
Lecture 7: Problems and Algorithms

Dr John Levine

CS103 Machines, Languages and Computation

October 16th 2015

Function Machines

• Function machines are simple mathematical devices

for transforming inputs into outputs:

• Computers are programmable function machines.

• The inputs and outputs can be numbers, text, pictures,

sounds, or anything you like really...

• … but it all gets turned into binary integers anyway.

÷ 3 75 25

Solving Problems

• We use these programmable function boxes to solve

problems for us.

• Example problem: find the best route between two

points on a map.

• The input data are the map (represented in a way that

the computer understands it) and the two points.

• The output is a string of human-understandable text

which gives details of the route to be taken.

What is a Problem?

• Usual meaning of ‘problem’ is something specific to

be solved: e.g. ‘My ring binder has come open and

now my notes are all muddled up.’

• In Computer Science a problem is a name used for

 all specific problems of a certain type.

• The specific problems to be solved by the computer

are called instances of the problem.

Example Problems

• Given an unsorted list of numbers, find the largest

number in the list.

• Given an unsorted list of numbers, sort them into

ascending order.

• Given a set of cities with roads between them, find the

shortest route which visits each city exactly once.

• Given a computer program P and an input to that

program I, determine if P will halt when run on I.

Thinking about a Problem

• Given an unsorted list of numbers, find the largest

number in the list.

• To solve this problem, I will need to look at every

number in the list; if I don’t, I might miss the largest.

• However, I will only need to look at each number

once, so long as I can remember the largest number

I’ve seen so far.

• So, if I can look at one number every second, I can

process the whole list in length(L) seconds.

What is an Algorithm?

• An algorithm is a finite set of instructions for solving

 a problem, which, given a well-defined initial state,

 will result in a corresponding well-defined end-state.

• Think of it as “Dobby’s instructions” for solving a

problem.

• A well-specified algorithm will solve all specific

instances of the problem.

• An algorithm will always terminate in a finite number

of steps.

Algorithms vs. Programs

• Algorithms are more abstract and fundamental than

computer programs: you can implement an algorithm

in any language you want to.

• Algorithms can be specified using normal language,

flowcharts or pseudocode.

• The specification of an algorithm must be completely

unambiguous. This is very important!

Unambiguous English

1. Read in an integer, N.

2. Set M = 1 and set F = 1.

3. For each value of M from 1 up to N, set F = F * M.

4. Return F and halt.

Flowcharts

Pseudocode

 input N
 M = 1
 F = 1
 loop forever
 F = F * M
 if M = N
 return F
 else
 M = M + 1

Example Algorithm

• Given an unsorted list of numbers, L, find the largest

number in the list.

1. Set Max to be the first item of L and delete it from L.

2. If L is empty, return Max (and halt).

3. If the first item of L is larger than Max, set Max to be

the first item of L.

4. Delete the first item of L and go to Step 2.

Why Bother with Algorithms?

• Often, programmers will not worry too much about

such details: just slam in some code, fight with the

compiler, then go for a beer.

• Bugs in syntax or even semantics are easy to find:

but bugs in algorithms are the most difficult to find.

• Bad design at the algorithm stage always leads to

bad programs being written.

Assignment 3

Using flow charts, pseudocode or unambiguous English,

create algorithms for the following functions:

(a) Given an unsorted list of integers and a target integer

as inputs, return TRUE if the integer is a member of

the list and FALSE if it is not.

(b) Given an arbitrary integer, return TRUE if that integer

is a prime number and FALSE if it is not.

(c) Given an arbitrary string, return TRUE if the string is

a theorem of the MIU system and FALSE if it is not.

Testing your algorithms

Your algorithms need to pass “the Dobby test”:

• Find a willing helper (a friend or family member who

doesn’t do this class)

• Write down your algorithm on a piece of paper and

give it to your helper

• Give your helper an input to the algorithm

• See if your helper can follow the algorithm to produce

the correct output

