
Lecture 8: Functions and Mappings

Dr John Levine

CS103 Machines, Languages and Computation

October 19th 2015

The Story So Far

• Lecture 1: computers are programmable function

machines, all computers are equivalent (undecidable

problems are undecidable on all computers).

• Lecture 2: types of mathematical proof, direct proof,

proof by contradiction, proof in a formal system.

• Lecture 3: the MIU-system, deriving theorems by hand,

deriving theorems automatically, but is there a decision

procedure for theoremhood?

• Lecture 4: introduction to sets, finite sets, infinite sets,

countable sets, doing proofs on infinite sets.

The Story So Far

• Lecture 5: recap of proof by contradiction, proof by

induction (the domino proof).

• Lecture 6: functions and algorithms, what is a problem,

how to write an algorithm, why bother with algorithms,

how specify algorithms using unambiguous language,

flowcharts and pseudocode.

Assignment 3

Using unambiguous English, flowcharts or pseudocode,

create efficient algorithms for the following functions.

a) Given an unordered list of integers and a target

integer as inputs, return TRUE if the integer is a

member of the list and FALSE if it is not.

b) Given an arbitrary integer, return TRUE if that integer

is a prime number and FALSE if it is not.

c) Given an arbitrary string, return TRUE if the string is

a theorem of the MIU system and FALSE if it is not.

Unambiguous English

1. Read in an integer, N.

2. Set M = 1 and set F = 1.

3. For each value of M from 1 up to N, set F = F * M.

4. Return F and halt.

Flowcharts

Pseudocode

 input N
 M = 1
 F = 1
 loop forever
 F = F * M
 if M = N
 return F
 else
 M = M + 1

Two Views of Functions

• So far we’ve regarded functions as being input-output

boxes (i.e. sausage machines).

• The mathematical view of functions is rather different:

a function is a set of pairs {(x0, y0), (x1, y1), (x2, y2) … }

• The x variables are chosen from a set called the

domain and the y variables are chosen from a set

called the range.

• The association can have some “sense”, or it can be

an arbitrary association between members of one set

and members of another.

Two Views of Functions

• For each domain value, there must be one and only

one value in the range (otherwise the relation is not a

function).

• Example function: {(1, 1), (2, 4), (3, 9), (4, 16)}

• The domain {1, 2, 3, 4}, the range is {1, 4, 9, 16}.

• Another example: {(1, 0), (2, 1), (3, 0), (4, 1)}

• The domain {1, 2, 3, 4}, the range is {0, 1}.

• Not a function: {(1, 0), (1, 1), (2, 0), (2, 1)}

Mappings

• If we can find an algorithm for automatically computing

the range value given the domain value, it is called a

mapping.

• Example: for {(1, 1), (2, 4), (3, 9), (4, 16)} the mapping

function could be f (x) = x2.

• Another example: for {(1, 0), (2, 1), (3, 0), (4, 1)} the

mapping function could be the “even” function given in

on the board (with true replaced by 1 and false by 0)

• Other mapping functions are possible, including (for

finite sets) complete enumeration of all cases.

Mappings to Show the Size of Sets

• Consider two sets shown below:

 A = {1, 2, 3, ... , 1000}.

 B = {1, 3, 5, …, 2001}.

• Which set is bigger?

• We could count the elements of each set, but this

would be tedious.

• We can make a mapping from elements of the first set

to elements of the second set, and then see if that

mapping accounts for all elements of both sets.

Dogs and Collars

• Consider an infinite set of dogs.

• Each dog has a name, which is a finite string of letters

(all in uppercase), such as “FIDO” or “GROMIT”.

• Consider an infinite set of collars, where every collar is

labelled with an integer n ∈ {0, 1, 2, …}.

• Are there enough collars for all the dogs?

• In other words, can I find a computable mapping from

the dog’s name to an integer, so that every dog gets a

unique collar?

• And does every collar have a unique dog?

The Dogs and Collars Problem

• Try to find a way to map the names of the dogs onto a

unique collar (i.e. an integer).

• Is there a collar for every dog?

• Try to specify how the mapping would work in reverse,

i.e. how to turn the collar number into the name of the

dog that would own that collar.

• Try writing a program to perform the reverse mapping.

• Is there a dog for every collar?

