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Abstract 
A significant problem in maintenance of object-

oriented software is the identification of classes that 
are in breach of design guidelines and are thus likely 
to cause particular problems when it comes to 
repairing or modifying systems. For large software 
systems, manually detecting instances of poor 
encapsulation can be tedious and error-prone. This 
paper presents an automated technique based on a set 
of heuristics to detect such breaches of encapsulation 
in Java systems, particularly with regard to god 
classes and data classes. A precision-recall analysis of 
the application of the technique on a number of open 
source systems demonstrates its effectiveness, and the 
approach is shown to compare favourably with existing 
metric-based approaches. The paper also raises a 
number of questions regarding the precise definition of 
data and god classes, and concludes with a number of 
proposals to improve the approach further. 

1. Introduction 

Identifying a good decomposition of a system into 
classes when undertaking an object-oriented design is a 
significant challenge. As Meyer [15] states, “Finding 
classes is the central decision in building an object-
oriented software system; as in any creative discipline, 
making such decisions right takes talent and 
experience, not to mention luck.”  Even when 
appropriate classes have been identified there are hard 
decisions to be made when it comes to the attribution 
of data and behaviour to classes (techniques such as 
CRC cards have been devised to support this activity 
but do not scale well). The software engineer has to try 
to find a decomposition which maximises desirable 
design qualities while minimising any negative effects. 

 Two of the common problems that can arise as a 
consequence of this decomposition process are data 

classes and god classes. Typically, these two problems 
occur together – data classes are lacking in 
functionality that has typically been sucked into an 
over-complicated, domineering god class instead. The 
boundary between the god and the data class is 
misplaced, the data class is poorly encapsulated, 
making its data accessible to the god which typically, 
retrieves the data, manipulates it in a way that should 
be done in the data class, and then stores the result 
back in the data class. Recent empirical work suggests 
that the presence of data and god classes in a system 
can make it harder to understand and modify [6][7], 
particularly for those who have experience or 
education in good decomposition techniques (novice 
participants tended to find the centralised rather than 
the delegated approach easier to deal with). 

It is important that design flaws such as this do not 
go undetected in a system as they inevitably cause 
problems with understanding and modification. Ideally 
these problems should be identified and refactored into 
better balanced and well-encapsulated classes as soon 
as possible. However, detecting the existence of these 
problems in large systems is extremely difficult – the 
scale of the software makes manual detection 
ineffective, unwieldy and impractical, and hence the 
idea of attempting to detect these design flaws 
automatically is very appealing. 

This paper describes an approach for the automatic 
detection of god and data classes in existing systems. It 
proposes a technique which uses heuristics based on 
the information present in the static relationships 
within a program’s source code to infer the presence of 
god and data classes. The accuracy of the technique is 
evaluated by application to an open source system and 
also by comparison with a metrics based approach. The 
results indicate that it is an efficient and effective way 
to detect potential data and god classes in a system, 
although the evaluation raises some questions about 
exactly what constitutes a data or god class. 



2. Related Work 

2.1. Data Classes and God Classes 

Data classes are described by Fowler [8] as “dumb 
data holders” which are being manipulated by the rest 
of the system. In the extreme case they have methods 
for getting and setting the data and nothing else. Data 
classes are a problem as they typically provide poor 
encapsulation of their data and lack significant 
functionality. God classes are often a corollary to data 
classes and frequently represent an attempt to capture 
some central control mechanism. Riel [16] describes a 
god class as one that, “performs most of the work, 
leaving minor details to a collection of trivial classes” - 
these trivial classes being data classes. 

 

 
 

Figure 1: Ideal distribution of data and 
behaviour 

 

 
 

Figure 2: Impact of god and data classes 
 
This relationship between god and data classes 

captures a situation where the behaviour within a 
system has become misplaced. Instead of being evenly 
distributed amongst the classes (as illustrated in figure 
1 where computations are performed locally as a 
consequence of requests) and closely tied to the data, it 
has somehow gravitated from the data classes into the 
god class, making the god class dominant and 
unwieldy, and the data classes passive and almost 
useless (see Figure 2, where the god class pulls the data 
values from the data classes, uses them to perform 
some computation, and pushes the results back). This 

is clearly an undesirable situation within a system and 
impacts upon a range of attributes of the design, 
particularly its maintainability, testability, and 
understandability. 

