

Lecture 2: Intelligent Agents

Dr John Levine

CS310 Foundations of Artificial Intelligence January 21st 2016

Learning Outcomes

At the end of this lecture, you will know...

- 1. What an agent looks like
- 2. What is meant by "percept" and "percept sequence"
- 3. How to define an agent function and agent program
- 4. How to define properties of agents using PEAS
- 5. How to define properties of environments
- 6. The difference between a reactive (reflex) agent and a deliberative (goal/utility-based) agent

What does an agent look like?

Example: A Robot Vacuum Cleaner

Percepts and Percept Sequences

- A percept is a complete set of readings from all of the agent's sensors at an instant in time
- For the robot vacuum cleaner, this will consist of its location and whether the floor is clean or dirty
- Example percept: [A, dirty]
- A percept sequence is a complete ordered list of the percepts that the agent received since time began
- Example: [[A, dirty], [A, dirty], [A, clean], [B, dirty], ...]

An Agent Function

 An agent function is a theoretical device which maps from any possible percept sequence to an action:

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], $[A, Dirty]$	Suck
:	i i

An Agent Program

 An agent program is what we run on the architecture of the agent to implement the agent function:

```
function Reflex-Vacuum-Agent([location,status]) returns an action
if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left
```

- What is the *right* agent function?
- Can it be implemented efficiently on the architecture?

Evaluating the agent: performance

- How can we evaluate an agent, such as our robotic vacuum cleaner?
- Look at its performance on the task in hand
- In other words, give it a score: how would you do this for the vacuum cleaner?
- The more intelligent the agent, the higher its score
- Simple agents can score well at simple tasks, but for complex tasks we need more sophisticated agents: rational agents which reason to achieve a high score

PEAS

- To design a rational agent, we must specify the "task environment" for the agent
- We use the acronym PEAS for this:
 - Performance: how well does the agent do?
 - Environment: what does the agent's environment look like?
 - Actuators: what actuators does the agent have to perform its actions with?
 - Sensors: what sensors does the agent have to perceive the environment with?

PEAS Example

 Example: a Lego Mindstorms robot which can move around safely in a cluttered room:

Properties of environments

- A unknown and cluttered room with other agents in it is a more difficult place to live in than an empty room
- A simple task in a simple environment means that we can get top performance out of a simple agent
- A complex task in a complex environment requires a very sophisticated agent
- Consider the task and environment for an automated taxi driver!

Dimensions of the environment

- We use six dimensions to define the environment:
 - Fully observable or partially observable?
 - Single agent or multi-agent?
 - Deterministic or stochastic?
 - Episodic or sequential?
 - Static or dynamic?
 - Discrete or continuous?

Dimensions of the environment

	Solitaire	Backgammon	Internet shopping	Taxi
Fully observable?	No	Yes	No	No
Deterministic?	Yes*	No	Partly	No
Episodic?	No	No	No	No
Static?	Yes	Semi	Semi	No
Discrete?	Yes	Yes	Yes	No
Single-agent?	Yes	No	No	No

^{*}After the cards have been dealt

The environment type largely determines the agent design

Real world: partially observable, stochastic, sequential, dynamic, continuous, multi-agent

Reactive Agents

- If an agent only "reacts" to its current percept, we call it a reactive (or reflex) agent
- Actions are chosen rules of the form "if condition then action" (or something equivalent to this)
- Examples: the simple vacuum cleaner controller, the hand-coded and evolved agents in EvoTanks
- Good performance only at simple tasks would need an unfeasibly large number of rules for a complicated task, such as playing chess

Deliberative Agents

Deliberative Agents

- Deliberation is the process of thinking about how your actions will affect the world before committing to it
- Given a choice of actions, choose the one that gets you closer to your goals, or closer to a state of high utility
- Since the goal or state of high utility may be some way off, need to think about sequences of actions
- This leads to a search problem...

What happens next?

- Lecture 3 on Tuesday at 1pm: "How to Search Huge Graphs"
- Tutorial 1: getting to grips with AI agents, PEAS and environments (for Tuesday 26th, 2pm)
- Practical work and labs will start in Week 3