
Lecture 6: A Decision Procedure?

Dr John Levine

CS103 Machines, Languages and Computation

October 12th 2015

Homework for Tutorial this week

• Read Chapter 2 of Gödel, Escher, Bach

• Do Assignment 2, parts (d) and (e)

- Part (d) is a proof by induction

- Part (e) asks why proof by induction is like toppling

an infinite line of dominoes

• Try to complete Assignment 1, part (d)

- What is the decision procedure for MIU?

• Hand in your workbooks by 3pm tomorrow

Infinite Sets

• Sets can have an infinite number of elements.

• The most important is the set of natural numbers, N.

• N = {0, 1, 2, 3, …}

• Property 1: There is a first element: in this case, 0.

• Property 2: Each element has a natural successor: if

I’m looking at element a, the next element is a+1.

• Not all infinite sets have these two properties.

• But if our infinite set does have these two properties,

then we can do proof by induction.

Proof by Induction

• Often used to prove statements of the form:

 “for all n ∈ N, some property holds of n”

• First, prove true for the first case, which is easy enough:

just find the smallest possible value of n for which the

formula makes sense, and see if the formula holds.

• Next, assume the formula is true for some arbitrary

value, k. The inductive step consists of proving that the

formula must be true for the value k+1.

• The “domino effect” makes the formula true for all n.

Example of Proof by Induction

• The sum of the first n non-zero integers = n.(n + 1) /2

• In other words, 1 + 2 + 3 + … + n = n.(n + 1) /2

• Proof by induction:

• First case is n = 1. 1 = 1.(1+1) /2, which is true.

• Assume k th case is true:

 1 + 2 + 3 + … + k = k.(k + 1) /2 (1)

• Now prove the (k +1) th case is true:

 1 + 2 + 3 + … + k + (k +1) = (k +1).(k + 2) /2 (2)

Example of Proof by Induction

• The sum of the first n non-zero integers = n.(n + 1) /2

• In other words, 1 + 2 + 3 + … + n = n.(n + 1) /2

• Proof by induction:

• First case is n = 1. 1 = 1.(1+1) /2, which is true.

• Assume k th case is true:

 1 + 2 + 3 + … + k = k.(k + 1) /2 (1)

• Now prove the (k +1) th case is true:

 1 + 2 + 3 + … + k + (k +1) = (k +1).(k + 2) /2 (2)

Example of Proof by Induction

• Substitute the right-hand side of (1) into (2):

• 1 + 2 + 3 + … + k + (k +1) = (k +1).(k + 2) /2 (2)

• k.(k + 1) /2 + (k +1) = (k +1).(k + 2) /2

• (k2
 + k) /2 + (k +1) = (k +1).(k + 2) /2

• k2/2 + k /2 + k +1 = (k +1).(k + 2) /2

• k2/2 + 3k /2 + 1 = (k +1).(k + 2) /2

• k2/2 + 3k /2 + 1 = (k2 + 3k + 2) /2

• k2/2 + 3k /2 + 1 = k2/2 + 3k /2 + 1. ■

Assignment 2, Part (d)

• Use induction to produce a proof that the sum of the

first n odd numbers is n2:

 n = 1: 1 = 1

 n = 2: 1 + 3 = 4

 n = 3: 1 + 3 + 5 = 9

 n = 4: 1 + 3 + 5 + 7 = 16

 .

 .

 .

A Decision Procedure for MIU?

Assignment 1, parts (c) and (d):

(c) What is meant by a decision procedure for strings of

the MIU system?

(d) Can you write a simple decision procedure for strings

of the MIU system?

A Decision Procedure?

• All theorems start with an M with the rest being a

mixture of U and I – we can write this as M(U*I*)*

• Is this enough to characterise all the theorems of the

MIU-system?

• If not, can we somehow make the description of

theorems more restrictive?

• What we want is a decision procedure, i.e. a test for

theoremhood that tells us if a string is a theorem and

gives us an answer in a finite amount of time

Decidable Problems

• Say we have a question to which the answer is “yes”

or “no”, such as “Is k a prime number?” or “Is string S

a theorem of the MIU-system?”

• If we have a procedure for all cases which can tell us

whether the answer is “yes” or “no” in a finite amount

of time, then the problem is called decidable.

• If no such procedure exists, then the problem is called

undecidable.

• Note that the program that searches is not a decision

procedure (why?)

The Challenge

• Can we come up with a decision procedure for strings

which are theorems of the MIU-system?

• String = M(U*I*)* is a start, but some strings seem to

be very difficult to find…

• Is there any pattern to the theorems my program can

produce?

• If there is, can we inspect the rules to find the reason

for such a pattern being there?

A possible approach: I-count

• Rule 3 allows III to become a U; let’s relax the system

and allow U and III to be interchangeable in our string

• This relaxation allows a U to be counted as 3 I’s

• Now let the I-count of a string be the number of times

we see an I in a string, counting U as 3 I’s

• For example, the I-count of MIIUIIU is 10

• What do our 4 rules do to the I-count of a string?

How the rules change the I-Count

• Let’s see how the four rules change the I-count of a

string:

I. xI → xIU # add 3 to the I-count
II. M x → M x x # multiply the I-count by 2

III. x III y → x U y # no change to the I-count

IV. x UU y → x y # subtract 6 from the I-count

• Starting from an I-count of 1 (i.e. the axiom, MI), what

values of the I-count are possible?

• Can we make an I-count of 3 (e.g. MU)?

Possible values of I-count

• So, all we can do to the I-count is add 3 to it, double it,

or subtract 6 from it

• Starting from 1, what numbers can you make?

• What numbers are impossible to make?

• Can you use this to make your decision procedure?

• Extra question: if you start with MIII as the axiom rather

than MI, how does this change things?

• Reminder: hand in your workbook by 3pm tomorrow