2.2. Automated Detection Strategies 

Many approaches have been suggested for the 
automatic detection of design flaws in software[1] [17]  
[18] but there are two pieces of work which are closely 
related and which address the detection of god and data 
classes – those of Marinescu [13] and Chatzigeorgiou 
et al. [3].  

Marinescu proposes a metric based approach to 
data and god class detection. Data classes are 
characterised by Marinescu as having little 
functionality and exposing data through a combination 
of public attributes and accessor methods. These 
qualities are captured using three custom defined 
metrics; weight of class (WOC), number of public 
attributes (NOPA) and number of accessor methods 
(NOAM). The identification of a data classes relies on 
a combination of a low WOC value and a high NOPA 
or NOAM value. Weight of class is described as the 
ratio of non-accessor methods to accessor methods in 
the interface of the class. The threshold value for 
detection is when more than two thirds of a class 
interface consists of accessor methods. Number of 
public attributes is a count of the attributes with public 
access modifiers. Classes with NOPA values greater 
than five are considered data classes. Number of 
accessor methods is a count of the accessor methods 
found in the class interface. Accessors are defined as 
methods which contain get or set in their name, are 
small in size and have no logical decisions [14]. 
Classes with more than three accessors are considered 
data classes. 

God classes are described by Marinescu as large 
classes which use data from other classes and can be 
uncohesive. These qualities are modelled using three 
metrics: access of foreign data (AOFD), weighted 
method count (WMC) and tight class cohesion (TCC). 
Access of foreign data is a count of the number of data 
classes used by a class. Data access is determined 
either by access to a class’s public state or by use of an 
accessor. Weight of class [4] is a measure of the 
complexity of a class. In this case the complexity of 
each method is assumed to be uniform so the metric 
becomes a count of the number of methods. Tight class 
cohesion [2] calculates the ratio of methods which 
share attributes to those which do not. The 



identification of a god class relies on the detection of 
all three metrics within a class 

One of the main weaknesses of the approach would 
appear to be the use of threshold values (e.g. the 
requirement that a NOPE value of greater than five is 
an indicator of a data class). There is little information 
on neither how these threshold values are established 
nor how they perform across a range of systems.  

Chatzigeorgiou et al. propose an adaptation of the 
HITS algorithm [11] (originally used to rank the 
authority of web pages returned by a search) to the 
detection of god classes. Their approach assumes that 
god classes are more important than other classes in the 
system (because they contain all the behaviour) and 
that this can be detected by looking at the message 
flow between classes. They argue that the importance 
of a class (its authority) is not only related to the 
number of classes which communicate with it (its hub 
weight) but also to the importance of those classes. The 
HITS algorithm is used to calculate authority and hub 
weights for each class in the system. Classes with large 
authority and hub weights are considered more 
important and therefore more god-like than other 
classes in the system.  Chatzigeorgiou et al. claim that 
to determine a god one must examine both the 
authority and hub weights for a class. The main 
drawback with this approach is that it does not consider 
the nature of the communication between classes. 
There is no way to tell from the authority and hub 
scores alone whether the communication between 
classes is actually passing data inappropriately or 
whether it is part of a legitimate method 
communication. 

3. Detection Technique 

This section describes a new approach to the 
automatic detection of god and data classes. It is based 
on a set of heuristics that are symptoms of poor design  
-  patterns of interaction or elements within the source 
code of a system that are indicative of god or data 
classes and may be identified statically. This approach 
has similarities to that suggested by Marinescu but 
does not rely exclusively on metrics to make its 
diagnosis and avoids the use of threshold values - a 
clear drawback of such metrics-based approaches. 
Instead any information that can be extracted from the 
program text is considered if it helps detection. 

3.1. Data classes 

The detection of data classes relies on two things, 
being able to detect public fields and being able to 
detect accessor methods on the class interface.  

To detect public fields the access modifiers for each 
field of a class are analysed and those which have 
public access are identified. Public state is widely 
criticised by the object-oriented design literature as it 
couples the implementation of a class to its users. Riel 
says it best when he says “it throws maintenance out 
the window”.  

