
A Heuristic-Based Approach to Automatically Detecting Design Flaws

Douglas Kirk, Marc Roper, Murray Wood
Department of Computer and Information Sciences

University of Strathclyde
Glasgow, UK

{doug,marc,murray}@cis.strath.ac.uk

Abstract
A significant problem in maintenance of object-

oriented software is the identification of classes that
are in breach of design guidelines and are thus likely
to cause particular problems when it comes to
repairing or modifying systems. For large software
systems, manually detecting instances of poor
encapsulation can be tedious and error-prone. This
paper presents an automated technique based on a set
of heuristics to detect such breaches of encapsulation
in Java systems, particularly with regard to god
classes and data classes. A precision-recall analysis of
the application of the technique on a number of open
source systems demonstrates its effectiveness, and the
approach is shown to compare favourably with existing
metric-based approaches. The paper also raises a
number of questions regarding the precise definition of
data and god classes, and concludes with a number of
proposals to improve the approach further.

1. Introduction

Identifying a good decomposition of a system into
classes when undertaking an object-oriented design is a
significant challenge. As Meyer [15] states, “Finding
classes is the central decision in building an object-
oriented software system; as in any creative discipline,
making such decisions right takes talent and
experience, not to mention luck.” Even when
appropriate classes have been identified there are hard
decisions to be made when it comes to the attribution
of data and behaviour to classes (techniques such as
CRC cards have been devised to support this activity
but do not scale well). The software engineer has to try
to find a decomposition which maximises desirable
design qualities while minimising any negative effects.

 Two of the common problems that can arise as a
consequence of this decomposition process are data

classes and god classes. Typically, these two problems
occur together – data classes are lacking in
functionality that has typically been sucked into an
over-complicated, domineering god class instead. The
boundary between the god and the data class is
misplaced, the data class is poorly encapsulated,
making its data accessible to the god which typically,
retrieves the data, manipulates it in a way that should
be done in the data class, and then stores the result
back in the data class. Recent empirical work suggests
that the presence of data and god classes in a system
can make it harder to understand and modify [6][7],
particularly for those who have experience or
education in good decomposition techniques (novice
participants tended to find the centralised rather than
the delegated approach easier to deal with).

It is important that design flaws such as this do not
go undetected in a system as they inevitably cause
problems with understanding and modification. Ideally
these problems should be identified and refactored into
better balanced and well-encapsulated classes as soon
as possible. However, detecting the existence of these
problems in large systems is extremely difficult – the
scale of the software makes manual detection
ineffective, unwieldy and impractical, and hence the
idea of attempting to detect these design flaws
automatically is very appealing.

This paper describes an approach for the automatic
detection of god and data classes in existing systems. It
proposes a technique which uses heuristics based on
the information present in the static relationships
within a program’s source code to infer the presence of
god and data classes. The accuracy of the technique is
evaluated by application to an open source system and
also by comparison with a metrics based approach. The
results indicate that it is an efficient and effective way
to detect potential data and god classes in a system,
although the evaluation raises some questions about
exactly what constitutes a data or god class.

2. Related Work

2.1. Data Classes and God Classes

Data classes are described by Fowler [8] as “dumb
data holders” which are being manipulated by the rest
of the system. In the extreme case they have methods
for getting and setting the data and nothing else. Data
classes are a problem as they typically provide poor
encapsulation of their data and lack significant
functionality. God classes are often a corollary to data
classes and frequently represent an attempt to capture
some central control mechanism. Riel [16] describes a
god class as one that, “performs most of the work,
leaving minor details to a collection of trivial classes” -
these trivial classes being data classes.

Figure 1: Ideal distribution of data and
behaviour

Figure 2: Impact of god and data classes

This relationship between god and data classes

captures a situation where the behaviour within a
system has become misplaced. Instead of being evenly
distributed amongst the classes (as illustrated in figure
1 where computations are performed locally as a
consequence of requests) and closely tied to the data, it
has somehow gravitated from the data classes into the
god class, making the god class dominant and
unwieldy, and the data classes passive and almost
useless (see Figure 2, where the god class pulls the data
values from the data classes, uses them to perform
some computation, and pushes the results back). This

is clearly an undesirable situation within a system and
impacts upon a range of attributes of the design,
particularly its maintainability, testability, and
understandability.

2.2. Automated Detection Strategies

Many approaches have been suggested for the
automatic detection of design flaws in software[1] [17]
[18] but there are two pieces of work which are closely
related and which address the detection of god and data
classes – those of Marinescu [13] and Chatzigeorgiou
et al. [3].

