Curriculum Vitae for Professor Neil Ghani

Personal Details:

Name: Prof. Neil Ghani D.O.B.: 21 July 1967
Address: Dept. of Comp. and Inf. Sci., Nationality: British

University of Strathclyde,

Livingstone Tower, Glasgow,

Scotland Email: ngQcis.strath.ac.uk

Academic Qualifications:

October 1990 to June 1995

October 1989 to June 1990

October 1985 to June 1988

Career History:

March 2024 to June 2024
August 2017 to May 2023
November 2014 to August 2017
July 2008 —

September 2005 to July 2008
September 1998 to August 2005
January 1997 to August 1998

December 1995 to Dec. 1996

Adjoint Rewriting
Ph.D. in Computer Science, supervised by Prof Don Sannella
L.F.C.S., Dept. of Comp. Sci., Univ. of Edinburgh.

M.Sc. in Computation.
Balliol College, Oxford University, Oxford.

B.A. Hons 2:1 in Mathematics.
Pembroke College, Oxford University, Oxford.

Symbolica, an ML start up.
Left because remote working was cancelled.

Head of Department of Comp. and Inf. Sci,
Univ. of Strathclyde, Glasgow, Scotland.

Associate Dean Research, Faculty of Science,
Univ. of Strathclyde, Glasgow, Scotland.

Prof. of Computer Science,
Univ. of Strathclyde, Glasgow, Scotland.

Lecturer and Reader, School. of Comp. Sci. and IT
Univ. of Nottingham, Nottingham, England.

Lecturer, Dept. of Comp. Sci.
Univ. of Leicester, Leicester, England.

Research Fellow, Univ. of Birmingham,
Birmingham B15 2TT, England.

Research Fellow, Ecole Normale Superieure,
45, Rue d’Ulm, 75230 Paris Cedex 05, France.



Selected Grant Income

o Approximate Computation: EPSRC. 2023-2027. Colnvestigator. Grant Value:
700,000 pounds.

e Homotopy Type Theory: Programming and Verification. EPSRC 2015-2019.
Principal Investigator. Grant Value: 1,002,000 pounds.

e Logical Relations for Program Verification. EPSRC 2013-2017. Principal Inves-
tigator. Grant Value: 442,000 pounds.

e Correct By Construction Mathematics. EU IRSES Project 2014-2018. Co-
Investigator. Grant Value: 250,000 Euro spread across 15 sites.

e Implementing Units of Measure. Impact Accelerator Grant. 2014-2015. Princi-
pal Investigator. Grant Value 10,000 pounds.

e Categorical Foundations of Indexed Programming. EPSRC 2010-2013. Co-
Investigator. Grant Value: 282,000 pounds.

e Reusability and Dependent Types. EPSRC 2009-2012. Principal Investigator.
Grant Value: 517,000 pounds.

e Theory and Applications of Induction Recursion. EPSRC 2009-2013. Principal
Investigator. Grant Value: 523,000 pounds.

e Theory and Applications of Containers. EPSRC 2005-2008. Principal Investiga-
tor. Grant Value: 229,000 pounds.

e Midlands Graduate School. EPSRC 2004-2006. Principal Investigator. Grant
Value: 12,000 pounds.

e Applied Semantics II. European Union. Local contact for University of Leicester.
Grant Value: 3,000 pounds.

e BCTCS 2003. The London Mathematical Society, 2003. Sole Investigator. Grant
Value: 4,000 pounds.

e Coalgebra and Recursion. The Royal Society of London, 2003-2005. Sole Inves-
tigator. Grant Value: 6,000 pounds.

e Kan - A Categorical approach to Computer Algebra. EPSRC 2001-2004. Sole
Investigator. Grant Value: 130,000 pounds.

e Categorical Rewriting: Monads and Modularity. EPSRC 2000-2002. Sole Inves-
tigator. Grant Value: 52,000 pounds.

e Eta-Expansions in Dependent Type Theory. EUROFOCS 1996. Sole Investiga-
tor. Grant Value: 10,000 pounds.

e Eta-Expansions in Dependent Type Theory. The Royal Society of London 1996.
Sole Investigator. Grant Value: 2,500 pounds.



