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Learning Outcomes for Today 

After today’s lecture, you will know: 
 

• How two-player zero-sum games are an extension of 

the single agent problems we’ve examined so far 
 

• What a game tree looks like 
 

• How we can solve a game tree by assuming that the 

opponent plays rationally 
 

• How the Minimax algorithm works 



Which Problems can we Solve? 

The task environments which are suitable for the search  

algorithms we’ve looked at so far are: 
 

• Fully observable (the easy option) 
 

• Deterministic (the easy option) 
 

• Sequential (the normal option) 
 

• Static (the easy option) 
 

• Discrete (the easy option) 
 

• Single agent (the easy option) 



Games 

• To play a game, we need to relax the assumption that 

only one agent can change the state of the world. 
 

• Game theory: any environment with multiple agents in 

it can be regarded as a game. 
 

• In AI, games are usually what game theorists would 

call deterministic, turn-taking, two-player, zero-sum 

games of perfect information. 
 

• Examples: chess, checkers, Connect 4, shogi, Othello, 

go, tic-tac-toe, dots and boxes, … 



Features of these Games 

• Fully observable: game state is visible to both players  
 

• Deterministic: no element of chance 
 

• Sequential: action taken now affects future choices 
 

• Static: the world doesn’t change during deliberation 
 

• Discrete: the game state can be represented exactly 

using a finite representation 
 

• Multi agent: in the search, we have to allow for the fact 

that our opponent can also affect the game state when 

it is their turn, and will be planning against us 



Representing a Game 

We need: 
 

• An initial state, including who plays first 
 

• A successors (state) function, like next-states (state) 
 

• A terminal test which determines whether a given 

state is a end state of the game (i.e. the game is over) 
 

• A utility function – for terminal states only, this is the 

reward each player gets (e.g. +1 for win, −1 for lose) 
 

• In a zero-sum game, the utilities of the end states sum 

to the same amount for the two players 



The Two Players: Max and Min 

• Let’s call the two players Max and Min: Max goes first 
 

• Max’s task is to maximise Max’s reward 
 

• Min’s task is to minimise Max’s reward (and therefore 

maximise Min’s reward) 
 

• Let’s say Max can take actions a, b or c – which one 

will give Max the best reward when the game ends? 
 

• To answer that question, we need to explore the game 

tree to a sufficient depth, and assume that Min plays 

optimally to minimise the reward that Max gets 



An Example 

• Four coins in a row, each player can pick up one coin 

or two coins. 
 

• The player who picks up the last coin wins. 
 

• Max plays first. What move should Max make? 



The Minimax Value 

• The minimax value of a node is the utility of the node 

if the node is a terminal 
 

• If the node is a non-terminal Max node, the minimax 

value of the node is the maximum of the minimax 

values of all of the node’s successors 
 

• If the node is a non-terminal Min node, the minimax 

value of the node is the minimum of the minimax 

values of all of the node’s successors 
 

• Recursive definition: results in a depth-first traversal 

of the game tree 



The Minimax Algorithm 

Max-Value(state) returns a utility value 
     if Terminal-Test(state) then return Utility(state) 
     v ← MinimalGameValue 
     for s in Successors(state) do 
          v ← Max(v, MinValue(s)) 
     return v 
 
Min-Value(state) returns a utility value 
     if Terminal-Test(state) then return Utility(state) 
     v ← MaximalGameValue 
     for s in Successors(state) do 
          v ← Min(v, Max-Value(s)) 
     return v 
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Pruning the Search 

• Minimax is an exhaustive search algorithm, so it is 

exponential in the number of moves, i.e. O(bm) 
 

• This is, to say the least, not desirable 
 

• We can only apply full blown minimax to very small 

games, or games which are close to a terminal state 
 

• However, you may have noticed in the previous 

example that we don’t have to explore the entire tree 

in order to find the optimal move… 



Pruning the Search 
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Alpha-Beta Pruning 

• Alpha-Beta pruning is a method for ignoring branches 

of the search tree, while still finding the optimal move 
 

• Allows us to find the optimal move much more quickly 
 

• More on this in next Thursday’s lecture… 