Marinescu proposes a metric based approach to
data and god class detection. Data classes are
characterised by Marinescu as having little
functionality and exposing data through a combination
of public attributes and accessor methods. These
qualities are captured using three custom defined
metrics; weight of class (WOC), number of public
attributes (NOPA) and number of accessor methods
(NOAM). The identification of a data classes relies on
a combination of a low WOC value and a high NOPA
or NOAM value. Weight of class is described as the
ratio of non-accessor methods to accessor methods in
the interface of the class. The threshold value for
detection is when more than two thirds of a class
interface consists of accessor methods. Number of
public attributes is a count of the attributes with public
access modifiers. Classes with NOPA values greater
than five are considered data classes. Number of
accessor methods is a count of the accessor methods
found in the class interface. Accessors are defined as
methods which contain get or set in their name, are
small in size and have no logical decisions [14].
Classes with more than three accessors are considered
data classes.

God classes are described by Marinescu as large
classes which use data from other classes and can be
uncohesive. These qualities are modelled using three
metrics: access of foreign data (AOFD), weighted
method count (WMC) and tight class cohesion (TCC).
Access of foreign data is a count of the number of data
classes used by a class. Data access is determined
either by access to a class’s public state or by use of an
accessor. Weight of class [4] is a measure of the
complexity of a class. In this case the complexity of
each method is assumed to be uniform so the metric
becomes a count of the number of methods. Tight class
cohesion [2] calculates the ratio of methods which
share attributes to those which do not. The

identification of a god class relies on the detection of
all three metrics within a class

One of the main weaknesses of the approach would
appear to be the use of threshold values (e.g. the
requirement that a NOPE value of greater than five is
an indicator of a data class). There is little information
on neither how these threshold values are established
nor how they perform across a range of systems.

Chatzigeorgiou et al. propose an adaptation of the
HITS algorithm [11] (originally used to rank the
authority of web pages returned by a search) to the
detection of god classes. Their approach assumes that
god classes are more important than other classes in the
system (because they contain all the behaviour) and
that this can be detected by looking at the message
flow between classes. They argue that the importance
of a class (its authority) is not only related to the
number of classes which communicate with it (its hub
weight) but also to the importance of those classes. The
HITS algorithm is used to calculate authority and hub
weights for each class in the system. Classes with large
authority and hub weights are considered more
important and therefore more god-like than other
classes in the system. Chatzigeorgiou et al. claim that
to determine a god one must examine both the
authority and hub weights for a class. The main
drawback with this approach is that it does not consider
the nature of the communication between classes.
There is no way to tell from the authority and hub
scores alone whether the communication between
classes is actually passing data inappropriately or
whether it is part of a legitimate method
communication.

3. Detection Technique

This section describes a new approach to the
automatic detection of god and data classes. It is based
on a set of heuristics that are symptoms of poor design
- patterns of interaction or elements within the source
code of a system that are indicative of god or data
classes and may be identified statically. This approach
has similarities to that suggested by Marinescu but
does not rely exclusively on metrics to make its
diagnosis and avoids the use of threshold values - a
clear drawback of such metrics-based approaches.
Instead any information that can be extracted from the
program text is considered if it helps detection.

3.1. Data classes

The detection of data classes relies on two things,
being able to detect public fields and being able to
detect accessor methods on the class interface.

To detect public fields the access modifiers for each
field of a class are analysed and those which have
public access are identified. Public state is widely
criticised by the object-oriented design literature as it
couples the implementation of a class to its users. Riel
says it best when he says “it throws maintenance out
the window”.

The approach used to detect accessor methods is to
look for public methods that contain a single statement.
In the case of a getter accessor the statement will be a
return statement and it must return an attribute of the
class. A setter accessor is similar except the statement
will be an assignment statement which must assign a
value from a method parameter to a class attribute.

It is not universally accepted that accessors are a
problem. Meyer [15] advocates the use of “query”
methods in the public interface of a class to return
information about its state and argues for the use of
setter methods to help reduce the length of parameter
lists in other methods. Riel [16] on the other hand
considers them to be dangerous “because they indicate
poor encapsulation of related data and behaviour”.
Fowler [8] agrees saying “We have lost count of the
number of times we’ve seen a method that invokes
half-a-dozen getting methods on another object to
calculate some value”, before recommending that the
data and behaviour be encapsulated together.

The literature on data classes has little to say about
the content of accessor methods except to imply a
get/set naming strategy [8][16] and that they are often
small [13]. The chosen detection strategy was decided
by studying many examples of accessor methods in
student coursework submissions from a significant
third-year group project [19]. These routinely follow
the pattern described, specifically in terms of their
manipulation of class state.