Research Interests and Achievements:

I am trying to understand the structure of computation and to turn that understanding
into the next generation of programming languages. That includes not just traditional
forms of computation but those embodied within Machine Learning and, more gen-
erally, Al. I see the mathematical foundations of computation and programming as
inextricably linked. We study one so as to develop the other. This reflects the symbi-
otic relationship between mathematics, programming, and the design of programming
languages — any attempt to sever this connection will diminish each component. This
is quite a bold research program and I realise that, inevitably, only partial answers
will be forthcoming. Nevertheless, it shows my commitment to ask deep and funda-
mental questions so as to produce research that is of the highest calibre, and that will
stand the test of time rather than becoming obsolete within a few years. Indeed, the
simplicity afforded by such deep insights seems to me to be the only way to develop
theories that can be scaled successfully to more applied areas such as software devel-
opment. The ultimate practical end point of my desire to understand the nature of
computation is to develop program language and program verification tools which can
automatically learn and adapt to their environment - an area of clear importance as

recognised by both EPSRC and the EU.

In my research, I typically use categorical methods as a semantic description of com-
putation, type theory as an intermediate language between this semantics and actual
programming languages, and functional programming as a target model of computa-
tion. As a result, my research is usually innovative in making hitherto unseen con-
nections between these disciplines and more mainstream computer science areas such
as rewriting, computational algebra, and artificial intelligence. I regard my role as
not simply to prove results, nor just to write papers, but to build a substantial body
of evidence to substantiate my research agenda and to provide the leadership and in-
spiration that will allow others to join in my vision. I honestly believe that this is
an extraordinarily exciting time to be a computer scientist - we face great challenges
but also have some amazingly powerful tools at our disposal. The following is a brief
summary of my research to date:

e Category Theory: Category theory is a relatively new mathematical disci-
pline that provides an abstract theory of structure, and hence is key to my
work. Firstly, I showed how various computationally interesting structures such
as rewrite systems, term graphs, infinitary terms and cyclic data structures are
monadic in nature. Secondly, while monads model the description of computa-
tional agents, their evolution is modelled as coalgebras. I helped describe the
relationship between coalgebras and monads, and gave a coalgebraic foundation
to various sophisticated bisimulations in the 7-calculus. A grant from the Royal
Society of London has funded part of this research. Recently, I have been using
category theory to develop a uniform model of indexed computation, and this
research has been funded by EPSRC with a grant of 282,000 pounds. I have
been awarded a new grant from EPSRC worth 440,000 to develop a new under-
standing of logical relations. Currently I am focused on categorical models of
machine learning and in approximate computation. This has led me to private
sector research where I enjoy the extra pace and emphasis on impact

o Rewriting: Rewriting Systems are widely used as abstract models of computa-
tion, since they are computationally expressive even while retaining a relatively
simple and concrete syntax. My thesis developed the subject of n-expansions
and showed it to be better behaved than the more traditional theory of eta-
contractions. I solved the long standing open problem of the decidability of



Bn-equality for sum types, which had attracted the attention of a number of re-
search groups across the world. I made the connection between rewrite systems
and universal algebra via monads and deduced new results in modular rewrit-
ing (see the section on artificial intelligence). I had an EPSRC grant for 52,000
pounds to conduct research in this area and a special workshop of Rewriting
Techniques and Applications was devoted to my results. This research was clas-
sified as outstanding by the EPSRC panel which considered the associated IGR
reports.

A-Calculus: The A-calculus is of foundational importance within computer sci-
ence and, in particular, can be viewed as a paradigmatic functional programming
language. I have worked on features such as type systems, pattern matching, and
explicit substitutions, which make the lambda-calculus closer to “real” functional
languages. I was awarded grants from the Royal Society of London and from the
EUROFOCS programme to conduct part of this research. I believe type sys-
tems are one of the most important tools at our disposal and, for example, am
currently extending the type driven programming paradigm to Type Driven ML.

