
Lecture 7: Adversarial Search

Dr John Levine

CS310 Foundations of Artificial Intelligence

February 9th 2016

Learning Outcomes for Today

After today’s lecture, you will know:

• How two-player zero-sum games are an extension of

the single agent problems we’ve examined so far

• What a game tree looks like

• How we can solve a game tree by assuming that the

opponent plays rationally

• How the Minimax algorithm works

Which Problems can we Solve?

The task environments which are suitable for the search

algorithms we’ve looked at so far are:

• Fully observable (the easy option)

• Deterministic (the easy option)

• Sequential (the normal option)

• Static (the easy option)

• Discrete (the easy option)

• Single agent (the easy option)

Games

• To play a game, we need to relax the assumption that

only one agent can change the state of the world.

• Game theory: any environment with multiple agents in

it can be regarded as a game.

• In AI, games are usually what game theorists would

call deterministic, turn-taking, two-player, zero-sum

games of perfect information.

• Examples: chess, checkers, Connect 4, shogi, Othello,

go, tic-tac-toe, dots and boxes, …

Features of these Games

• Fully observable: game state is visible to both players

• Deterministic: no element of chance

• Sequential: action taken now affects future choices

• Static: the world doesn’t change during deliberation

• Discrete: the game state can be represented exactly

using a finite representation

• Multi agent: in the search, we have to allow for the fact

that our opponent can also affect the game state when

it is their turn, and will be planning against us

Representing a Game

We need:

• An initial state, including who plays first

• A successors (state) function, like next-states (state)

• A terminal test which determines whether a given

state is a end state of the game (i.e. the game is over)

• A utility function – for terminal states only, this is the

reward each player gets (e.g. +1 for win, −1 for lose)

• In a zero-sum game, the utilities of the end states sum

to the same amount for the two players

The Two Players: Max and Min

• Let’s call the two players Max and Min: Max goes first

• Max’s task is to maximise Max’s reward

• Min’s task is to minimise Max’s reward (and therefore

maximise Min’s reward)

• Let’s say Max can take actions a, b or c – which one

will give Max the best reward when the game ends?

• To answer that question, we need to explore the game

tree to a sufficient depth, and assume that Min plays

optimally to minimise the reward that Max gets

An Example

• Four coins in a row, each player can pick up one coin

or two coins.

• The player who picks up the last coin wins.

• Max plays first. What move should Max make?

The Minimax Value

• The minimax value of a node is the utility of the node

if the node is a terminal

• If the node is a non-terminal Max node, the minimax

value of the node is the maximum of the minimax

values of all of the node’s successors

• If the node is a non-terminal Min node, the minimax

value of the node is the minimum of the minimax

values of all of the node’s successors

• Recursive definition: results in a depth-first traversal

of the game tree

The Minimax Algorithm

Max-Value(state) returns a utility value
 if Terminal-Test(state) then return Utility(state)
 v ← MinimalGameValue
 for s in Successors(state) do
 v ← Max(v, MinValue(s))
 return v

Min-Value(state) returns a utility value
 if Terminal-Test(state) then return Utility(state)
 v ← MaximalGameValue
 for s in Successors(state) do
 v ← Min(v, Max-Value(s))
 return v

The Minimax Algorithm

S0

S7 S4 S1

S6 S5 S3 S2 S8 S9

MAX

MIN

7 9

2

5 6 8

5 6

2

6

The Minimax Algorithm

S0

S7 S4 S1

S6 S5 S3 S2 S8 S9

MAX

MIN

7 9

2

5 6 8

5 6

2

6

Pruning the Search

• Minimax is an exhaustive search algorithm, so it is

exponential in the number of moves, i.e. O(bm)

• This is, to say the least, not desirable

• We can only apply full blown minimax to very small

games, or games which are close to a terminal state

• However, you may have noticed in the previous

example that we don’t have to explore the entire tree

in order to find the optimal move…

Pruning the Search

S0

S4 S1

S5 S3 S2

MAX

MIN

7

2

5

5

2

5

Prune further search along

this branch and return 2 as

the minimax value of S4

Alpha-Beta Pruning

• Alpha-Beta pruning is a method for ignoring branches

of the search tree, while still finding the optimal move

• Allows us to find the optimal move much more quickly

• More on this in next Thursday’s lecture…