A distinction can be made between partial data
classes, where the existence of any public state or
accessor methods signify a problem and total data
classes which require the entire class to consist of
accessors or public state. This approach considers
partial data classes enough of a problem to trigger
detection. Total data classes are a problem because
they contain no behaviour and expose their state, the
solution is to move the behaviour into the class and
remove the accessor [8][15]. There is no reason why
classes which only have some accessors should be

treated differently from classes which are entirely
composed of accessors. Both exhibit the same problem
and require the same solution so to distinguish between
them is both impractical and potentially dangerous as it
may overlook serious problems.

3.2. God classes

Riel [16] argues that god classes can be identified
in four ways; using the class name, the class
size/complexity, use of accessor methods or by
measuring its cohesion. His advice does describe four
qualities associated with god classes but only one of
them, use of accessor methods, actually defines a god
class, the others describe symptoms which may apply
to some gods but not all.

The sharing of data and behaviour across class
boundaries is at the heart of the god class / data class
problem and it should be driving their detection. In
contrast Riel’s other three qualities are true of god
classes only in certain circumstances. Class names are
subjective and a controlling or procedural name may
not be indicative of a god class. Similarly a god class is
not necessarily large. It may contain only a small
amount of controlling behaviour. This might have an
impact on its method size but would have a marginal
impact on the size of the class. Riel also assumes that
god classes are procedural in nature, this can result in
large classes and cause low cohesion but it does not
necessarily mean that the class is a god. A procedural
abstraction can contain all its required state and
behaviour inside the class. Such a class may contain
multiple abstractions but it is not a god.

God classes are detected by looking for
inappropriate use of state from another class. This is
controversial as it focuses on a subset of Riel’s advice.
Inappropriate state use is detected in a similar way to
the detection of data classes. The suspect class is
searched for any public field accesses or calls to
accessor methods on another class. If any are found
then the class is considered to be a god. What the class
does with the accessed state is not considered
important because the very act of having a reference
couples the god to the data regardless of its use.

Polymorphism is important in the detection of god
classes. Calls to data classes can be hidden by
polymorphic calls to interfaces or parent classes in an
inheritance hierarchy. This technique takes a
conservative approach to polymorphic method
resolution, where if any of the potential matches are
resolved to a data method (as described above) then the
call is considered to be from a data class.

getA()

interface
I

+getA():void

Imp1

+getA():void

Imp2

+getA():void

Imp3

+getA():void

Client

Figure 3: Resolution of Polymorphic Method
calls

This is illustrated in the diagram above. The client

calls a method, getA(), on the interface I. The interface
lacks an implementation those provided by its children
are considered. In each child the getA() method is
evaluated to determine if it is an accessor method. If
any of the implementations are found to be accessor
methods then the interface is considered a data class
(for the purposes of this method access).

3.3. Implementation

The technique was implemented as a plug-in for
Eclipse and operates on Java programs. It uses abstract
syntax trees to extract the static information that
characterises god and data classes described above.
The tool requires source code and the system must be
in an executable state before being processed. The tool
produces a report which lists all classes investigated
and reports if any were found to be a data or god class.
It also includes a debug mode which provides details
about which characteristics contributed to its diagnosis.
The high-level detection algorithm is described below:

Data/God Class Detection Algorithm

• First pass for each class in the system (detects data)
1. Build the AST for the class.
2. Search for class attribute nodes in the AST with public

access modifiers. If any are found then the class is
considered a data class.

3. Search for instances of return or assignment statements
nodes in the AST

4. For each return statement check if the expression on its
right hand side evaluates to an attribute access (if not
found in local class check further up the hierarchy
(stopping at Object or when the parent class resides
outside the system))

5. For each assignment statement check if the expression
on its left hand side resolves to an attribute access (as

with return) but also check that the right hand side
expression resolves to a parameter node from the
method containing the statement.

6. If a return or assignment statement has been found then
measure its size (looking for methods with one
statement).

7. If the class has been found to contain public state or
accessor methods then store it in a cache along with
details of the state and accessor methods that were
found. If no data class characteristics have been
identified evaluate its super classes. If any are found to
be data classes then the current class is also data.

• Second pass for each class in system (detects gods)
1. Build the AST for this class.
2. Search for field access nodes within the AST, (exclude

self sends and inherited attributes). Check that the field
access is defined as public.

3. Search for instances of method invocation nodes within
the class. Resolve the type of object on which the
method is invoked (ignore self sends).