Functional Programming: Monads are a useful abstraction of computation as
they model diverse computational effects such as stateful computations, excep-
tions, and I/0 all in a uniform manner. I developed a new approach to monad
composition which is i) general in that nearly all monads compose; ii) mathe-
matically elegant in using the standard categorical tools underpinning monads;
and iii) computationally expressive in supporting canonical recursion operators.

My research on containers has provided new and surprisingly simple results on
the nature of polymorphism for concrete data types, shown how coinductive
types can be constructed from inductive types, and shown how data types sup-
port a generic notion of differentiation. I'm also worked on induction recursion
which will become the next generation of data types, and this research has been
awarded a grant of 311,000 pounds by EPSRC. Interestingly, this was exactly the
technique required for Type Driven Sampling within probability and generative
AT which i am currently working on.

Initial algebra semantics is the corner stone of inductive types. I extended initial
algebras with an additional universal property based upon the characterisation of
initial algebras as limits. This has generated new Church encodings for inductive
types, placed short cut fusion at the centre of initial algebra semantics, and given
the first generalisation of these concepts to nested types and GADTs. I also
worked on an initial algebra semantics for GADTs. Finally, dependent types
model semantic information within programs themselves, and a research project
of mine showed how one may build new data types from old data types in a
programming language. Previously, one has to simply build all new data types
from scratch - this is both wasteful and inefficient.

Computational Algebra: Computer algebra packages are widely used in math-
ematics and computer science to solve combinatorial problems whose essence is
the computation of the quotient of an algebraic structure. Current packages
tend to be simply a collection of disparate algorithms derived on an ad-hoc and
case by case basis. However, I observed that most quotients are examples of
the computation of a left Kan extension including cosets, double cosets, orbits
and modules etc. EPSRC funded a project to develop generic algorithms for
computing quotients with a grant of 130,000.

Artificial Intelligence: When reasoning about complex systems (such as spec-
ifications of large systems, or semantics of rich languages with many different
features), modularity is a crucial property. It allows properties about smaller



(and hence easier to reason about) components to be lifted to the overall system.
As with other problems mentioned above, I want to understand the essence of
modularity so as to develop abstract methodologies which apply to a variety of
different modularity problems where more concrete approaches fail to deliver.
To this end, I developed a new semantic framework for modularity based upon
monad combinators, developed the algorithms required to implement this frame-
work and applied these theoretical results to a number of specific problems. My
work on open games for decision making fits within this area and applies cat-
egory theory to create new lego-bricks for game theory. More recently I have
been focusing on deep learning, symbolic differentiation, probability theory, ML
verification, Geometric Deep Learning and Generative ML.

Crucially, the key to these results has been to first understand the deep structure of
these problems. This interaction between practical problems and theoretical insight
seems to me to be the hallmark of good science.

Teaching

I am a passionate teacher who motivates students to succeed in their studies by sharing
with them my own enthusiasm for learning new ideas. I aim to demonstrate to students
how the material being taught is chosen for a reason — it allows us to do things more
simply than would otherwise be the case. This is important because, I believe, students
want to learn but can lose this desire if material is poorly presented. Overall, I show
students how education enables them to act more effectively within the world and
thereby enhance and enrich their lives. I also believe that learning, like life, is an
active process, and so involve students as much as possible as active participants in
lectures. In particular, I ensure all students participate, not just those with outgoing
characters or those who understand the material being taught.

I have taught at the Universities of Leicester, Nottingham, and Strathclyde and also
given regular postgraduate courses at the MGS (see Academic Service section) and
taught at the Estonian Winter School in 2003. In each of these venues, colleagues
and students report that my teaching style is very effective. While at Leicester, I
was regarded as one of our best teachers. This was demonstrated through both the
formal teaching evaluation mechanism and also through informal feedback. One of the
courses I taught at Nottingham was rated the second most popular in the school by
the students. At Strathclyde, the feedback from students and colleagues continues to
be equally positive. I have taught the following courses:

C01003 Yr 1, University of Leicester Program Design

C01004 Yr 1, University of Leicester Algorithms and Data Structures

C02008 Yr 2, University of Leicester Functional Programming

C02015 Yr 2, University of Leicester Group Project

C03012 Yr 3, University of Leicester Individual Dissertation

C03097 Yr 3, University of Leicester Programming Secure and Distributed Systems

G5H1FUN Yr 1, University of Nottingham Functional Programming
G51PRG Yr 1, University of Nottingham Programming in Java
G52GRP Yr 2, University of Nottingham Group Project

G5HBIAW Yr 3, University of Nottingham Internet and the WWW
G5H3IDS Yr 3, University of Nottingham Individual Dissertation



52.231 Yr 2, University of Strathclyde Programming Techniques

52.222 Yr 2, University of Strathclyde Programming Project

CS203 Yr 2, University of Strathclyde Topics in Computer Science
CS208 Yr 2, University of Strathclyde Algorithms and Data Structures
CS316 Yr 3, University of Strathclyde Functional Programming

Research Publications

The culture of Computer Science is to both ensure and regard conference publication as
being of high quality. For example, all of the conferences I submit to are internationally
leading and most reject about 4 papers for every paper accepted.

Journal Papers

Geoffrey S. H. Cruttwell, Matteo Capucci, Neil Ghani, Fabio Zanasi. A fibra-
tional Treatment of First order Differential Structures. Fundamental Structures
in Computational and Pure Mathematics To Appear 2024.

Geoffrey S. H. Cruttwell, Bruno Gavranovic, Neil Ghani, Paul Wilson, Fabio
Zanasi. Deep Learning with Parametric Lenses. To Appear 2024.

Capucci Matteo, Ghani Neil, Kupke Clemens, Ledent Jérémy, Nordvall Forsberg
Fredrik. Infinite horizon extensive form games, coalgebraically. World Scientific
Publication 2023.

N Ghani, C Kupke, A Lambert, FN Forsberg. A compositional treatment of
iterated open games. Theoretical computer science 741, 48-57. 2018

Positive Inductive-Recursive Definitions. Neil Ghani, Lorenzo Malatesta, and
Fredrik Forsberg. Logical Methods in Computer Science, 11(1), 2015.

Containers, Monads and Induction Recursion. Neil Ghani and Peter Hancock.
Journal of Mathematical Structures in Computer Science 2014.

Indexed Induction and Coinduction, Fibrationally. Clement Fumex, Neil Ghani,
and Patricia Johann. Logical Methods in Computer Science, 9 (3:6), 2013.

Refining Inductive Types. Robert Atkey, Patricia Johann, and Neil Ghani. Log-
ical Methods in Computer Science 8(2), 2012.

Generic Fibrational Induction. Neil Ghani, Patricia Johann, and Clement Fumex.
Logical Methods in Computer Science 8(2), 2012

A principled approach to programming with nested types in Haskell. Patricia
Johann and Neil Ghani. Journal of Higher-Order and Symbolic Computation,
Volume 22(2), pages 155-189, 2010.

Representations of Stream Processors Using Nested Fixed Points. Neil Ghani,
Peter Hancock and Dirk Pattinson. Logical Methods in Computer Science, Vol-
ume 5(3), 2009.

A Universe of Strictly Positive Families. Neil Ghani, Peter Morris and Thorsten
Altenkirch. International Journal of Foundations of Computer Science, Volume
20(1), pages 83-107, 2009.



e Monadic Augment and Generalised Short Cut Fusion. Neil Ghani and Patricia
Johann. In Journal of Functional Programming, Volume 17(6), pages 731 - 776,
2007.

e Explicit Substitutions. Neil Ghani, Tarmo Uustalu and Makoto Hamana. Jour-
nal of Higher Order Symbolic Computation, vol. 19(2,3), pages 263-282, 2006.

e Computing with Double Cosets. Neil Ghani, Anne Heyworth, Ronnie Brown and
Chris Wensley. Journal of Symbolic Computation, Volume 41(5), pages 573-590,
2006.

e § for Data — Differentiating Data Structures. Neil Ghani, Michael Abbott,
Thorsten Altenkirch and Conor McBride. Fundamentae Informatica, Volume
65(1,2), pages 1-28, 2005.

