University of

Strathclyde

Lecture 8: Functions and Mappings

Dr John Levine

CS103 Machines, Languages and Computation
October 19th 2015



Universityof &3

Strathclyde

The Story So Far

« Lecture 1: computers are programmable function
machines, all computers are equivalent (undecidable
problems are undecidable on all computers).

« Lecture 2: types of mathematical proof, direct proof,
proof by contradiction, proof in a formal system.

* Lecture 3: the MIU-system, deriving theorems by hand,
deriving theorems automatically, but is there a decision
procedure for theoremhood?

 Lecture 4: introduction to sets, finite sets, infinite sets,
countable sets, doing proofs on infinite sets.



Universityof &3

Strathclyde

Science

The Story So Far

« Lecture 5: recap of proof by contradiction, proof by
Induction (the domino proof).

* Lecture 6: functions and algorithms, what is a problem,
how to write an algorithm, why bother with algorithms,
how specify algorithms using unambiguous language,
flowcharts and pseudocode.




z%

Universityof &3

E_Sﬁ;frﬁgthclyde
Assignment 3

Using unambiguous English, flowcharts or pseudocode,
create efficient algorithms for the following functions.

a) Given an unordered list of integers and a target
Integer as inputs, return TRUE if the integer is a
member of the list and FALSE if it is not.

b) Given an arbitrary integer, return TRUE if that integer
IS a prime number and FALSE if it is not.

c) Given an arbitrary string, return TRUE if the string is
a theorem of the MIU system and FALSE if it is not.



Universityof &3

Strathclyde

Science

Unambiguous English

> w N oE

Read in an integer, N.

SetM=1andsetF=1.

For each value of M from 1 upto N, setF=F * M.
Return F and halt.



Flowcharts




£2

Universityof &3

Strathclyde

Science

Pseudocode

input N
M=1
F =1
loop forever
F=F*M
if M =N
return F
else
M=M+1



Universityof &3

giggthclyde
Two Views of Functions

« So far we've regarded functions as being input-output
boxes (i.e. sausage machines).

« The mathematical view of functions is rather different:
a function is a set of pairs {(Xy, Yo), (X1, Y1)» X5, ¥5) ... }

« The x variables are chosen from a set called the
domain and the y variables are chosen from a set
called the range.

« The association can have some “sense’, or it can be
an arbitrary association between members of one set
and members of another.



Universityof &3

Strathclyde

Science

Two Views of Functions

* For each domain value, there must be one and only
one value in the range (otherwise the relation is not a
function).

« Example function: {(1, 1), (2, 4), (3, 9), (4, 16)}

« The domain {1, 2, 3, 4}, the range is {1, 4, 9, 16}.
« Another example: {(1, 0), (2, 1), (3, 0), (4, 1)}

« The domain {1, 2, 3, 4}, the range is {0, 1}.

* Not a function: {(1, 0), (1, 1), (2,0), (2, 1)}



z%

Universityof &3

Strathclyde

Mappings

If we can find an algorithm for automatically computing
the range value given the domain value, it is called a

mapping.

Example: for {(1, 1), (2, 4), (3, 9), (4, 16)} the mapping
function could be f(x) = x2.

Another example: for {(1, 0), (2, 1), (3, 0), (4, 1)} the
mapping function could be the “even” function given in
on the board (with true replaced by 1 and false by 0)

Other mapping functions are possible, including (for
finite sets) complete enumeration of all cases.



Universityof &3

Strathclyde

Science

Mappings to Show the Size of Sets

 Consider two sets shown below:

A={1,2,3,..,1000}.
B=1{1,3,5,...,2001}.

« Which set is bigger?

 We could count the elements of each set, but this
would be tedious.

« We can make a mapping from elements of the first set
to elements of the second set, and then see if that
mapping accounts for all elements of both sets.



Universityof &3

giggthclyde
Dogs and Collars

« Consider an infinite set of dogs.

« Each dog has a name, which is a finite string of letters
(all in uppercase), such as “FIDO” or “GROMIT".

« Consider an infinite set of collars, where every collar is
labelled with an integerne {0, 1, 2, ...}.

« Are there enough collars for all the dogs?

* In other words, can | find a computable mapping from
the dog’s name to an integer, so that every dog gets a
unique collar?

* And does every collar have a unique dog?



Universityof &3

Strathclyde

Science

The Dogs and Collars Problem

Try to find a way to map the names of the dogs onto a
unique collar (i.e. an integer).

Is there a collar for every dog?

Try to specify how the mapping would work in reverse,
l.e. how to turn the collar number into the name of the
dog that would own that collar.

Try writing a program to perform the reverse mapping.

Is there a dog for every collar?