The approach used to detect accessor methods is to 
look for public methods that contain a single statement. 
In the case of a getter accessor the statement will be a 
return statement and it must return an attribute of the 
class. A setter accessor is similar except the statement 
will be an assignment statement which must assign a 
value from a method parameter to a class attribute.  

It is not universally accepted that accessors are a 
problem. Meyer [15] advocates the use of “query” 
methods in the public interface of a class to return 
information about its state and argues for the use of 
setter methods to help reduce the length of parameter 
lists in other methods. Riel [16] on the other hand 
considers them to be dangerous “because they indicate 
poor encapsulation of related data and behaviour”. 
Fowler [8] agrees saying “We have lost count of the 
number of times we’ve seen a method that invokes 
half-a-dozen getting methods on another object to 
calculate some value”, before recommending that the 
data and behaviour be encapsulated together.  

The literature on data classes has little to say about 
the content of accessor methods except to imply a 
get/set naming strategy [8][16] and that they are often 
small [13]. The chosen detection strategy was decided 
by studying many examples of accessor methods in 
student coursework submissions from a significant 
third-year group project [19]. These routinely follow 
the pattern described, specifically in terms of their 
manipulation of class state. 

A distinction can be made between partial data 
classes, where the existence of any public state or 
accessor methods signify a problem and total data 
classes which require the entire class to consist of 
accessors or public state. This approach considers 
partial data classes enough of a problem to trigger 
detection. Total data classes are a problem because 
they contain no behaviour and expose their state, the 
solution is to move the behaviour into the class and 
remove the accessor [8][15]. There is no reason why 
classes which only have some accessors should be 



treated differently from classes which are entirely 
composed of accessors. Both exhibit the same problem 
and require the same solution so to distinguish between 
them is both impractical and potentially dangerous as it 
may overlook serious problems. 

3.2. God classes 

Riel [16] argues that god classes can be identified 
in four ways; using the class name, the class 
size/complexity, use of accessor methods or by 
measuring its cohesion. His advice does describe four 
qualities associated with god classes but only one of 
them, use of accessor methods, actually defines a god 
class, the others describe symptoms which may apply 
to some gods but not all. 

The sharing of data and behaviour across class 
boundaries is at the heart of the god class / data class 
problem and it should be driving their detection. In 
contrast Riel’s other three qualities are true of god 
classes only in certain circumstances. Class names are 
subjective and a controlling or procedural name may 
not be indicative of a god class. Similarly a god class is 
not necessarily large. It may contain only a small 
amount of controlling behaviour. This might have an 
impact on its method size but would have a marginal 
impact on the size of the class. Riel also assumes that 
god classes are procedural in nature, this can result in 
large classes and cause low cohesion but it does not 
necessarily mean that the class is a god. A procedural 
abstraction can contain all its required state and 
behaviour inside the class. Such a class may contain 
multiple abstractions but it is not a god.  

God classes are detected by looking for 
inappropriate use of state from another class. This is 
controversial as it focuses on a subset of Riel’s advice. 
Inappropriate state use is detected in a similar way to 
the detection of data classes. The suspect class is 
searched for any public field accesses or calls to 
accessor methods on another class. If any are found 
then the class is considered to be a god. What the class 
does with the accessed state is not considered 
important because the very act of having a reference 
couples the god to the data regardless of its use. 

Polymorphism is important in the detection of god 
classes. Calls to data classes can be hidden by 
polymorphic calls to interfaces or parent classes in an 
inheritance hierarchy. This technique takes a 
conservative approach to polymorphic method 
resolution, where if any of the potential matches are 
resolved to a data method (as described above) then the 
call is considered to be from a data class.  
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Figure 3: Resolution of Polymorphic Method 
calls 

 
This is illustrated in the diagram above. The client  

calls a method, getA(), on the interface I. The interface 
lacks an implementation those provided by its children 
are considered. In each child the getA() method is 
evaluated to determine if it is an accessor method. If 
any of the implementations are found to be accessor 
methods then the interface is considered a data class 
(for the purposes of this method access). 