e Containers - Constructing Strictly Positive Types. Neil Ghani, Michael Abbott
and Thorsten Altenkirch. Journal of Theoretical Computer Science, Volume
341(1), pages 3-27, 2005.

e Monads of Coalgebras: Rational Terms and Term Graphs. Neil Ghani, Christoph
Luth and Federico De Marchi. Journal of Mathematical Structures in Computer
Science, Volume 15(3), pages 433-451, 2005.

e Coproducts of Ideal Monads. Neil Ghani and Tarmo Uustalu. Journal of Theo-
retical Informatics and Applications, Volume 38(4), pages 321-342, 2004.

e Rewriting via Coinserters. Neil Ghani and Christoph Luth. Nordic Journal of
Computing, Volume 10(4), pages 290-312, 2003.

e Solving Algebraic Equations using Coalgebra. Neil Ghani, Christoph Luth and
Federico De Marchi. Journal of Theoretical Informatics and Applications, Vol-
ume 37, pages 301-314, 2003.

e Dualizing Initial Algebras. Neil Ghani, Christoph Luth, Federico De Marchi and
John Power. Journal of Mathematical Structures in Computer Science, Volume
13(1), pages 349-370, 2003.

e Linear Explicit Substitutions. Neil Ghani, Valeria de Paiva and Eike Ritter.
Journal of the International Group on Programming Languages, Volume 8(1),
pages 7-31, 2000.

e The Virtues of Eta-Expansion. Neil Ghani and Barry Jay. Journal of Functional
Programming, Volume 5(2), pages 135-154, 1996.

Editing of Conference Proceedings

e Co-Editor of Coalgebraic Methods in Computer Science 2006. Neil Ghani and
John Power. Electronic Notes in Theoretical Computer Science, Volume 164,
2006.

Internationally Reviewed Conference Papers

e Neil Ghani. Approximate Game Theory. Applied Category Theory. 2024.

e GSH Cruttwell, B Gavranovi¢, N Ghani, P Wilson, F Zanasi Categorical foun-
dations of gradient-based learning European Symposium on Programming, 1-28.
2022



Capucci, M., Ghani, N., Ledent, J. and Nordvall Forsberg, F. Translating exten-
sive form games to open games with agency. Applied Category Theory 2021.

R Atkey, B Gavranovié, N Ghani, C Kupke, J Ledent, FN Forsberg. Composi-
tional game theory, compositionally. Applied Category Theory 2020.

N Ghani, C Kupke, A Lambert, FN Forsberg. Compositional game theory with
mixed strategies: probabilistic open games using a distributive law. Applied
Category Theory 2019.

N Ghani, J Hedges, V Winschel, P Zahn. Compositional game theory. Logic in
Computer Science 2018.

N Ghani, C McBride, FN Forsberg, S Spahn. Variations on inductive-recursive
definitions 42nd International Symposium on Mathematical Foundations of Com-
puter Science, 63. 2017.

Neil Ghani, Fredrik Forsberg, and Alex Simpson. Comprehensive parametric
polymorphism: categorical models and type theory. FOSSACS 2016. Awarded
Best Theory Paper at ETAPS 2016

Neil Ghani, Fredrik Forsberg, and Federico Orsanigo. Proof Relevant Para-
metricity. WadlerFest, 2016.

Neil Ghani, Fredrik Forsberg, Tim Revell, Patricia Johann and Federico Or-
sanigo. Bifibrational functorial semantics of parametric polymorphism. Mathe-
matical Foundations of Program Semantics, 2015.

Neil Ghani, Fredrik Forsberg, Tim Revell, Sam Staton, Robet Atkey and Federico
Orsanigo. Models for Polymorphism over Physical Dimensions. Typed Lambda
Calculi and Applications , 2015

Neil Ghani, Fredrik Forsberg, and Federico Orsanigo. Parametric Polymorphism
— Universally. WOLLIC, 2015.

A Relationally Parametric Model of Dependent Type Theory. Robert Atkey,
Neil Ghani, and Patricia Johann. Principles of Programming Languages, 2014.

