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Problem Solving using Search 

Many problems in AI involve deliberative reasoning,  

leading to search in very big implicitly-defined  

graphs: 
 

• Route finding in robotics 
 

• Blocks World planning 
 

• Rubik’s cube 
 

• Logistics planning 
 

• Task scheduling 
 

• Data mining 
 

• Machine learning 



What are Problems? 

Each of these problems can be characterised by: 
 

• Problem states, including the start state and the goal 

state 
 

• Legal moves, or actions which transform problem 

states into other states 
 

• Example: Rubik’s cube 
 

• The start state is the muddled up cube, the goal is to 

have the state in which all sides are the same colour 

and the moves are the rotations of sides of the cube 



Solutions 

• Solutions are sequences of moves which transform 

the start state into the goal state 
 

• The quality of the solution required will affect the 

amount of work we need to do 
 

– any solution will do 
 

– fixed amount of time, return best solution 
 

– near optimal solution needed 
 

– optimal solution needed 



Formulating Problems 

• A good formulation saves work 
 

– less search for the answer 
 

 

• Three requirements for a search algorithm: 
 

– formal structures to describe the states 
 

– rules for manipulating them 
 

– identifying what constitutes a solution 
 

• This gives us a state space representation 

 



State Space Representation 

• A state space comprises 
 

– states: snapshots of the problem 
 

– operators: how to move from one state to another 

Example problem: Towers 

of Hanoi 

 

Only move one disc at a 

time 

 

Never put a larger disc on 

top of a smaller one 



State Space Search 

Problem solving using state space search consists of 

the following four steps: 
 

1. Design a representation for states (including the 

 initial state and the goal state) 
 

2. Characterise the operators 
 

3. Build a goal state recogniser 
 

4. Search through the state space somehow by 

 considering (in some or other order) the states 

 reachable from the initial and goal states 



Example: Blocks World 

A “classic” problem in AI planning 

 

The aim is to rearrange the blocks 

using the single robot arm so that 

the configuration in the goal state 

is achieved 

 

An optimal solution performs the 

transformation using as few steps 

as possible 

 

Any solution: linear complexity 

 

Optimal solution: exponential 

complexity (NP hard) 
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Blocks World Representation 

The blocks world problem can be represented as: 
 

• States: stacks are lists, states are sets of stacks e.g. 

initial state = { [a,b],[c] } 
 

• Transitions between states can be done using a 

single move operator: move(x,y) picks up object x and 

puts it on y (which may be the table)  
 

  { [a,b,c] }  { [b,c],[a] } 

  by applying move(a,table) 
 

  { [a],[b,c] }  { [a,b,c] } 

  by applying move(a,b) 



Blocks World Representation 

• NextStates(State)  list of legal states resulting from 

a single transition 

 e.g. NextStates({ [a,b],[c] })  

  { [a],[b],[c] } by applying move(a,table) 

  { [b],[a,c] } by applying move(a,c) 

  { [c,a,b] } by applying move(c,a) 
 

• Goal(State) returns true if State is identical with the 

goal state 
 

• Search the space: start with the start state, explore 

reachable states, continue until the goal state is found 



Blocks World: NextStates Function 
State NextStates(State) 

{ [a],[b],[c] } { [a,b],[c] }, { [a,c],[b] }, { [b,a],[c] }, 

{ [b,c],[a] }, { [c,a],[b] }, { [c,b],[a] } 

{ [a,b],[c] } { [a],[b],[c] }, { [a,c],[b] }, { [c,a,b] } 

{ [a,c],[b] } { [a],[b],[c] }, { [a,b],[c] }, { [b,a,c] } 

{ [b,a],[c] } { [a],[b],[c] }, { [b,c],[a] }, { [c,b,a] } 

{ [b,c],[a] } { [a],[b],[c] }, { [b,a],[c] }, { [a,b,c] } 

{ [c,a],[b] } { [a],[b],[c] }, { [c,b],[a] }, { [b,c,a] } 

{ [c,b],[a] } { [a],[b],[c] }, { [c,a],[b] }, { [a,c,b] } 

{ [a,b,c] } { [b,c],[a] } 

{ [a,c,b] } { [c,b],[a] } 

{ [b,a,c] } { [a,c],[b] } 

{ [b,c,a] } { [c,a],[b] } 

{ [c,a,b] } { [a,b],[c] } 

{ [c,b,a] } { [b,a],[c] } 



Formulating a Search Problem 

Example: a truck moves around delivering packages 
 

You will need: 
 

1. A representation for our states: where is the truck, 

where are the packages, how much petrol is left 
 

2. The initial state of the world 
 

3. A goal state recogniser 
 

4. The NextStates(State) function 
 

You are now ready to apply a search algorithm… 



Search Spaces 

• The search space of a problem is implicit in its 

formulation 

– You search the space of your representations 
 

• We generate the space dynamically during search 

(including loops, dead ends, branches) 
 

• Operators are move generators 
 

• We can represent the search space with trees 
 

• Each node in the tree is a state 
 

• When we call NextStates(S0)  [S1,S2,S3], then we 

say we have expanded S0 



Expanding Nodes in the Search Space 

S0 

S3 S2 S1 

S8 S4 S6 S5 S9 

S11 S7 S10 S12 



Depth-First Search 

S0 

S3 S2 S1 

S8 S5 S4 

S9 S7 S6 S10 



Breadth-First Search 

S0 

S3 S2 S1 

S7 S6 S5 S4 S8 

S11 S10 S9 S12 S13 S14 



Searching Using an Agenda 

• When we expand a node we get multiple new nodes 

to expand, but we can only expand one at a time 
 

• We keep track of the nodes still to be expanded using 

a data structure called an agenda 
 

• When it is time to expand a new node, we choose the 

first node from the agenda 
 

• As new states are discovered, we add them to the 

agenda somehow 
 

• We can get different styles of search by altering how 

the states get added 



Depth-First Search 

• To get depth-first search, add the new nodes onto the 

start of the agenda (treat the agenda as a stack): 
  

 let Agenda = [S0  ] 
 

 while Agenda ≠ [ ] do 
 

  let Current = remove-first (Agenda) 
 

  if Goal (Current) then return (“Found it!”) 
 

  let Next = NextStates (Current) 
 

  let Agenda = Next + Agenda 



Breadth-First Search 

• To get breadth-first search, add the new nodes onto 

the end of the agenda (treat the agenda as a queue): 
  

 let Agenda = [S0  ] 
 

 while Agenda ≠ [ ] do 
 

  let Current = remove-first (Agenda) 
 

  if Goal (Current) then return (“Found it!”) 
 

  let Next = NextStates (Current) 
 

  let Agenda = Agenda + Next 



Properties of Depth-First Search 

• Depth-first can often get to the answer quickly 
 

• The agenda stays short: O(d) for memory, where d is 

the depth of the tree 
 

• The time taken to find the solution is O(d) in the best 

case and O(bd) in the worst case (where b is the 

average branching factor) 
 

• But if there are loops in the search space, it can get 

into an infinite loop 
 

• It isn’t guaranteed give the shortest solution 



Properties of Breadth-First Search 

• Breadth-first can often take a long time to get to the 

answer 
 

• The agenda can get very big: O(bd) for memory, 

giving exponential space consumption 
 

• Also exponential time complexity: O(bd) nodes will be 

expanded 
 

• But it isn’t bothered by loops in the search space 
 

• And it always gives the shortest solution, in terms of 

the number of steps in the plan 