3.3. Implementation 

The technique was implemented as a plug-in for 
Eclipse and operates on Java programs. It uses abstract 
syntax trees to extract the static information that 
characterises god and data classes described above. 
The tool requires source code and the system must be 
in an executable state before being processed. The tool 
produces a report which lists all classes investigated 
and reports if any were found to be a data or god class. 
It also includes a debug mode which provides details 
about which characteristics contributed to its diagnosis. 
The high-level detection algorithm is described below: 

 
Data/God Class Detection Algorithm 

• First pass for each class in the system (detects data) 
1. Build the AST for the class. 
2. Search for class attribute nodes in the AST with public 

access modifiers. If any are found then the class is 
considered a data class. 

3. Search for instances of return or assignment statements 
nodes in the AST 

4. For each return statement check if the expression on its 
right hand side evaluates to an attribute access (if not 
found in local class check further up the hierarchy 
(stopping at Object or when the parent class resides 
outside the system))  

5. For each assignment statement check if the expression 
on its left hand side resolves to an attribute access (as 



with return) but also check that the right hand side 
expression resolves to a parameter node from the 
method containing the statement.  

6. If a return or assignment statement has been found then 
measure its size (looking for methods with one 
statement). 

7. If the class has been found to contain public state or 
accessor methods then store it in a cache along with 
details of the state and accessor methods that were 
found. If no data class characteristics have been 
identified evaluate its super classes. If any are found to 
be data classes then the current class is also data.  

• Second pass for each class in system (detects gods) 
1. Build the AST for this class. 
2. Search for field access nodes within the AST, (exclude 

self sends and inherited attributes). Check that the field 
access is defined as public. 

3. Search for instances of method invocation nodes within 
the class. Resolve the type of object on which the 
method is invoked (ignore self sends).  

4. Look up type and method in the cache to determine if 
the method is an accessor.  

5. If the type is an interface search its implementations 
looking for any which exist in the cache. If any of the 
implementations are resolved to be an accessor method 
then the call is considered to be to a data class. 

6. If an accessor call or public state access is found in the 
AST then the class is considered a god. If no god class 
characteristics have been identified evaluate its super 
classes. If any are found to be god classes then the 
current class is also a god.  

 
As part of the implementation the technique 

underwent considerable calibration and refinement 
using a collection of smaller systems (pieces of 
coursework undertaken as part of a third-year student 
group project). The authors selected six of these – 5 
from within our own university and one from another 
university. The systems were relatively small, ranging 
in size from around 20 to 40 classes, which permitted 
the authors to analyse them exhaustively for signs of 
god and data classes. This was also made feasible by 
the fact that the authors were familiar with the problem 
domain which simplified the analysis, even though 
there were a wide variety of solutions. Studying these 
systems helped to refine the technique in a number of 
ways. Precision and recall scores calculated across the 
six systems produced an average precision of 0.99 and 
an average recall of 0.99 for data classes and an 
average precision of 0.89 and an average recall of 1 for 
gods. This suggests that the technique was effective at 
identifying the data and god classes in these systems.  

4. Case Study 

The goal of the case study was to determine the 
effectiveness of the proposed heuristic based technique 
for detecting god and data classes. The study was 
designed to identify the strengths and weakness of the 
approach and also to determine the usefulness of 
identifying god/data class based design flaws. The 
study was based on a precision-recall analysis 
comparing the results of a manual review-based 
detection against the automated application of the 
technique. Detailed analysis of false positives and false 
negatives provides insights into the potential 
effectiveness of the technique and is used to propose 
further refinements of the approach. 

4.1. Methodology 

The BeautyJ [9] system was selected from the open 
source community to be used as the basis of the case 
study1. The authors had encountered it before in a 
different context, but had no insights into its design. 
BeautyJ is a source code transformation tool for Java 
source files. It contains approximately 200 classes 
separated into 33 packages. The entire system was 
considered too large to inspect manually so a subset of 
7 packages containing 50 classes and appearing to 
contain the core functionality of the system was 
selected for analysis. It was manually inspected by two 
reviewers to identify the baseline set of god and data 
classes that exist in the system. The automated 
technique was then applied to the system and a list of 
candidate god and data classes was generated. The 
results of the automated analysis were then compared 
to the results of the manual inspection using a 
precision-recall analysis.  