4. Look up type and method in the cache to determine if
the method is an accessor.

5. If the type is an interface search its implementations
looking for any which exist in the cache. If any of the
implementations are resolved to be an accessor method
then the call is considered to be to a data class.

6. If an accessor call or public state access is found in the
AST then the class is considered a god. If no god class
characteristics have been identified evaluate its super
classes. If any are found to be god classes then the
current class is also a god.

As part of the implementation the technique

underwent considerable calibration and refinement
using a collection of smaller systems (pieces of
coursework undertaken as part of a third-year student
group project). The authors selected six of these – 5
from within our own university and one from another
university. The systems were relatively small, ranging
in size from around 20 to 40 classes, which permitted
the authors to analyse them exhaustively for signs of
god and data classes. This was also made feasible by
the fact that the authors were familiar with the problem
domain which simplified the analysis, even though
there were a wide variety of solutions. Studying these
systems helped to refine the technique in a number of
ways. Precision and recall scores calculated across the
six systems produced an average precision of 0.99 and
an average recall of 0.99 for data classes and an
average precision of 0.89 and an average recall of 1 for
gods. This suggests that the technique was effective at
identifying the data and god classes in these systems.

4. Case Study

The goal of the case study was to determine the
effectiveness of the proposed heuristic based technique
for detecting god and data classes. The study was
designed to identify the strengths and weakness of the
approach and also to determine the usefulness of
identifying god/data class based design flaws. The
study was based on a precision-recall analysis
comparing the results of a manual review-based
detection against the automated application of the
technique. Detailed analysis of false positives and false
negatives provides insights into the potential
effectiveness of the technique and is used to propose
further refinements of the approach.

4.1. Methodology

The BeautyJ [9] system was selected from the open
source community to be used as the basis of the case
study1. The authors had encountered it before in a
different context, but had no insights into its design.
BeautyJ is a source code transformation tool for Java
source files. It contains approximately 200 classes
separated into 33 packages. The entire system was
considered too large to inspect manually so a subset of
7 packages containing 50 classes and appearing to
contain the core functionality of the system was
selected for analysis. It was manually inspected by two
reviewers to identify the baseline set of god and data
classes that exist in the system. The automated
technique was then applied to the system and a list of
candidate god and data classes was generated. The
results of the automated analysis were then compared
to the results of the manual inspection using a
precision-recall analysis.

4.2. Manual inspection

The manual inspection of god and data classes was
performed by the second and third authors. At the time
that they performed the inspection they did not have a
detailed understanding of how the automated technique
operated. This enabled them to categorise the BeautyJ
classes independently of the technique. To assist them
during the review they were provided with a checklist

1 It must be stressed that this study is in no form

intended as a criticism of the BeautyJ system and we
are indebted to its author for making the source
available.

which summarised the prominent literature on god and
data classes.

The two reviews were performed individually and
took approximately 3 hours each to complete. The
reviewers agreed in the majority of cases but they were
not unanimous in their opinion. Of the 50 classes
inspected they disagreed on the assessment of 11 data
classes and 7 god classes.

The evaluation required an authoritative
categorisation of god and data classes to act as a
baseline for the precision-recall analysis, so the
reviewers met along with the first author to try to
resolve the discrepancies. To assist the discussion,
notes taken by the reviewers during their initial
categorisation were used, as was the BeautyJ source
code and the debug output of the tool. The sources of
disagreement were debated and a consensus then
reached about their classification. The authoritative list
is shown in Table 1 along with the results produced by
the application of the automated technique to the
BeautyJ system.

4.3. Precision and recall results

A precision-recall analysis was performed
comparing the results produced by the automated
technique and the results from the manual inspection.
Recall was calculated as the ratio of god/data classes
retrieved by the automated technique versus the total
number of god/data classes in the system as defined by
the manual inspection. Precision was calculated as the
ratio of god/data classes (as defined by manual
inspection) retrieved by the automated technique
versus the total number of classes retrieved.

The initial precision and recall values for god
classes were 0.37 and 0.86, respectively, and for data
classes 0.59 and 1. The results suggest that the
technique has been successful in finding the majority
of problem classes but its accuracy is low. In particular
it appears that the technique detects a large number of
false positives. However, it will be argued in the
Discussion section that, on closer analysis, the
precision results in particular are actually much better
than this.

