
A Workload Model for Benchmarking BPEL Engines

George Din
Fraunhofer FOKUS

Berlin, Germany
din@fokus.fraunhofer.de

Klaus-Peter Eckert
Fraunhofer FOKUS

Berlin, Germany
eckert@fokus.fraunhofer.de

Ina Schieferdecker
Technical University of Berlin and,

Fraunhofer FOKUS, Berlin, Germany
schieferdecker@fokus.fraunhofer.de

Abstract

This paper describes a benchmarking workload model
for Business Process Execution Language (BPEL) Engines
for Web Services. The proposed model is based on simula-
tion of real world traffic conditions by defining a set of re-
quirements which best characterize the end-users. The per-
formace characteristics are evaluated on top of collected
measurements such as success/fail rate, response times or
round-trip delays which are then used to identify problems
for scalability or usability aspects under heavy load.

1 Introduction

A benchmark evaluates the performance of a system by
monitoring the system while it is being exposed to a partic-
ular workload [10]. The activity to select and define a work-
load is called workload characterization [4] and it has the
goal to produce models that are capable of describing and
reproducing the behavior of a workload. There are different
ways to characterize the workload. The simplest approach
is based on collecting data for significant periods of time in
the production environment [9]. These representative work-
loads are then used to determine system performance for
what it is likely to be when run in production. One issue is
that the empirical data is not complete or not available when
creating new technologies [5]. In these situations, partial
data can be collected from similar systems and may serve
to create realistic workloads. Other approaches are based
on modeling formalisms such as Markov chains [6] or Petri
networks [8] to derive models for the workload which are
then used to generate performance tests.

The Web Services Business Process Execution Language
WS-BPEL 2.0 [2], standardized by the OASIS consortium,
is today’s most commonly used language for the specifica-
tion of orchestrated Web services. WS-BPEL is an XML
based language that is used to describe the flow of infor-
mation and control between Web services. BPEL processes

are executed in so called BPEL engines that are often im-
plemented as plug-ins to common Web/Application servers
as Tomcat. These engines provide a complete run-time
environment for concurrent BPEL processes that are trig-
gered by respectively trigger themselves distributed Web
services. This paper describes the interdependencies be-
tween the configuration of a BPEL engine and its perfor-
mance, utilizing the open source engine ActiveBPEL [3].

This paper is structured as follows. After the introduc-
tion, Section 2 presents the benchmarking methodology.
The tool built on top of this methodology is briefly de-
scribed in Section 3. In Section 4 we apply the bench-
marking concepts to evaluate the performance of the Ac-
tiveBPEL engine. The paper ends with conclusions and out-
look section.

2 Benchmarking Methodology

A benchmark consists of three main elements: test sce-
narios, benchmark tests which instantiate the scenarios, and
benchmark test reports generated out of execution traces.

Test Scenario. An individual interaction path is called a
test scenario and it is described by its message flow between
the talking entities. An example for a test scenario message
flow is presented in Fig. 1. A message flow consists of an
arbitrary number of transactions (at least one); each transac-
tion describes the request type, its associated response type
and a maximal response time. If, during the execution, the
response time exceeds the maximal response time, or if the
response does not match the expected response type, the
transaction counts as inadequately handled scenario (IHS).

Performance Metrics. For each test scenario, metrics
and design objectives are defined. Typical metrics include
test scenario outcome, response times and message rates.
The design objectives (DO) define the threshold values
which are used to compute the metrics. They are of two
types:

- design objectives for delays e.g. maximal time until a
response is received

1



Figure 1. A Test Scenario Example

- design objectives for error rates e.g. threshold for allowed
percentage of errors out of the total number of scenarios.

