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The Story So Far 

• Lecture 1: computers are programmable function 

machines, all computers are equivalent (undecidable 

problems are undecidable on all computers). 
 

• Lecture 2: types of mathematical proof, direct proof, 

proof by contradiction, proof in a formal system. 
 

• Lecture 3: the MIU-system, deriving theorems by hand, 

deriving theorems automatically, but is there a decision 

procedure for theoremhood? 
 

• Lecture 4: introduction to sets, finite sets, infinite sets, 

countable sets, doing proofs on infinite sets. 



The Story So Far 

• Lecture 5: recap of proof by contradiction, proof by 

induction (the domino proof). 
 

• Lecture 6: functions and algorithms, what is a problem, 

how to write an algorithm, why bother with algorithms, 

how specify algorithms using unambiguous language, 

flowcharts and pseudocode. 



Assignment 3 

Using unambiguous English, flowcharts or pseudocode, 

create efficient algorithms for the following functions. 
 

a) Given an unordered list of integers and a target 

integer as inputs, return TRUE if the integer is a 

member of the list and FALSE if it is not. 
 

b) Given an arbitrary integer, return TRUE if that integer 

is a prime number and FALSE if it is not. 
 

c) Given an arbitrary string, return TRUE if the string is 

a theorem of the MIU system and FALSE if it is not. 
 



Unambiguous English 

1. Read in an integer, N. 
 

2. Set M = 1 and set F = 1. 
 

3. For each value of M from 1 up to N, set F = F * M. 
 

4. Return F and halt. 



Flowcharts 



Pseudocode 

   input N 
   M = 1 
   F = 1 
   loop forever 
      F = F * M 
      if M = N 
         return F 
      else 
         M = M + 1 
 



Two Views of Functions 

• So far we’ve regarded functions as being input-output 

boxes (i.e. sausage machines). 
 

• The mathematical view of functions is rather different: 

a function is a set of pairs {(x0, y0), (x1, y1), (x2, y2) … } 
 

• The x variables are chosen from a set called the 

domain and the y variables are chosen from a set 

called the range.  
 

• The association can have some “sense”, or it can be 

an arbitrary association between members of one set 

and members of another. 



Two Views of Functions 

• For each domain value, there must be one and only 

one value in the range (otherwise the relation is not a 

function). 
 

• Example function: {(1, 1), (2, 4), (3, 9), (4, 16)} 
 

• The domain {1, 2, 3, 4}, the range is {1, 4, 9, 16}. 
 

• Another example: {(1, 0), (2, 1), (3, 0), (4, 1)} 
 

• The domain {1, 2, 3, 4}, the range is {0, 1}. 
 

• Not a function: {(1, 0), (1, 1), (2, 0), (2, 1)} 



Mappings 

• If we can find an algorithm for automatically computing 

the range value given the domain value, it is called a 

mapping. 
 

• Example: for {(1, 1), (2, 4), (3, 9), (4, 16)} the mapping 

function could be  f (x) = x2. 
 

• Another example: for {(1, 0), (2, 1), (3, 0), (4, 1)} the 

mapping function could be the “even” function given in 

on the board (with true replaced by 1 and false by 0) 
 

• Other mapping functions are possible, including (for 

finite sets) complete enumeration of all cases. 



Mappings to Show the Size of Sets 

• Consider two sets shown below: 
 

  A = {1, 2, 3, ... , 1000}. 

  B  = {1, 3, 5, …, 2001}. 
 

• Which set is bigger? 
 

• We could count the elements of each set, but this 

would be tedious. 
 

• We can make a mapping from elements of the first set 

to elements of the second set, and then see if that 

mapping accounts for all elements of both sets. 



Dogs and Collars 

• Consider an infinite set of dogs. 
 

• Each dog has a name, which is a finite string of letters 

(all in uppercase), such as “FIDO” or “GROMIT”. 
 

• Consider an infinite set of collars, where every collar is 

labelled with an integer n ∈ {0, 1, 2, …}. 
 

• Are there enough collars for all the dogs? 
 

• In other words, can I find a computable mapping from 

the dog’s name to an integer, so that every dog gets a 

unique collar? 
 

• And does every collar have a unique dog? 



The Dogs and Collars Problem 

• Try to find a way to map the names of the dogs onto a 

unique collar (i.e. an integer). 
 

• Is there a collar for every dog? 
 

• Try to specify how the mapping would work in reverse, 

i.e. how to turn the collar number into the name of the 

dog that would own that collar. 
 

• Try writing a program to perform the reverse mapping. 
 

• Is there a dog for every collar? 


