
Test Benchmarks – what is the question?

Per Runeson, Mats Skoglund, Emelie Engström
Software Engineering Research Group

Lund University, Sweden, per.runeson@cs.lth.se

1. Introduction
“I am taller than you”.
“My dad is stronger than yours”.

Kids do not grow very old until they begin
benchmarking. They benchmark to impress on their
mates and to give themselves a position in the group.
But what does the benchmark mean when the child
wants to reach the cookies on the top shelf of the
larder? Although being the tallest, he might not be tall
enough to reach it anyhow, and his father might not be
there to lift him up. And if he was, he would not allow
his kids to take those cookies anyhow.

In the automotive press, there are lots of
benchmarks. Acceleration from 0 to 100 km/h or 0 to
60 mph is a frequently used benchmark. But how often
do you accelerate as fast as possible from 0 to 100
km/h? Similarly is the power and the torque of the
engine benchmarked, but rarely it is noticed whether
the power is delivered at revs which are useful in my
daily driving or at top revs. And I rarely use more than
some 25 kW to run my car, although I have access to
hundreds. Furthermore, the EuroNCAP1 and NTSB2
do benchmarks on crash resistance and rate car models
according to their resistance to the benchmark tests.

When software test researchers benchmark, they
use some well specified sets of programs and apply
and evaluate their test techniques. The programs are
mostly selected based on availability, and sometimes
also made available for others; see e.g. the Software-
artifact Infrastructure Repository3, although this
particular example does not have the ambition of
constituting benchmarks [2]. However, before judging
whether the benchmarks are useful or not, we should
consider what it should be used for. What is the
question we want to answer with a benchmark?

1 The European New Car Assessment Programme
http://www.euroncap.com
2 The National Transportation Safety Board
http://www.ntsb.gov
3 http://sir.unl.edu

2. Uses for test benchmarks
From a practitioner’s point of view, the benchmark
must focus on the feasibility for the use of the
benchmarked techniques and tools in a specific
context. “Is this test technique more efficient than the
other for my software system?” This is however not a
question that can be answered by a single benchmark.

From a researchers’ point of view, we have learned
that empirical evaluation is good research while blunt
assertion is not [1]. Hence, we must have some context
in which we may evaluate our techniques and tools.
And there is always an issue of relevance; can this be
used and useful in software industry?

The benchmarking question involves many degrees
of freedom that may impact on the outcome. It is not
only the program under test, but its test cases, the
defects, its development environment, its development
process etc. Hence, the issue of benchmarking is very
complex and we find it too ambitious to search
benchmarks that mirror all this variation,; rather some
specific aspects may be studied at a time.

In the automotive domain, where benchmarking
frequently takes place, the specific benchmarks may
not be of highest relevance, but they are indicators that
represent some attributes of the car that a customer
may give priority or not. I would choose a car making
0-100 km/h in 5 seconds if I like fast driving (and I can
afford it) while for a family car, 0-100 km/h in 10
seconds is sufficient to keep up the daily traffic pace.
For crash resistance, I may prefer a five star Euro
NCAP rated car before a three star, even though I do
not intend to crash it from 64 km/h (40 mph) into a
concrete barrier. In this area, the benchmarking
procedures have forced car manufacturers to make
more crash resistant cars in general in order to fulfill
the customer’s demands.

In the testing context, benchmarking may be used
to indicate specific characteristics (like the
acceleration) or be a driving force in a general
improvement trend (like crash tests). One of the key
issues in finding benchmarks is the representativeness
of the benchmark as such. What does it mean in

practice that one technique is better than another for a
given benchmark?

3. Representativeness
In order to generalize a result from a small set of
subjects to a wider population, sampling is applied. For
example in national polls or other surveys, a subset
from the population are sampled, interviewed about
their opinions and conclusions are drawn for the whole
population [3]. The sample represents the whole
population in a statistical generalization. The
underlying principles are that the random variation
among the subjects is captured in the sample within an
acceptable error margin. This is the underlying
principle for controlled experimentation.