Design Objective Capacity. If during the benchmark ex-
ecution, the rate of failed test scenarios goes above a pre-
defined limit (for example 0.1%) then the SUT has reached
its Design Objective Capacity (DOC). The DOC indicates
the overload performance limit of the SUT and it represents
the threshold for the accepted QoS. It is however, the out-
put number which globally characterizes the performance
of the tested system. The DOC can be used as capacity in-
dicator for the overall performance of the system but also
for comparison with other systems.

Benchmark Test. A benchmark test combines differ-
ent test scenarios into a traffic set. Within a traffic set,
each test scenario has an associated relative occurrence fre-
quency which indicates how often a test scenario should be
instantiated. The occurence frequency is defined as para-
meter, therefore, various configurations can be easily ex-
perimented. The execution of a benchmark test implies that
the selected test scenarios are executed at the same time.
Each started test scenario becomes a scenario attempt. The
load rate applied to the SUT is called Scenario Attempts per
Second (SAPS). When the frequency of IHS exceeds a pre-
defined threshold, then the design objective capacity (DOC)
has been exceeded.

Test Procedure. The benchmark execution consists of a
sequence of several benchmark steps in order to measure
the DOC of the tested system. After the execution, we val-
idate whether the threshold for the DOC has been reached
by investigating if the rate percentage of inadequate handled
scenarios (IHS) goes above a threshold (i.e. 0.1%). We ex-
tend the execution trials until we find a load at which the
error rate is below the threshold and another load at which
the error rate exceeds the threshold. At this moment we de-
cide to stop the test and consider the lower load value as the
DOC of the tested system.

Test Parameters. The benchmark test parameters are
used to control the behaviour of the test script. Such para-
meters have to be defined for any benchmark in order to al-
low the tester tune the load generation before the execution.

The most important parameters are: the number of users,
the amount by which the scenario arrival rate is increased,
the number of steps in a benchmark test, the amount of time
for a test to be executed with a given system load (a test
step) before incrementing the load.

Benchmark Report. The benchmark report is gener-
ated after the execution of a benchmark test. The report
contains a full description of the SUT configuration, the TS
configuration, the process used to generate the system loads
at each SUT reference point, and data series reporting the
benchmark metrics as a function of time. Some of these
graphs are presented in Section 4.

3 Benchmark Implementation

The prototype implementation is based on the TTCN-3
[7] language which is used to specify the behavior of the
benchmark tests. The main reason for this selection is
that TTCN-3 as a standardised test language has been in-
creasingly accepted in the industry as test specification lan-
guage. Additionally, various features offered by this lan-
guage make it a suitable technology to implement bench-
mark tests.

In TTCN-3, the parallelism is realized by running in par-
allel a number of test components. The load is generated
by a SenderComponent. Each call created by the load
generator is associated to an EventHandler, which will
handle all required transactions for that call. The number
of EventHandlers is arbitrary and depends on the number
of simulated users and on the performance of the hardware
running the test system.

The behaviours of the test components are defined as
functions. A function is used in benchmark tests to specify
client activities within a test scenario. A simulated user may
behave in different ways when interacting with the SUT,
thus the test system may need different functions imple-
menting different client behaviours.

The current implementation supports the execution of
different types of test scenarios at the same time. The tool
can run up to 10000 parallel users, each user acting as a sep-
arate entity. The DOs are evaluated offline on top of the ex-
ecution measurements. The measurements are then used to
derive performance metrics; the most important are: SAPS,
transaction latency, IHS%.

4 Case Study: BPEL Engine

The Web Services Business Process Execution Language
WS-BPEL 2.0 [2] standardized by the OASIS consortium
is today’s most commonly used language for the specifi-
cation of orchestrated Web services. A BPEL process can
be designed using synchronous or asynchronous commu-
nication patterns. A synchronous process behaves like an



RPC server (receive-reply) while an asynchronous process
follows a message based receive-send pattern utilizing the
invoker’s callback interface. The specification of the BPEL
process comprises the definition of the information flow re-
spectively the control flow between the process activities.
These activities can be assignments to process variables or
parallel respectively sequential invocations of other Web
services.