4.2. Manual inspection  

The manual inspection of god and data classes was 
performed by the second and third authors. At the time 
that they performed the inspection they did not have a 
detailed understanding of how the automated technique 
operated. This enabled them to categorise the BeautyJ 
classes independently of the technique. To assist them 
during the review they were provided with a checklist 

                                                           
1 It must be stressed that this study is in no form 

intended as a criticism of the BeautyJ system and we 
are indebted to its author for making the source 
available. 



which summarised the prominent literature on god and 
data classes. 

The two reviews were performed individually and 
took approximately 3 hours each to complete. The 
reviewers agreed in the majority of cases but they were 
not unanimous in their opinion. Of the 50 classes 
inspected they disagreed on the assessment of 11 data 
classes and 7 god classes. 

The evaluation required an authoritative 
categorisation of god and data classes to act as a 
baseline for the precision-recall analysis, so the 
reviewers met along with the first author to try to 
resolve the discrepancies. To assist the discussion, 
notes taken by the reviewers during their initial 
categorisation were used, as was the BeautyJ source 
code and the debug output of the tool. The sources of 
disagreement were debated and a consensus then 
reached about their classification. The authoritative list 
is shown in Table 1 along with the results produced by 
the application of the automated technique to the 
BeautyJ system.  

4.3. Precision and recall results 

A precision-recall analysis was performed 
comparing the results produced by the automated 
technique and the results from the manual inspection. 
Recall was calculated as the ratio of god/data classes 
retrieved by the automated technique versus the total 
number of god/data classes in the system as defined by 
the manual inspection. Precision was calculated as the 
ratio of god/data classes (as defined by manual 
inspection) retrieved by the automated technique 
versus the total number of classes retrieved. 

The initial precision and recall values for god 
classes were 0.37 and 0.86, respectively, and for data 
classes 0.59 and 1. The results suggest that the 
technique has been successful in finding the majority 
of problem classes but its accuracy is low. In particular 
it appears that the technique detects a large number of 
false positives. However, it will be argued in the 
Discussion section that, on closer analysis, the 
precision results in particular are actually much better 
than this. 

 
Table 1: Comparison of manual and tool results 
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beautyjTask Yes No No No Code Yes Yes Yes No 
Beautyj No No No No PackageMember No No No No 
Main No No No No Exception Yes No Yes No 
BeautyJ Yes No No Yes Import Yes No Yes No 
Task Yes Yes No No Class Yes Yes Yes Yes 
Type Yes Yes Yes No SourceParser Yes No Yes Yes 
Package Yes Yes Yes Yes ParseException Yes Yes No No 
ImportClass Yes No No No SimpleNode Yes Yes Yes No 
MemberExecutable Yes Yes Yes No ParserConstants No No No No 
Implementation Yes Yes No No Parser Yes No Yes Yes 
SourceObjectDeclared Yes Yes Yes No JavadocParserTokenManager Yes No Yes No 
Constructor Yes No No No JavaCharStream Yes Yes No No 
Documentation Yes Yes No No JJTParserState No No No No 
NamedIterator Yes Yes Yes No ParserTokenManager Yes No Yes Yes 
ImportPackage Yes No No No JJTJavadocParserState No No No No 
ClassInner Yes No Yes No JavadocParserConstants No No No No 
DocumentationTagged Yes Yes No No JavadocParserTreeConstants Yes No No No 
Field Yes Yes No No TextImage No No No No 
ProgressTracker No No No No Token Yes Yes No No 
SourceObjectDeclaredVisible Yes No No No TokenMgrError No No No No 
SourceObject Yes Yes No No JavadocParser Yes No Yes No 
Method Yes Yes No No Sourclet No No No No 
DocumentationDeclared Yes Yes Yes Yes SourcletOptions No No No No 
Member Yes Yes No No AbstractSourclet Yes Yes No No 
Parameter Yes Yes Yes No StandardSourclet Yes No Yes Yes 



 

4.4. Discussion 

The results of the technique are overwhelmed by 
the large number of false positives produced by both 
the data and god class detection strategies. However, a 
closer inspection of these false positives reveals some 
valuable insights and suggests that the technique may 
perform better than first appears. 