Positive Induction Recursion. Neil Ghani, Lorenzo Malatesta and Fredrik Nordvall-
Forsberg. Conference on Algebras and Coalgebras, 2013.

Fibred Data Types. Neil Ghani, Peter Hancock, Lorenzo Malatesta and Fredrik
Nordvall-Forsberg. Logic in Computer Science, 2013.

Small Induction Recursion. Neil Ghani, Peter Hancock, Conor McBride, Thorsten
Altenkirch, Lorenzo Malatesta. Typed Lambda Calculus and Applications, 2013.

Fibrational Induction Meets Effects. Robert Atkey, Neil Ghani, Bart Jacobs, and
Patricia Johann. Foundations of Software Systems and Computation Structures,

pp. 42-57, 2012.

Indexed Induction and Coinduction in the Fibrational Setting. Clement Fumex,
Patricia Johann, Neil Ghani. Conference on Algebras and Coalgebras, pp 176-191,
2011.

When Is a Type Refinement an Inductive Type? Robert Atkey, Patricia Jo-
hann, Neil Ghani. Foundations of Software Sciences and Computation Struc-
tures, LNCS 6604, pages 72-87, 2011.



Modularity and Implementation of Mathematical Operational Semantics. Mauro
Jaskelioff, Neil Ghani, Graham Hutton. Mathematically Structured Functional
Programming, ENTCS Volume 229(5), pages 75-95, 2011.

Fibrational Induction Rules for Initial Algebras. Neil Ghani, Patricia Johann
and Clement Fumex. Computer Science Logic, LNCS 6427, pages 336-350, 2010.

Continuous Functions on Final Coalgebras. Neil Ghani, Peter Hancock, Dirk
Pattinson. Mathematical Foundations of Programming Semantics, ENTCS Vol-
ume 249, pages 3-18, 2009.

Foundations for Structured Programming with GADTs. Neil Ghani and Patricia
Johann. Principles of Programming Languages, pages 297-308, 2008.

Initial Algebra Semantics is Enough! Neil Ghani and Patricia Johann. Typed
Lambda Calculus and Applications, LNCS 4583, pages 207-222, 2007.

Constructing Strictly Positive Families. Neil Ghani, Peter Morris and Thorsten
Altenkirch. Australasian Symposium on Theory of Computing, ACM Interna-
tional Conference Proceeding Series Volume 240, pages 111-121, 2007.

Continuous Functions on Final Coalgebras. Neil Ghani, Peter Hancock and
Dirk Pattinson. Coalgebraic Methods in Computer Science, ENTCS Volume
164, pages 141-155, 2006.

Representing cyclic structures as nested datatypes. Neil Ghani, Makoto Hamana,
Tarmo Uustalu and Varmo Vene. Trends in Functional Programming, pages 173-
188, 2006.

Monadic augment and generalised short cut fusion. Neil Ghani, Patricia Jo-
hann, Tarmo Uustalu and Varmo Vene. International Conference on Functional

Programming, ACM SIGPLAN Notices Volume 40(9), pages 294-305, 2005.

Generalising the Augment Combinator. Neil Ghani, Tarmo Uustalu and Varmo
Vene. Trends in Functional Programming, pages 65-78, 2006.

Abstract Modularity. Neil Ghani, Michael Abbott and Christoph Liith. Rewrit-
ing Techniques and Applications, LNCS 3467, pages 46-60, 2005.

Relationally Staged Computation in the m-calculus. Neil Ghani, Bjorn Victor
and Kidane Yemane. Coalgebraic Methods in Computer Science, ENTCS Volume
106, pages 105-120, 2004.

Constructing Programs with Quotient Types. Neil Ghani, Michael Abbott,
Thorsten Altenkirch and Conor McBride. Mathematics of Programme Construc-
tion, LNCS 3125, pages 2-15, 2004.

Representing Nested Inductive Types using W-types. Neil Ghani, Michael Ab-
bott and Thorsten Altenkirch. International Colloguium on Automata, Lan-
guages and Programming, LNCS 3142, pages 59-71, 2004.

Build, Augment, Destroy. Universally. Neil Ghani, Tarmo Uustalu and Varmo
Vene. Asian Symposium on Programming Languages and Systems, LNCS 3302,
pages 327-341, 2004.