Every time a BPEL process receives a triggering request
message the run-time environment, which is called BPEL
engine, has to decide if this message has to be routed to an
existing instance of the process or if a new instance has to
be created. This decision process is specified in the process
itself. Every receive statement has a textual attribute that de-
fines if a new instance should be created in case the process
is triggered by a corresponding message. Additionally the
concept of correlations is used to define correlated invoca-
tions of a process instance, based on the value of selected
input and/or output parameters of the message. Depending
on these correlations the BPEL engine decides if an incom-
ing message should be dispatched to an existing process in-
stance or if a new instance should be created.

Thus, every BPEL engine must be able to man-
age an unpredictable number of concurrent instances of
BPEL processes that are associated to the different BPEL
processes that have been deployed on the engine. Differ-
ent threads have to be allocated and assigned to the exter-
nal and internal events that may occur during the execution
of a BPEL process. Appropriate policies for the manage-
ment of the engine’s message queues have to be established.
Depending on the implementation of the chosen BPEL en-
gine the configuration of these properties can be either hard
coded or adjustable by the engine’s administrator. The be-
haviour of the engine and especially its performance de-
pends heavily on the chosen configuration parameters.

The analyzed ActiveBPEL engine running in a Tomcat
environment uses the concept of Work Managers devel-
oped by BEA and IBM for the implementation of the en-
gine’s default behaviour. A work manager provides a sim-
ple API for application-server-supported concurrent execu-
tion of work items. This allows to schedule work items
for concurrent execution. The work manager provides com-
mon ”join” operations, such as waiting for any or all work
items to complete. The Timer and Work Manager for Ap-
plication Servers [1] specification provides an application-
server-supported alternative to using language-level thread-
ing APIs. The administration tool for the ActiveBPEL en-
gine allows to specify the minimum and maximum num-
ber of work manager threads that can be used by the en-
gine. Additionally several timeout values for Web services
responses or unresolved correlations can be specified [3].

Including the possible configuration attributes of a Web
Server like Tomcat there are several ways to affect the be-

haviour of a BPEL engine. Because current BPEL engines
offer mostly poor possibilities and related documentation
for run-time configuration and especially the interdepen-
dencies of different attributes of an engine it is necessary
to evaluate the effects of different configuration parameters
utilizing appropriate test mechanisms.

Figure 2. Example of a system load of 20
SAPS

For this purpose, we have used a simple BPEL process
that consists of two steps. In the initialization phase a new
process instance is created and returns its process identifica-
tion to the caller. In the second phase the instance is called
again using the process identification as a correlation. The
process returns with a local time stamp and idles for a speci-
fied time before its termination to simulate the situation that
several concurrent processes are running in the BPEL en-
gine.

Figure 2 provides an example of a benchmark test with
a system load of 20 calls per second applied to an Ac-
tiveBPEL engine installed on a Pentium 4 PC with 3.0 Ghz
CPU and 768 Mb memory. We modified the default config-
uration of the ActiveBPEL engine by increasing the “Work
Manager Thread Pool Max” to 1000 and by setting the size
of the Java heap to 512 Mb. Additionally, we also increased
the number of parallel threads in the Tomcat server to 1000
(the default value is 150). These modifications were neces-
sary, since, for the default configuration, the ActiveBPEL is
either running out of memory or it is running out of avail-
able threads. The test simulates 2000 users and applies the
load for a duration of 2 minute. These values are selected
arbitrary and can be configured as test parameters. The up-
per line shows the applied system load of 20 SAPS which
means that the test system is initiating each second 20 BPEL
processes. The lower line indicates the rate of errors which
is drawn as a percentage out of the initiated calls. This line



shows an increase of the error rate up to 10% after the first
20 seconds but the SUT is capable of recovering from this
situation and it can sustain the load without any further er-
rors.