 
4.4.1 Data Classes. A manual inspection of the sixteen 
false positive data classes detected by the evaluation 
surprisingly showed them all to be valid data classes! 
In each case the classes were found to have either 
public state or inherited data class characteristics from 
a parent class. The reasons for the initial review failing 
to detect so much public state are not clear. It was one 
of the characteristics of data classes that the reviewers 
were asked to detect and it was successfully detected 
on a few occasions. It is possible that the formatting of 
attributes in the source code or the relatively small size 
of an attribute definition may not have drawn the eye 
of the reviewers in the same way that method bodies 
did. The reason for inherited behaviour being 
overlooked is more straightforward. It is not part of the 
standard literature advice so was not included in the 
reviewer’s checklist. In addition it is difficult to detect 
manually because it involves code which is disparately 
placed within the system (providing yet further 
evidence for the need for an effective manual 
approach). These findings strongly suggest that the 
false positives detected in this evaluation should be 
reconsidered as valid data classes. 

 
4.4.2 God classes. Twelve false positive classes and 
one false negative god class were detected by the 
evaluation. A manual inspection revealed that all of the 
false positives contained access to data classes 
suggesting that they should have been detected during 
the review. However, it is possible that a number of 
classes were misdiagnosed during the review because 
of the particular difficulty of manually assessing god 
class behaviour. This type of analysis requires careful 
parsing of method bodies to detect call sites, which 
must then be reified into a call to a particular type and 
its implementation inspected to determine if it is an 
accessor method. Given this process it would not be 
surprising if a manual inspection overlooked some 
incidents of data class access. 

It is also possible that some classes were 
overlooked because they did not demonstrate other 

more visible god class properties and conform to the 
stereotypical dominant procedural controller that is 
often described in the literature. These might be easier 
to detect than those which just use another class’s data 
but this does not guarantee that they are genuine god 
classes.  

An example of one of these false positives is the 
Type class in the BeautyJ system. This class shows 
strong god class qualities in the 
countArrayDimension(Node) method. This 
method gets a list of children from its Node parameter 
and iterates through this collection inspecting each 
node for a particular id which determines if it is an 
array. This couples the Type class unnecessarily to 
details of the Node class. If Node changes how it 
holds its children or how it models the identity of array 
nodes then Type will also have to change. Moving the 
behaviour from Type into the Node class would 
decouple the two classes and also allow other users of 
Node to benefit from the array counting functionality.  

The particular feature that the false positive gods 
appear to lack was the notion of control coupled with a 
cyclic interaction of getting, manipulating and setting 
data. This interaction can be difficult for a manual 
review to detect but the dominant control structure is 
easier to recognise. An indication that reviewers tend 
to be drawn towards this style of class is given by the 
one false negative god class that was found during the 
evaluation  (the BeautyJ class itself). A subsequent 
manual inspection of the class revealed that it was not 
a god class as it did not use state from another class. 
The reviewers had concluded that it was a god on the 
basis of its size name and procedural behaviour but the 
lack of data access was overlooked. This is further 
evidence of the need for an automated approach. 
Manual inspections find identifying data accesses 
difficult and can be persuaded by circumstantial 
evidence to declare a god. 

4.5. Reassessed scores 

The problems inherent in manually detecting data 
and god classes suggest that the precision-recall scores 
may not accurately reflect the performance of the 
technique. Adjusting the figures for the detection of 
data classes results in precision improving to 1 with a 
recall of 1. However, this may be generous for already 
in extensions of this research we have noticed further 
classes that are not canonical data classes, but 
nevertheless expose some of their state. This issue 
needs to be explored further. For god classes the 
adjustment is more debatable because although the 



technique detects encapsulation problems, they may 
not all be true god classes, in the sense that they don’t 
conform completely to the published stereotype. 
Nonetheless if poor encapsulation is used as a criterion 
the performance improves producing a recall of 0.94 
and a precision of 0.84. It is our belief that raising even 
minor breaches of encapsulation is beneficial as it may 
indicate a problem in its own right or the start of a 
bigger problem in the future. 

5. A comparison with a metrics-based 
approach 

This section compares our heuristic based approach 
with an existing metrics based one – that of 
Marinescu’s [13] – with a view to analysing the 
strengths and weaknesses of the two strategies.  The 
availability of a supporting toolset was the principle 
reason for choosing Marinescu’s work as the basis of 
this comparison. Both tools were run over two open 
source systems: BeautyJ and JEdit but for reasons of 
space only the BeautyJ results are reported here.  Table 
2 summarises the results of running both tools over 
BeautyJ. 