Table 1: Comparison of manual and tool results

Investigated classes T
oo

l
D

at
a

M
an

ua
l

D
at

a

T
oo

l G
od

M

an
ua

l
G

od

 T
oo

l
D

at
a

M
an

ua
l

D
at

a

T
oo

l G
od

M
an

ua
l

G
od

beautyjTask Yes No No No Code Yes Yes Yes No
Beautyj No No No No PackageMember No No No No
Main No No No No Exception Yes No Yes No
BeautyJ Yes No No Yes Import Yes No Yes No
Task Yes Yes No No Class Yes Yes Yes Yes
Type Yes Yes Yes No SourceParser Yes No Yes Yes
Package Yes Yes Yes Yes ParseException Yes Yes No No
ImportClass Yes No No No SimpleNode Yes Yes Yes No
MemberExecutable Yes Yes Yes No ParserConstants No No No No
Implementation Yes Yes No No Parser Yes No Yes Yes
SourceObjectDeclared Yes Yes Yes No JavadocParserTokenManager Yes No Yes No
Constructor Yes No No No JavaCharStream Yes Yes No No
Documentation Yes Yes No No JJTParserState No No No No
NamedIterator Yes Yes Yes No ParserTokenManager Yes No Yes Yes
ImportPackage Yes No No No JJTJavadocParserState No No No No
ClassInner Yes No Yes No JavadocParserConstants No No No No
DocumentationTagged Yes Yes No No JavadocParserTreeConstants Yes No No No
Field Yes Yes No No TextImage No No No No
ProgressTracker No No No No Token Yes Yes No No
SourceObjectDeclaredVisible Yes No No No TokenMgrError No No No No
SourceObject Yes Yes No No JavadocParser Yes No Yes No
Method Yes Yes No No Sourclet No No No No
DocumentationDeclared Yes Yes Yes Yes SourcletOptions No No No No
Member Yes Yes No No AbstractSourclet Yes Yes No No
Parameter Yes Yes Yes No StandardSourclet Yes No Yes Yes

4.4. Discussion

The results of the technique are overwhelmed by
the large number of false positives produced by both
the data and god class detection strategies. However, a
closer inspection of these false positives reveals some
valuable insights and suggests that the technique may
perform better than first appears.

4.4.1 Data Classes. A manual inspection of the sixteen
false positive data classes detected by the evaluation
surprisingly showed them all to be valid data classes!
In each case the classes were found to have either
public state or inherited data class characteristics from
a parent class. The reasons for the initial review failing
to detect so much public state are not clear. It was one
of the characteristics of data classes that the reviewers
were asked to detect and it was successfully detected
on a few occasions. It is possible that the formatting of
attributes in the source code or the relatively small size
of an attribute definition may not have drawn the eye
of the reviewers in the same way that method bodies
did. The reason for inherited behaviour being
overlooked is more straightforward. It is not part of the
standard literature advice so was not included in the
reviewer’s checklist. In addition it is difficult to detect
manually because it involves code which is disparately
placed within the system (providing yet further
evidence for the need for an effective manual
approach). These findings strongly suggest that the
false positives detected in this evaluation should be
reconsidered as valid data classes.

4.4.2 God classes. Twelve false positive classes and
one false negative god class were detected by the
evaluation. A manual inspection revealed that all of the
false positives contained access to data classes
suggesting that they should have been detected during
the review. However, it is possible that a number of
classes were misdiagnosed during the review because
of the particular difficulty of manually assessing god
class behaviour. This type of analysis requires careful
parsing of method bodies to detect call sites, which
must then be reified into a call to a particular type and
its implementation inspected to determine if it is an
accessor method. Given this process it would not be
surprising if a manual inspection overlooked some
incidents of data class access.

It is also possible that some classes were
overlooked because they did not demonstrate other

more visible god class properties and conform to the
stereotypical dominant procedural controller that is
often described in the literature. These might be easier
to detect than those which just use another class’s data
but this does not guarantee that they are genuine god
classes.

An example of one of these false positives is the
Type class in the BeautyJ system. This class shows
strong god class qualities in the
countArrayDimension(Node) method. This
method gets a list of children from its Node parameter
and iterates through this collection inspecting each
node for a particular id which determines if it is an
array. This couples the Type class unnecessarily to
details of the Node class. If Node changes how it
holds its children or how it models the identity of array
nodes then Type will also have to change. Moving the
behaviour from Type into the Node class would
decouple the two classes and also allow other users of
Node to benefit from the array counting functionality.