Figure 3. Average latency of process initial-
ization

In the first phase we are able to measure and compare the
time a BPEL engine needs to create a process, in the second
phase we are able to measure the time the engine needs to
activate the possibly dehydrated process. The SUT latency
(i.e. response time) is reported separately in another type of
graph, for each type of request. Figure 3 shows the average
latency of process initialization operation corresponding to
the benchmark test described above.

In the simulation scenarios we have used different work-
loads to check the performance and reliability of the BPEL
engine depending on the number of parallel invocations and
concurrent processes. In parallel we have used different
numbers of the working threads and compared the perfor-
mance of ActiveBPEL engine running on Tomcat.

We initially evaluated the ActiveBPEL SUT for short test
durations, e.g. 2-5 minutes. During this test campaign we
discovered the limit of 150 threads of the Tomcat web con-
tainer and the thread pool limit of the BPEL engine. How-
ever, these are configuration parameters which can be opti-
mized for better performance. At a later stage, we decided
to increase the duration of the test runs to 30 minutes with
the purpose to investigate whether the performance remains
the same or not. Unfortunately, even for low system loads
the SUT ran out of memory and, consequently, it cannot cre-
ate processes anymore. This problem is detected at the test
system side as an increase of the fail rate to 100% shortly af-
ter the “out of memory” exception occured. This problem is
related to the number of parallel processes active at the same
time. The ActiveBPEL engine keeps all these processes in

memory, therefore, the longer the processes live, the faster
the “out of memory” exception occurs.

5 Conclusions

This paper presented the design of a benchmark tool ca-
pable of evaluating the performance of BPEL engines for
configurable workloads. The approach describes the con-
cepts of test scenarios, test procedures, metrics and design
objectives as a general method to describe workloads on a
common basis.

The current experiments have been executed with a
workload which consists of two operations only (but fairly
enough to measure the response time of the BPEL engine at
process creation and initialization). In future we intend to
extend the workload with more operations which should oc-
cur after process creation. We expect that the performance
of the BPEL engines will definitely suffer due to workloads
with different parallel test scenarios. Adding more opera-
tions to the test scenarios will automatically also result into
a longer duration of the processes lives which will cause that
the BPEL engine will be able to create even less processes
during the benchmark execution time.

References

[1] Timer and work manager for application servers.
http://dev2dev.bea.com/wlplatform/commonj/twm.html.

[2] Web services business process execution language version
2.0.

[3] Activebpel development server user’s guide, 2007.
[4] A. Avritzer, J. Kondek, D. Liu, and E. J. Weyuker. Soft-

ware performance testing based on workload characteriza-
tion. pages 17–24, Rome, Italy, 2002. ACM. ISBN 1-58113-
563-7.

[5] S. Barber. Creating effective load models for performance
testing with incomplete empirical data. In Web Site Evo-
lution, 2004. WSE 2004. Proceedings. Sixth IEEE Interna-
tional Workshop on, pages 51– 59, 2004. ISBN 1550-4441.

[6] M. Beyer, W. Dulz, and F. Zhen. Automated ttcn-3 test case
generation by means of uml sequence diagrams and markov
chains. ats, 00:102, 2003. ISSN 1081-7735.

[7] ETSI. ETSI European Standard (ES) 201 873-1 V3.2.1
(2007-02) The Testing and Test Control Notation version 3;
Part 1: TTCN-3 Core Language, 2007. Sophia-Antipolis,
France.

[8] S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo. Soft-
ware performance modelling using pepa nets. pages 13–23,
Redwood Shores, California, 2004. ACM.

[9] Y. Liu, I. Gorton, A. Liu, N. Jiang, and S. Chen. Designing
a test suite for empirically-based middleware performance
prediction. pages 123–130, Sydney, Australia, 2002. Aus-
tralian Computer Society, Inc. ISBN 0-909925-88-7.

[10] A. J. Smith. Workloads (creation and use). Commun. ACM,
50:45–50, 2007.