 
Table 2: Metric and heuristic results for the 

BeautyJ system 
 # classes Data God 

Total 10 10 Metrics Unique 2 0 
 Common 8 10 

Unique 63 39 Heuristics Total 71 48 
 
Considering firstly the detection of data classes, the 

initial observation to make is the large difference in the 
number of problem classes discovered by the two 
approaches. The initial reaction to this is that 
something somewhere is seriously wrong. The 
explanation for this lies in the solution employed by 
Marinescu, which is to filter the results obtained by his 
technique so that it only returns the worst offenders. 
This reduces the number of results returned but it also 
hides some of the problem classes from the maintainer 
and presents an unrealistic view of the state of the 
system. Marinescu’s data class cut offs allow classes to 
have up to three public fields and five data methods 
before they are considered to be a problem. He also 
requires an overwhelming ratio of data members to non 
data members before detecting a data class. This limits 
his technique to the detection of severe or pathological 

cases and also prevents the early detection of some 
problems when they might be easier to address.  

If data exposure is a problem then each incidence 
of exposure contributes towards that problem. It is 
therefore important that when doing remedial work to 
repair data encapsulation no incidence should escape 
consideration. In addition inclusion based on the ratio 
of data to non data should be irrelevant. If data is 
exposed then the problem cannot be mitigated by 
considering how good the behaviour is in the rest of 
the class. A better solution is to rank the results by 
their severity. Marinescu applies a ranking to his 
results after they have been filtered but it would seem 
better to forgo filtering and simply rank all of the 
results returned. If this filtering is relaxed then the 
results become much more comparable, but there still 
remain two classes unique to the metrics-based 
approach which are both very small inner classes – 
something that our technique does not currently 
analyse. 

Our approach reports both the absolute number of 
data leaks (public data and data methods) per class, and 
the proportion of the class that these leaks constitute. 
Ranking them by proportion most closely emulates 
Marinescu’s ranking and leads to a similar set of 
classes appearing in the top ten with the highest entries 
clearly being canonical examples of data classes – all 
public data and getters and setters. There are a couple 
of exceptions though. Marinescu identifies the class 
MapTableModel as being the 3rd most serious data 
class, whereas we rank it as 56th! An investigation of 
this class reveals two clear data leaks in the form of a 
getter and a setter that both approaches detect, and two 
methods that access only part of the data (in the form 
of getting and setting an element of an array) that is 
included in the metric count but ignored by us. The 
other notable exception is the inclusion of the Token 
class which, based on the propotional ranking appears 
as 3rd in our approach as it has eight public data fields 
and two methods – one of which is a toString() 
which our approach detects as a data leak because it is 
seen to be exporting state. This is clearly an erroneous 
classification on our behalf – in an earlier version of 
our system we included the heuristic that getters and 
seters began with “get” or “set” but then removed this 
as it was felt to be overly restrictive. The consequence 
is the occasional mis-classification of toString() 
methods as data accessors. This will be rectified in the 
future. 

Turning our attention to the god class detection the 
same issue arises regarding the number of classes and 
again the same explanation is given. Marinescu also 



filters the god class results to isolate what he considers 
to be the worst offenders. If this filtering was removed 
the results would be much closer. As for the data 
classes a ranking was created based on the proportion 
of god methods (those which exhibit god-like 
behaviour) in the class and compared with Marinescu’s 
top ten results. Again there was a strong degree of 
overlap (six of his classes appear in our top ten and 
eight in our top fifteen). Considering the exceptions 
again, Marinescu ranks the class GenericMetadata 
as the 3rd god class, whereas we rank it as 36th.  
Investigation of this approach reveals a number of uses 
of data in associated data classes (our tool allows the 
user to see the methods responsible and also the data 
they are using), but nothing so significant to rank it so 
highly. It would appear to be the values for WMC and 
TCC that are promoting the class to this level. This is 
in line with the traditionally accepted advice, but as 
argued earlier in this paper, is by no means an 
indication of god-like bahviour. In constrast our 
approach ranks the Parser class as 5th, whereas it does 
not make it into Marinescu’s filtered rankings. On our 
analysis, this class contains ten god methods (methods 
which make use of data leaks to potentially manipulate 
the state of data classes) and no less than forty 
individual manipulations of leaked data. This is a clear 
advantage over the metrics approach which just counts 
the number of external types referenced and does not 
consider either the number or the nature of the 
interactions. 

