
Lecture 5: Informed Search

Dr John Levine

CS310 Foundations of Artificial Intelligence

February 4th 2016

Search: the story so far

• Lecture 3: introduction to state space search: how to

represent a problem in terms of states and moves

• Lecture 4: uninformed search through states using an

agenda: depth-first search and breadth-first search

• Lecture 5: making it smart: informed search using

heuristics; how to use heuristic search without losing

optimality – the A* algorithm

Searching Using an Agenda

• When we expand a node we get multiple new nodes

to expand, but we can only expand one at a time

• We keep track of the nodes still to be expanded using

a data structure called an agenda

• When it is time to expand a new node, we choose the

first node from the agenda

• As new states are discovered, we add them to the

agenda somehow

• We can get different styles of search by altering how

the states get added

Depth-First Search

• To get depth-first search, add the new nodes onto the

start of the agenda (treat the agenda as a stack):

 let Agenda = [S0]

 while Agenda ≠ [] do

 let Current = First (Agenda)

 let Agenda = Rest (Agenda)

 if Goal (Current) then return (“Found it!”)

 let Next = NextStates (Current)

 let Agenda = Next + Agenda

Properties of Depth-First Search

• Depth-first can often get to the answer quickly

• The agenda stays short: O(d) for memory, where d is

the depth of the tree

• The time taken to find the solution is O(d) in the best

case and O(bd) in the worst case (where b is the

average branching factor)

• But if there are loops or infinite branches in the search

space, it may not return a solution

• It isn’t guaranteed give the shortest solution

Breadth-First Search

• To get breadth-first search, add the new nodes onto

the end of the agenda (treat the agenda as a queue):

 let Agenda = [S0]

 while Agenda ≠ [] do

 let Current = First (Agenda)

 let Agenda = Rest (Agenda)

 if Goal (Current) then return (“Found it!”)

 let Next = NextStates (Current)

 let Agenda = Agenda + Next

Properties of Breadth-First Search

• Breadth-first can often take a long time to get to the

answer

• The agenda can get very big: O(bd) for memory,

giving exponential space consumption

• Also exponential time complexity: O(bd) nodes will be

expanded

• But it isn’t bothered by loops or infinite branches in

the search space

• And it always gives the shortest solution, in terms of

the number of steps in the plan

Heuristic Search

• DFS and BFS are both searching blind – they search

all possibilities in an order dictated by NextStates(Si)

• When people search, we look in the most promising

places first – try { [a], [b], [c] }  { [a, b, c] }

• There are six possible moves, but somehow it seems

like the best move is move(b,c) giving { [a], [b, c] }

• The most promising states are often those which are

closest to the goal state, G

• But how can we know how close we are to the goal

state?

Heuristic Search

• We can often estimate the distance from Si to G by

using a heuristic function, h(Si,G)

• The function efficiently compares the two states and

tries to get an estimate of how many moves remain

without doing any searching

• For example, in the blocks world, all blocks that are

stacked up in the correct place never have to move

again; all blocks that need to move that are on the

table only need to move once; and all other blocks

only need to move at most twice:

h(Si,G) = 2*Bbad + 1*Btable + 0*Bgood

Enforced Hill Climbing

• The easiest way to use a heuristic estimate to search

is to require that every single move we make takes us

closer to the goal

• The form of search doesn’t even require an agenda,

since at each decision point, we take the action that

looks best to us and repeat until we’re done

• Problems: dead ends, plateaus, solution quality (i.e.

the number of steps can be very poor)

• Used to good effect in the FF planner (which reverts

to best-first search if enforced hill climbing fails)

Enforced Hill Climbing

S0

S3 S2 S1

S4

S5

Best-First Search

• Enforced hill climbing is great when it works, but for

some problems it’s better to keep track of the nodes

we haven’t yet expanded, using the agenda

• We can then use the heuristic function to determine

which node to expand next

• As new states are discovered, we add them to the

agenda and record the value of the heuristic function

• When we pick the next node to explore, we choose

the one which has the lowest value for the heuristic

function (i.e. the one that looks nearest to the goal)

Best-First Search

S0

S3 S2 S1

S8 S5 S4

S10

Best-First Search

• To get best-first search, pick the best node on the

agenda as the one to be explored next:

 let Agenda = [S0]

 while Agenda ≠ [] do

 let Current = Best (Agenda)

 let Agenda = Rest (Agenda)

 if Goal (Current) then return (“Found it!”)

 let Next = NextStates (Current)

 let Agenda = Agenda + Next

Best-First Search and Algorithm A

• Best-first search can speed up the search by a very

large factor, but can it isn’t guaranteed to return the

shortest solution

• When deciding to expand a node, we need to take

account of how long the path is so far, and add that on

to the heuristic value:

f(Si ,G) = g(S0 ,Si) + h(Si ,G)

• This will give a search which has elements of both

breadth-first search and best-first search

• This type of search is called “Algorithm A”

Algorithm A*

• If h(Si,G) never over-estimates the distance from Si to

the goal, it is called an admissible heuristic

• If h(Si,G) is admissible, then Algorithm A will always

return the shortest path (like breadth-first search) but

will omit much of the work if the heuristic function is

informative

• The use of an admissible heuristic turns Algorithm A

into Algorithm A*

• Uses: problem solving, route finding, path planning in

robotics, computer games, etc.

Why is A* Optimal?

• Suppose a suboptimal goal node, Sk, appears in the

agenda – we haven’t selected it yet, so we don’t yet

know that it’s a goal node

• Also on the agenda, there must be a node, Si which is

on the optimal path from S0 to the goal state

• Since the heuristic function, h(Si ,G), is admissible,

this means:

 g(S0 ,Sk) + h(Sk ,G) > g(S0 ,Si) + h(Si ,G)

 so Sk will never be selected over Si for expansion.

Heuristic Functions

• Consider the 8-puzzle:

• Can we come up with a good admissible heuristic

function for this problem?

1 2 3

4 5 6

7 8

7 2 4

5 6

8 3 1

