
A Benchmarking Suite for Measurement-Based WCET Analysis Tools∗

Sven Bünte
Technische Universität Wien

1010 Wien, Austria
sven@vmars.tuwien.ac.at

Michael Tautschnig
Technische Universität Darmstadt

64289 Darmstadt, Germany
tautschn@model.in.tum.de

Abstract

Worst case execution time analysis based on measure-
ments requires large test suites to obtain reliable numbers.
We are thus developing tools to efficiently generate these
test sets in a whitebox-testing approach.

To make project progress measurable and guard against
regressions, a benchmarking suite is sought for. We present
a set of requirements that have been collected and outline
the design of a benchmarking tool-set. While we are cur-
rently developing our domain-specific tool chain, we as-
sume the presented architecture to be sufficiently general.

1 Introduction

In the FORTAS project [1] we are concerned with exe-
cution time analysis of embedded software, focusing in par-
ticular on control software written in C. We try to satisfy the
industrial demand for a method and a tool that (a) is more
reliable and predicable than ad hoc testing, (b) requires lit-
tle knowledge of the target hardware, and (c) is fully auto-
mated.

Unlike the static analysis based approach [3, 4], our mea-
surement based [6] analysis requires large test suites to ob-
tain reliable results. We are thus developing tools to ef-
ficiently generate these test sets in a whitebox-testing ap-
proach.

In developing such a tool we require two kinds of bench-
mark suites. First, effective testing of the resulting tool must
be supported, guarding against regressions and performance
degradations. Second, a data base of C programs has to be
acquired to quantify and compare our measurement results.
In this paper we describe a set of key requirements that have
been identified during the design of our benchmark suite
and its related tools.

∗Supported by DFG/FWF grant FORTAS – Formal Timing Analysis
Suite for Real Time Programs (VE 455/1-1).

2 Requirements Identified in FORTAS

The FORTAS project focuses on analyzing embedded
control software written in C (including machine code frag-
ments). We are especially interested in structural aspects of
the program under test, e.g., loop structures or the amount
and nesting depth of conditional statements. Furthermore,
several target platforms and compilers should be supported.
User information about the program under test, such as loop
bounds, have to be incorporated into the analysis.

The performance analysis of the framework in terms of
time and memory usage, as well as the accuracy of com-
puted resource consumptions (time and power) turn out to
be the main requirements for our benchmark suite. In or-
der to perform functional validation as well, regression tests
must be provided, too. This calls for storing expected out-
put behavior and to relate it accordingly.

This persistence should also provide means to compare
results of different tools of the FORTAS tool chain and/or
different versions thereof. These results comprise the es-
timated worst-case execution time, or the gained code-
coverage with respect to different metrics (statement cov-
erage, condition-coverage, MC/DC, . . . ). Another part of
the result is generated test cases for the benchmark. Those
might be useful for a subsequent analysis of another pro-
gram under test (e.g., a slightly different version of the
benchmark). Therefore, these test cases must be referenced.
The presented requirements so far entail a need for version-
ing of benchmarks on the one hand and their results on the
other hand.

The user should be able to select specific subsets of all
benchmarks in the suite. To allow for an effective imple-
mentation of the search, tags may be attached to each bench-
mark. These tags may be user-defined (e.g., application do-
main of benchmark, intended compilers or target platforms,
author name, . . . ), but also results of automated analysis
of the code if conceivable (programming language, loop
structures, lines of code). The reflected properties may also
be custom tags. Another feature could be a guided semi-
automatic tagging procedure, where the user is asked about



properties like “Where did you get the benchmark from?”
with predefined options to select from.

Due to the distributed nature of the project, also the test
suite must support collaborative and distributed work. Se-
curity is a main issue here, since the non-private links will
be involved. Some benchmarks might be subject to non-
disclosure agreements for which user privileges must be ad-
ministrated.

3 Sharing Benchmark Suites

When planning the benchmarking suite, we observed
that locally various research groups had already collected
or created benchmark sets to derive performance properties
of their individual tools and approaches. These sets turned
out to be applicable for other research groups as well. Con-
sequently, the design of a benchmark suite that reasonably
abstracts from individual needs will enhance productivity.
We thus define our first goal: The suite must be sufficiently
generic.

Yet, research of prior art on published benchmark suites
yielded only few results [2, 5, 7, 9]. We thus gather that
a way for publishing and exchanging benchmarks must be
found. While intellectual property may be an issue in in-
dustrial corporations, our local research led us to the as-
sumption that a large number of benchmark sets do exist.
These could be made available, but only very few of them
are published. Still, to support industrial collaborations in-
volving non-disclosure agreements, a benchmark provision-
ing system must offer both authentication and authoriza-
tion. Based on this identity information, different levels of
access and privacy may be configured. Of course, this also
requires secure remote access.

Towards a Possible Architecture

We aim at a set of tools and the necessary environment
to allow effective benchmarking of the FORTAS tool chain.
The properties to be checked of the system under test are
(1) completeness of features as described in our internal ar-
chitecture document and (2) absence of regressions from
earlier versions of the tool chain. Further, (3) performance
tests in terms of time consumption and memory usage, both
in absolute values and relative to that of our competitors.