 To summarise it is clear that the metric based 
approach performs well, particularly in the simpler 
case of the data class, but the limitations start to 
become exposed when detecting data classes. The 
power of the heuristic approach is in detecting the 
subtleties of interactions and relationships between 
classes by employing more sophisticated analysis (such 
as improving the precision of the approach by 
resolving polymorphic calls). However, this also 
comes at a cost as computing these interactions can 
take significantly longer. However, this should not be a 
major issue for the maintainer of a system as the design 
flaws can be computed once and then the results 
explored, analysed and repaired over time. 

6. Lessons 

A number of lessons can be drawn from this study 
regarding the efficacy of the technique, how its 
findings affect what we know about data and god 
classes and also how this work compares to the 
existing literature. One initial observation is that the 

static analysis approach employed has considerable 
advantages over the existing metrics-based approaches. 
For example, it permits polymorphic calls to be 
resolved, allows the details of method behaviour to be 
inspected, checks that the getters and setters are 
operating on the sate of an object and considers 
individual abuses of data leaks rather than a gross 
count of the number of references that a class contains. 
These features result in a more accurate analysis than 
could be achieved by metrics alone. 

6.1. Data class detection 

The data class detector works very well and appears 
to be an effective way to automatically identify data 
classes in a system. The description of the internal 
behaviour of accessor methods, the use of inheritance 
and the detection of partial data classes appear to have 
captured useful characteristics for detecting data 
classes. Future studies should consider refining or 
enhancing this set. 

A related finding from the study is that data and 
god class functionality can be forced onto a system 
because of a desire to reuse functionality. If a class 
library or code generation tool provides a data or god 
centric API then there is little option but to follow a 
similar decomposition in order to correctly reuse the 
supplied class. In BeautyJ this restriction is illustrated 
by the use of the JavaCC compiler generator [10]. This 
is responsible for a number of god and data 
dependencies found within the system. 

6.2. God class detection 

The god class detector works well in certain 
circumstances but still needs work to improve its 
generality. It detects classes which have encapsulation 
problems (which includes all god classes) but many of 
those detected have very small amounts of data sharing 
behaviour and do not have a characteristic godliness 
about them. 

The description is still a useful platform for further 
work. It has helped to focus attention on to the data 
sharing behaviour of the god class, rather than more 
circumstantial indicators such as size or cohesion. It 
has also emphasized the importance of resolving 
polymorphism to detect all data accesses. Future work 
should continue in this direction by attempting to 
account for how much data access there is in a class, 
and using data flow analysis to try to determine how 
the data is used by the potential god class and identify 
those classes that are the really serious offenders.  



7. Conclusions 

A central tenet of object-oriented design guidance 
is information hiding that encapsulates data and 
functionality together in a balanced set of cooperating 
classes. However, achieving this design goal in 
practice is extremely challenging, especially for large 
systems that are developed and maintained iteratively 
over a long period of time. This paper has 
demonstrated that it is difficult to detect these 
problems manually but that a relatively straightforward 
static analysis can identify a small set of problem areas 
(or ‘bad smells’) that can then be isolated for detailed, 
manual analysis. 

The empirical evaluation based on the BeautyJ case 
study showed that high accuracy in terms of precision 
and recall can be achieved relative to a human analysis 
of the system. The benefits of the approach are in terms 
of time and scale. It took around 6 hours to perform the 
analysis manually for a system of around 50 Java 
classes. It is difficult to imagine human analysis being 
carried out on industrial-scale systems that are orders 
of magnitude larger than this. On the other hand, an 
automated approach can accurately and repeatedly 
identify god-data class boundaries that should be 
considered for redesign and refactoring in a matter of 
minutes. 

This initial case study along with the comparison 
with the metrics-based approach has demonstrated that 
the approach has strengths but it requires further 
investigation and refinement. The definition of data 
and god classes used so far is relatively 
straightforward. Further work will examine the 
potential benefits of increasing the sophistication of the 
analysis e.g. by detecting accessor methods that get 
and set state partially or indirectly or by analysing the 
pattern of data usage in god classes.  
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