The particular feature that the false positive gods
appear to lack was the notion of control coupled with a
cyclic interaction of getting, manipulating and setting
data. This interaction can be difficult for a manual
review to detect but the dominant control structure is
easier to recognise. An indication that reviewers tend
to be drawn towards this style of class is given by the
one false negative god class that was found during the
evaluation (the BeautyJ class itself). A subsequent
manual inspection of the class revealed that it was not
a god class as it did not use state from another class.
The reviewers had concluded that it was a god on the
basis of its size name and procedural behaviour but the
lack of data access was overlooked. This is further
evidence of the need for an automated approach.
Manual inspections find identifying data accesses
difficult and can be persuaded by circumstantial
evidence to declare a god.

4.5. Reassessed scores

The problems inherent in manually detecting data
and god classes suggest that the precision-recall scores
may not accurately reflect the performance of the
technique. Adjusting the figures for the detection of
data classes results in precision improving to 1 with a
recall of 1. However, this may be generous for already
in extensions of this research we have noticed further
classes that are not canonical data classes, but
nevertheless expose some of their state. This issue
needs to be explored further. For god classes the
adjustment is more debatable because although the

technique detects encapsulation problems, they may
not all be true god classes, in the sense that they don’t
conform completely to the published stereotype.
Nonetheless if poor encapsulation is used as a criterion
the performance improves producing a recall of 0.94
and a precision of 0.84. It is our belief that raising even
minor breaches of encapsulation is beneficial as it may
indicate a problem in its own right or the start of a
bigger problem in the future.

5. A comparison with a metrics-based
approach

This section compares our heuristic based approach
with an existing metrics based one – that of
Marinescu’s [13] – with a view to analysing the
strengths and weaknesses of the two strategies. The
availability of a supporting toolset was the principle
reason for choosing Marinescu’s work as the basis of
this comparison. Both tools were run over two open
source systems: BeautyJ and JEdit but for reasons of
space only the BeautyJ results are reported here. Table
2 summarises the results of running both tools over
BeautyJ.

Table 2: Metric and heuristic results for the

BeautyJ system
 # classes Data God

Total 10 10 Metrics Unique 2 0
 Common 8 10

Unique 63 39 Heuristics Total 71 48

Considering firstly the detection of data classes, the

initial observation to make is the large difference in the
number of problem classes discovered by the two
approaches. The initial reaction to this is that
something somewhere is seriously wrong. The
explanation for this lies in the solution employed by
Marinescu, which is to filter the results obtained by his
technique so that it only returns the worst offenders.
This reduces the number of results returned but it also
hides some of the problem classes from the maintainer
and presents an unrealistic view of the state of the
system. Marinescu’s data class cut offs allow classes to
have up to three public fields and five data methods
before they are considered to be a problem. He also
requires an overwhelming ratio of data members to non
data members before detecting a data class. This limits
his technique to the detection of severe or pathological

cases and also prevents the early detection of some
problems when they might be easier to address.

If data exposure is a problem then each incidence
of exposure contributes towards that problem. It is
therefore important that when doing remedial work to
repair data encapsulation no incidence should escape
consideration. In addition inclusion based on the ratio
of data to non data should be irrelevant. If data is
exposed then the problem cannot be mitigated by
considering how good the behaviour is in the rest of
the class. A better solution is to rank the results by
their severity. Marinescu applies a ranking to his
results after they have been filtered but it would seem
better to forgo filtering and simply rank all of the
results returned. If this filtering is relaxed then the
results become much more comparable, but there still
remain two classes unique to the metrics-based
approach which are both very small inner classes –
something that our technique does not currently
analyse.

Our approach reports both the absolute number of
data leaks (public data and data methods) per class, and
the proportion of the class that these leaks constitute.
Ranking them by proportion most closely emulates
Marinescu’s ranking and leads to a similar set of
classes appearing in the top ten with the highest entries
clearly being canonical examples of data classes – all
public data and getters and setters. There are a couple
of exceptions though. Marinescu identifies the class
MapTableModel as being the 3rd most serious data
class, whereas we rank it as 56th! An investigation of
this class reveals two clear data leaks in the form of a
getter and a setter that both approaches detect, and two
methods that access only part of the data (in the form
of getting and setting an element of an array) that is
included in the metric count but ignored by us. The
other notable exception is the inclusion of the Token
class which, based on the propotional ranking appears
as 3rd in our approach as it has eight public data fields
and two methods – one of which is a toString()
which our approach detects as a data leak because it is
seen to be exporting state. This is clearly an erroneous
classification on our behalf – in an earlier version of
our system we included the heuristic that getters and
seters began with “get” or “set” but then removed this
as it was felt to be overly restrictive. The consequence
is the occasional mis-classification of toString()
methods as data accessors. This will be rectified in the
future.