To enable this, benchmark results must be stored. That
is, both tool output and measurable results, depending on
domain specific metrics, must be retained. First, such a per-
sistence layer must provide versioning to retain the history
of benchmarking. Second, a proper frontend with support
for queries over the results must be provided. Besides na-
tive tools, a high-level interface would be nice in the face of
usability. Third, we expect a high number of benchmarks,
which incurs large result sets. Thus scalability is of ultimate

concern. As such, current relational database systems are—
pending benchmarking—presumably appropriate. Thereby
we also satisfy additional requirements: A user may add
a set of domain specific tags to benchmarks for later se-
lection of subsets. Further, overviews and summaries shall
be provided, given certain selection criteria. We stress that
both requirements are very involved with the domain and
must be highly configurable by the user. Even more so, two
users of the suite may be interested in different aspects of
the benchmark, thus the tagging shall support user-specific
tags as well.

4 General Applicability

We figured out that requirements for a benchmark suite
can be generalized for our local research groups. Concern-
ing the matter of public convenience, a generic design is
therefore essential. We claim that the ability to assign tags
to benchmark programs and results meets this major re-
quirement. Tools can assure that these tags are set according
to common standards. However, the user is still free to cre-
ate and set tags individually.

Another advantage of this approach is that once domain-
specific constraints on tags are defined and ordered hier-
archically, tools that verify the compliance of these stan-
dards can be applied in the very same order. As an exam-
ple, at first the user is guided by a tool to set very general
attributes like intended application domain or benchmark
source. Then another tools takes care that more specific
properties are specified, e.g., programming language. This
procedure is to be continued until all standards have been
considered.

5 Proposed Architecture

To achieve the goals outlined above, we build our frame-
work upon two distinct databases, as shown in Fig. 1. First,
benchmark suites and test results are kept in a subversion
repository. This (a) caters for versioning of both bench-
marks and results, (b) is well suited for the expected major
part of plain text data, (c) supports copying and modifying
benchmarks while retaining their history with little over-
head, and (d) provides hooks for automated updates of an
associated relational database. This database is used to keep
track of tags and benchmark summary information, which
can then be queried efficiently. Upon a query, if necessary,
a set of benchmark identifiers is returned, such that the cor-
responding benchmarks can then be pulled from the sub-
version repository. It is conceivable that tags are kept in
the subversion repository as well, which would allow for a
database rebuild at any time.

We note that both subversion and current relational
database implementations provide authentication and au-



thorization mechanisms, including different levels of ac-
cess. Further, secure transport using HTTP over SSL is eas-
ily implemented. Following recent trends we might even
consider the benchmarking suite as a web service.

Subversion
repository

Developer

FORTAS
tool chain

Query
management

Relational
database

New test data/results
Query

Benchmark
identifiers

Tags, benchmark summary 
information, identifiers

Benchmark
results

Query,
benchmark

results

Benchmark
summaries,

results

Figure 1. Sketch of the proposed architecture

The workflow, as depicted in Fig. 1, is envisioned as fol-
lows. Once a test run has finished, the results and the in-
volved benchmarks are committed to the subversion repos-
itory in an automated fashion. This commit includes envi-
ronmental information, such as the version of the tool chain
under scrutiny, and possible user-defined tags. Further, in
regression tests using the diagnostics framework [8], con-
formance with expected results is tested for and stored in
the repository. Apart from this it is still to be determined
which properties of test suites and test results require user
interaction to define the values stored in the database.

6 Conclusions

We presented the current status of the benchmarking tool
chain to be used in the FORTAS project. Even though
some of our requirements may be specific to the domain of
measurement-based timing analysis, we presented an archi-
tecture that we consider sufficiently generic to be deployed
in many kinds of software testing toolkits.

Acknowledgments. We are grateful to Andreas Holzer,
Raimund Kirner, Bernhard Rieder, Christian Schallhart,
Helmut Veith, Ingomar Wenzel, and Michael Zolda for dis-
cussions on the topic of this paper.

References

[1] The FORTAS project, a Formal Timing Analysis Suite.
http://www.fortastic.net, 2007.

[2] Embedded microprocessor benchmark consortium. http:
//www.eembc.org/.

[3] C. Ferdinand, D. Kästner, M. Langenbach, F. Martin,
M. Schmidt, J. Schneider, H. Theiling, S. Thesing, and
R. Wilhelm. Run-Time Guarantees for Real-Time Systems
— The USES Approach. In Proceedings of Informatik ’99 –
Arbeitstagung Programmiersprachen, Paderborn, 1999.

[4] C. Ferdinand, F. Martin, R. Wilhelm, and M. Alt. Cache be-
havior prediction by abstract interpretation. Sci. Comput. Pro-
gram., 35(2-3):163–189, 1999.

[5] IRIT. Paparazzi: Unmanned Aerial Vehicle Soft-
ware. www.irit.fr/recherches/ARCHI/MARCH/
rubrique.php3?id rubrique=97.

[6] R. Kirner, P. Puschner, and I. Wenzel. Measurement-based
worst-case execution time analysis using automatic test-data
generation. In Proc. 4th Euromicro International Workshop
on WCET Analysis, pages 67–70, June 2004.

[7] Mälardalen Research and Technology Centre. The
Worst-Case Execution Time (WCET) analysis project.
http://www.mrtc.mdh.se/projects/wcet/
benchmarks.html.

[8] C. Schallhart. Diagnostics – A framework for logging,
unittesting, and runtime diagnostics. http://packages.
debian.org/diagnostics, 2008.

[9] University of Michigan. MiBench Version 1.0. http://
www.eecs.umich.edu/mibench/.


