University of

Strathclyde

Lecture 7: Adversarial Search

Dr John Levine

CS310 Foundations of Artificial Intelligence
February 9th 2016



Universityof &3

Strathclyde

Science

Learning Outcomes for Today

After today’s lecture, you will know:

How two-player zero-sum games are an extension of
the single agent problems we’ve examined so far

What a game tree looks like

How we can solve a game tree by assuming that the
opponent plays rationally

How the Minimax algorithm works



Universityof &3

Strathclyde

Science

Which Problems can we Solve?

The task environments which are suitable for the search
algorithms we've looked at so far are:

* Fully observable (the easy option)
« Deterministic (the easy option)

« Seguential (the normal option)

« Static (the easy option)

« Discrete (the easy option)

« Single agent (the easy option)



Universityof &3

§}fathclyde
Games

« To play a game, we need to relax the assumption that
only one agent can change the state of the world.

« Game theory: any environment with multiple agents in
It can be regarded as a game.

* In Al, games are usually what game theorists would
call deterministic, turn-taking, two-player, zero-sum
games of perfect information.

« Examples: chess, checkers, Connect 4, shogi, Othello,
go, tic-tac-toe, dots and boxes, ...



Universityof &3

giggthclyde
Features of these Games

* Fully observable: game state is visible to both players
« Deterministic: no element of chance

« Sequential: action taken now affects future choices

« Static: the world doesn’t change during deliberation

« Discrete: the game state can be represented exactly
using a finite representation

« Multi agent: in the search, we have to allow for the fact
that our opponent can also affect the game state when
it is their turn, and will be planning against us



Universityof &3

Strathclyde

Science

Representing a Game

We need:

An initial state, including who plays first
A successors (state) function, like next-states (state)

A terminal test which determines whether a given
state is a end state of the game (i.e. the game is over)

A utility function — for terminal states only, this is the
reward each player gets (e.g. +1 for win, —1 for lose)

In a zero-sum game, the utilities of the end states sum
to the same amount for the two players



Universityof &3

Strathclyde

The Two Players: Max and Min

» Let’s call the two players Max and Min: Max goes first
« Max’s task is to maximise Max’s reward

* Min’s task is to minimise Max’s reward (and therefore
maximise Min’s reward)

« Let's say Max can take actions a, b or ¢ — which one
will give Max the best reward when the game ends?

« To answer that question, we need to explore the game
tree to a sufficient depth, and assume that Min plays
optimally to minimise the reward that Max gets



Universityof &3

Strathclyde

Science

An Example

* Four coins in a row, each player can pick up one coin
or two coins.

* The player who picks up the last coin wins.

« Max plays first. What move should Max make?



Universityof &3

giggthclyde
The Minimax Value

« The minimax value of a node is the utility of the node
If the node is a terminal

* |f the node is a non-terminal Max node, the minimax
value of the node is the maximum of the minimax
values of all of the node’s successors

* |f the node is a non-terminal Min node, the minimax
value of the node is the minimum of the minimax
values of all of the node’s successors

* Recursive definition: results in a depth-first traversal
of the game tree



AT
. <
University of

Strathclyde

Science

The Minimax Algorithm

Max-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
vV «— MinimalGameValue
for s in Successors(state) do
v «— Max(v, MinValue(s))
return v

Min-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
v «— MaximalGameValue
for s in Successors(state) do
v «— Min(v, Max-Value(s))
return v



Universityof “&J

Strathclyde

Science

The Minimax Algorithm




Universityof “&J

Strathclyde

Science

The Minimax Algorithm




Universityof &3

Strathclyde

Science

Pruning the Search

* Minimax is an exhaustive search algorithm, so it is
exponential in the number of moves, i.e. O(b™)

« This is, to say the least, not desirable

« We can only apply full blown minimax to very small
games, or games which are close to a terminal state

 However, you may have noticed in the previous
example that we don’t have to explore the entire tree
in order to find the optimal move...



Universityof &3

Strathclyde

Science

Pruning the Search

MAX

MIN

Prune further search along

@ @ this branch and return 2 as
the minimax value of S,




Strathclyde

Science

Alpha-Beta Pruning

« Alpha-Beta pruning is a method for ignoring branches
of the search tree, while still finding the optimal move

« Allows us to find the optimal move much more quickly

« More on this in next Thursday’s lecture...