Turning our attention to the god class detection the
same issue arises regarding the number of classes and
again the same explanation is given. Marinescu also

filters the god class results to isolate what he considers
to be the worst offenders. If this filtering was removed
the results would be much closer. As for the data
classes a ranking was created based on the proportion
of god methods (those which exhibit god-like
behaviour) in the class and compared with Marinescu’s
top ten results. Again there was a strong degree of
overlap (six of his classes appear in our top ten and
eight in our top fifteen). Considering the exceptions
again, Marinescu ranks the class GenericMetadata
as the 3rd god class, whereas we rank it as 36th.
Investigation of this approach reveals a number of uses
of data in associated data classes (our tool allows the
user to see the methods responsible and also the data
they are using), but nothing so significant to rank it so
highly. It would appear to be the values for WMC and
TCC that are promoting the class to this level. This is
in line with the traditionally accepted advice, but as
argued earlier in this paper, is by no means an
indication of god-like bahviour. In constrast our
approach ranks the Parser class as 5th, whereas it does
not make it into Marinescu’s filtered rankings. On our
analysis, this class contains ten god methods (methods
which make use of data leaks to potentially manipulate
the state of data classes) and no less than forty
individual manipulations of leaked data. This is a clear
advantage over the metrics approach which just counts
the number of external types referenced and does not
consider either the number or the nature of the
interactions.

 To summarise it is clear that the metric based
approach performs well, particularly in the simpler
case of the data class, but the limitations start to
become exposed when detecting data classes. The
power of the heuristic approach is in detecting the
subtleties of interactions and relationships between
classes by employing more sophisticated analysis (such
as improving the precision of the approach by
resolving polymorphic calls). However, this also
comes at a cost as computing these interactions can
take significantly longer. However, this should not be a
major issue for the maintainer of a system as the design
flaws can be computed once and then the results
explored, analysed and repaired over time.

6. Lessons

A number of lessons can be drawn from this study
regarding the efficacy of the technique, how its
findings affect what we know about data and god
classes and also how this work compares to the
existing literature. One initial observation is that the

static analysis approach employed has considerable
advantages over the existing metrics-based approaches.
For example, it permits polymorphic calls to be
resolved, allows the details of method behaviour to be
inspected, checks that the getters and setters are
operating on the sate of an object and considers
individual abuses of data leaks rather than a gross
count of the number of references that a class contains.
These features result in a more accurate analysis than
could be achieved by metrics alone.

6.1. Data class detection

The data class detector works very well and appears
to be an effective way to automatically identify data
classes in a system. The description of the internal
behaviour of accessor methods, the use of inheritance
and the detection of partial data classes appear to have
captured useful characteristics for detecting data
classes. Future studies should consider refining or
enhancing this set.

A related finding from the study is that data and
god class functionality can be forced onto a system
because of a desire to reuse functionality. If a class
library or code generation tool provides a data or god
centric API then there is little option but to follow a
similar decomposition in order to correctly reuse the
supplied class. In BeautyJ this restriction is illustrated
by the use of the JavaCC compiler generator [10]. This
is responsible for a number of god and data
dependencies found within the system.

6.2. God class detection

The god class detector works well in certain
circumstances but still needs work to improve its
generality. It detects classes which have encapsulation
problems (which includes all god classes) but many of
those detected have very small amounts of data sharing
behaviour and do not have a characteristic godliness
about them.

The description is still a useful platform for further
work. It has helped to focus attention on to the data
sharing behaviour of the god class, rather than more
circumstantial indicators such as size or cohesion. It
has also emphasized the importance of resolving
polymorphism to detect all data accesses. Future work
should continue in this direction by attempting to
account for how much data access there is in a class,
and using data flow analysis to try to determine how
the data is used by the potential god class and identify
those classes that are the really serious offenders.

7. Conclusions

A central tenet of object-oriented design guidance
is information hiding that encapsulates data and
functionality together in a balanced set of cooperating
classes. However, achieving this design goal in
practice is extremely challenging, especially for large
systems that are developed and maintained iteratively
over a long period of time. This paper has
demonstrated that it is difficult to detect these
problems manually but that a relatively straightforward
static analysis can identify a small set of problem areas
(or ‘bad smells’) that can then be isolated for detailed,
manual analysis.

The empirical evaluation based on the BeautyJ case
study showed that high accuracy in terms of precision
and recall can be achieved relative to a human analysis
of the system. The benefits of the approach are in terms
of time and scale. It took around 6 hours to perform the
analysis manually for a system of around 50 Java
classes. It is difficult to imagine human analysis being
carried out on industrial-scale systems that are orders
of magnitude larger than this. On the other hand, an
automated approach can accurately and repeatedly
identify god-data class boundaries that should be
considered for redesign and refactoring in a matter of
minutes.