In qualitative design research, like case studies, the
selection is different. The case to be studied is selected
to represent e.g. the typical or the special case [4]. The
case cannot be generalized to a wider population
through statistical analyses. Still one may learn from a
specific case and apply the knowledge to another
specific case. In case studies you apply analytical
generalization. In analytical generalization, the case is
characterized and compared to other cases to identify
patterns which may indicate some general
understanding drawn from the specific case.

The search for testing benchmarks may take either
way: the statistical or the analytical approach. The
former means defining a population of software
programs, sampling from that population and selecting
a representative subset which the test techniques may
be applied to for evaluation. The statistical approach is
desirable but impractical and must hence be excluded.
The analytical approach is closer to what is already
done, i.e. using a set of programs, and then generalize
the results from the studies analytically.

The analytical approach may be supported by
categorization scheme that guides the analytical
generalization. Depending on the scope of the
evaluated item, benchmarking may be very different,
which is elaborated in the next chapter.

Refer to the car crash tests again. Sampling from all
possible crashes and repeating a subset in the
laboratory would enable calculating a risk factor for a
certain car with a specified statistical significance, i.e.
statistical generalization. The approach actually used is
that some typical crash situations with frontal and side
impact are repeated in the laboratory, i.e. analytical
generalization.

4. Variation factors
In the effort for finding typical or special cases or
subject programs to be used for benchmarking
purposes, many variation factors must be considered.
Variation factors may be regarding the program under
test, its specifications, the test technique or tool, or the
test process or the defects. Factors may be related to
the product under test, the test process or the test
resources. Below we list some, based on our
experience from test research:

Process factors
• Does the technique require specification

documents, e.g. UML diagrams?
• Programming language(s) – is the technique

applicable to the programming languages used?
What if the there are different languages? If
source code is not accessible?

• How many and which type of changes are made
between successive releases?

• What is the purpose of the test technique/tool?
Test case selection? Test case prioritization?

• Is the technique deterministic, i.e. selects the same
test cases independently of who applies it?

• Which types of test are within the scope? Unit
test? System test? GUI tests?

Product factors
• Size and complexity – is the program large and

complex enough to be relevant for the real world
problem?

• System type – which type of system is it? Real-
time systems vs. batch?

• Libraries – how is it dependent on code libraries
and their changes?

• Test cases – what size are the test cases, and do
they depend on each other?

• Test data – are they complex enough to be
relevant for real world problems?

• Defects – are the numbers, types and distribution
of defects relevant?

Resource factors
• Which skills and knowledge do the testers and test

designers have?

These variation factors must be taken into account
when defining test benchmark programs and processes.

5. Proposal
Based on the considerations above, we propose the
following for test benchmarks:
1. Define categories for benchmarked methods to

avoid comparing “apples with oranges”, e.g.
comparing safe test selection methods with unsafe.

2. Look upon benchmarks as selected cases, not
representative samples, and interpret
benchmarking results accordingly.

3. Define a characterization scheme to capture the
relevant degrees of freedom that characterize a test
environment.

4. Define not only a set of benchmarking programs,
but also the corresponding test cases, defects,
execution environment and test processes used.

5. Combine benchmarking results with case studies
to analyze both a controlled environment and a
real world environment where the interactions
between the test technique and its environment
can be studied as well.

In summary, the answer is not only a benchmark, but a
benchmark in its context. Benchmarking is not aimed
at statistical generalization, but analytical. The focus is
on the typical or the special situation, not on the
“average” situation.

References
[1] Shaw M What makes good research in software
engineering? International Journal on Software Tools for
Technology Transfer Springer 4(1):1-7, 2002

[2] Do H, Elbaum S, Rothermel G, Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure
and its Potential Impact, Empirical Software Engineering,
10, 405–435, 2005

[3] Wohlin C, Höst M, Ohlsson MC, Regnell B, Runeson P,
Wesslén A Experimentation in Software Engineering - An
Introduction, Kluwer 2000

[4] Yin R K Case Study Research. Design and Methods
(3rd edition) London: Sage, 2003

	1. Introduction
	2. Uses for test benchmarks
	3. Representativeness
	4. Variation factors
	5. Proposal
	References

