

• If not, can we somehow make the description of 

theorems more restrictive? 
 

• What we want is a decision procedure, i.e. a test for 

theoremhood that tells us if a string is a theorem and 

gives us an answer in a finite amount of time 



Decidable Problems 

• Say we have a question to which the answer is “yes” 

or “no”, such as “Is k a prime number?” or “Is string S 

a theorem of the MIU-system?” 
 

• If we have a procedure for all cases which can tell us 

whether the answer is “yes” or “no” in a finite amount 

of time, then the problem is called decidable. 
 

• If no such procedure exists, then the problem is called 

undecidable. 
 

• Note that the program that searches is not a decision 

procedure (why?) 



The Challenge 

• Can we come up with a decision procedure for strings 

which are theorems of the MIU-system? 
 

• String = M(U*I*)* is a start, but some strings seem to 

be very difficult to find… 
 

• Is there any pattern to the theorems my program can 

produce? 
 

• If there is, can we inspect the rules to find the reason 

for such a pattern being there? 



A possible approach: I-count 

• Rule 3 allows III to become a U; let’s relax the system 

and allow U and III to be interchangeable in our string 
 

• This relaxation allows a U to be counted as 3 I’s 
 

• Now let the I-count of a string be the number of times 

we see an I in a string, counting U as 3 I’s 
 

• For example, the I-count of MIIUIIU is 10 
 

• What do our 4 rules do to the I-count of a string? 



How the rules change the I-Count 

• Let’s see how the four rules change the I-count of a 

string: 
 

I.  xI → xIU  # add 3 to the I-count 
II.  M x → M x x  # multiply the I-count by 2 

III.  x III y → x U y  # no change to the I-count 

IV.  x UU y → x y  # subtract 6 from the I-count 
 

• Starting from an I-count of 1 (i.e. the axiom, MI), what 

values of the I-count are possible? 
 

• Can we make an I-count of 3 (e.g. MU)? 
 



Possible values of I-count 

• So, all we can do to the I-count is add 3 to it, double it, 

or subtract 6 from it 
 

• Starting from 1, what numbers can you make? 
 

• What numbers are impossible to make? 
 

• Can you use this to make your decision procedure? 
 

• Extra question: if you start with MIII as the axiom rather 

than MI, how does this change things? 
 

• Reminder: hand in your workbook by 3pm tomorrow 