This initial case study along with the comparison
with the metrics-based approach has demonstrated that
the approach has strengths but it requires further
investigation and refinement. The definition of data
and god classes used so far is relatively
straightforward. Further work will examine the
potential benefits of increasing the sophistication of the
analysis e.g. by detecting accessor methods that get
and set state partially or indirectly or by analysing the
pattern of data usage in god classes.

8. References

[1] M. Balazinska, E. Merlo, M. Dagenais, B. Lague and K.
Kontogiannis, “Advanced clone-analysis to support object-
oritented system refactoring”, Proc. Working Conference on
Reverse Engineering (WCRE 00), IEEE Computer Society,
2000, pp. 98-107.
[2] J. Bieman and B. K. Kang, “Cohesion and reuse in an
object-oriented system”, Proc. ACM Symposium on.
Software Reusability (SSR'95), ACM Press, Seattle,
Washington, USA, April 1995. pp. 259-262.
[3] A. Chatzigeorgiou, S. Xanthos and G. Stephanides,
“Evaluating Object-Oriented Designs with Link Analysis”,
Proc. 26th International Conference on Software Engineering

(ICSE'2004), IEEE Computer Society, Edinburgh, Scotland,
May 2004. pp. 656-665.
[4] S. R. Chidamber, C. F. Kemerer, “A Metrics Suite for
Object-Oriented Design”, IEEE Trans. Software Eng. 20(6),
IEEE Computer Society, 1994. pp. 476-493.
[5] K. Beck and W. Cunningham, “A Laboratory For
Teaching Object-Oriented Thinking”, Proc. Conference on
Object-Oriented Programming: Systems, Languages, and
Applications (OOPSLA’89), ACM Press, New Orleans,
Louisiana, USA. October 1989. pp. 1-6.
[6] I. Deligiannis, M. Shepperd, M. Roumeliotis and I.
Stamelos. “An empirical investigation of an object-oriented
design heuristic for maintainability”, Journal of Systems and
Software 65(2), February 2003, pp. 127-139.
[7] B. Du Bois, S. Demeyer, J. Verelst, T. Mens, M.
Temmerman, “Does God Class Decomposition Affect
Comprehensibility?”, IASTED Conf. on Software
Engineering, IASTED/ACTA Press, Innsbruck, Austria,
Feburary 2006. pp. 346-355.
[8] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts,
“Refactoring: Improving the Design of Existing Code”,
Addison Wesley, Reading Mass., 1999.
[9] Gulden, “BeautyJ”, http://beautyj.berlios.de/, 2006.
[10] JavaCC, “javacc”, https://javacc.dev.java.net/, 2006.
[11] M. Kleinberg, “Hubs, authorities, and communities”,
ACM Computer Surveys. 31(4es), ACM Press, New York,
NY, USA, 1999.
[12] Lorenz and J. Kidd, “Object-oriented software metrics”,
PTR Prentice Hall, Englewood Cliffs, New Jersey, U.S.A.,
1994.
[13] R. Marinescu, “Detecting Design Flaws via Metrics in
Object-Oriented Systems”, Proc. 39th International
Conference and Exhibition on Technology of Object-
Oriented Languages and Systems (TOOLS39), IEEE
Computer Society, 2001. pp. 173-182.
[14] R. Marinescu, “Measurement and Quality in Object-
Oriented Design” (PhD thesis), "Politehnica" University of
Timisoara, 2002.
[15] B. Meyer, “Object-oriented Software Construction”,
Prentice Hall, Upper Saddle River, NJ, USA, 1988.
[16] A. J. Riel, “Object-oriented Design Heuristics”, Addison
Wesley, Reading Mass. 1996.
[17] F. Simon, F. Steinbruckner, and C. Lewerentz. “Metrics
Based Refactoring”, Proc 5th Conference on Software
Maintenance and Reengineering, (CSMR 01), IEEE
Computer Society, Lisbon, Portugal, March 2001. pp 30-38.
[18] T. Tourwé and T. Mens, “Identifying Refactoring
Opportunities Using Logic Meta Programming”. Proc 7th
Conference of Software Maintenance and Reuse (CSMR
2003), IEEE Computer Society, Benevento, Italy, 2003. pp.
91-100.
[19] M. Wood and M. Roper, “52.361 Group Project”,
http://www.cis.strath.ac.uk/teaching/ug/classes/52.361/,
2006.