Difunctorial Semantics of Object Calculus. Neil Ghani and Johan Glimming.
Workshop on Object-Oriented Development, ENTCS Volume 138(2), pages 79-
94, 2005.



e Categories of Containers. Neil Ghani, Michael Abbott and Thorsten Altenkirch.
Foundations of Software Science and Computation Structures, LNCS 2620, pages
23-38, 2003.

e Derivatives of Containers. Neil Ghani, Michael Abbott, Thorsten Altenkirch and
Conor McBride. TLCA, LNCS 2701, pages 16-30, 2003.

e A Rewriting Alternative to Reidemeister Schreier. Neil Ghani and Anne Hey-
worth. RTA, LNCS 2706, pages 452-466, 2003.

e Explicit Substitutions and Higher-Order Syntax. Neil Ghani and Tarmo Uustalu.
Mechanized Reasoning about Languages with Variable Binding, pages 1-8, 2003.

e Computing over K-modules. Neil Ghani and Anne Heyworth. Computing: The
Australasian Theory Symposium, ENTCS Volume 61, pages 34-50, 2002.

e Monads and Modularity. Neil Ghani and Christoph Liith. Frontiers of Combin-
ing Systems, LNAT 2309, pages 18-32, 2002.

e Coalgebraic Monads. Neil Ghani, Christoph Liith and Federico De Marchi.
CMCS, ENTCS Volume 65(1), pages 71-91, 2002.

e Composing Monads Using Coproducts. Neil Ghani and Christoph Luth. ICFP,
ACM SIGPLAN Notices Volume 37(9), pages 294-305, 2002.

e Algebras, Coalgebras, Monads and Comonads. Neil Ghani, Christoph Liith,
Federico de Marchi and John Power. CMCS, ENTCS Volume 44(1), pages 128-
145, 2001.

e Categorical Models of Explicit Substitutions. Neil Ghani, Valeria de Paiva and
Eike Ritter. FOSSACS, LNCS 1578, pages 197-211, 1999.

e Explicit Substitutions for Constructive Necessity. Neil Ghani, Valeria de Paiva
and Eike Ritter. ICALP, LNCS 1443, pages 743-754, 1998.

e Monads and Modular Term Rewriting. Neil Ghani and Christoph Liith. CTCS,
LNCS 1290, pages 69-86, 1997.

e On Modular Properties of Higher Order Extensional Lambda Calculi. Neil Ghani
and Roberto Di Cosmo. ICALP, LNCS 1256, pages 237-247, 1997.

o Eta-Expansions in Dependent Type Theory — The Calculus of Constructions.
Neil Ghani. TLCA, LNCS 1210, pages 164-180, 1997.

e Eta-Expansions in F'*. Neil Ghani. Computer Science Logic, LNCS 1258, pages
182-197, 1996.

e Beta-Eta Equality for Coproducts. Neil Ghani. Typed Lambda Calculus and
Applications, LNCS 902, pages 171-185, 1995.

e Adjoint Rewriting. PhD Thesis, 155 pages, University of Edinburgh, 1995.

Research Supervision

Matteo Capucci PhD, University of Strathclyde 2020-2024
Figil Rischel PhD, University of Strathclyde 2020-2024
Bruno Gavranovic PhD, University of Strathclyde 2019-2023

Alasdair Lambert PhD, University of Strathclyde 2018-2024



Ben Price PhD, University of Strathclyde 2015-2019

Federico Orsanigo PhD, University of Strathclyde 2012-2015
Lorenzo Malatesta PhD, University of Strathclyde 2010-2014
Clement Fumex (2nd) PhD, University of Strathclyde 2009-2012
Rawle Prince PhD, University of Nottingham 2006-2009
Mauro Jaskelioff PhD, University of Nottingham 2005-2009
Michael Abbott PhD, University of Leicester 2000-2003
Federico de Marchi PhD, University of Leicester 1999-2002
Jeremy Ledent RA, University of Strathclyde 2017-2023
Fredrik Forsberg RA, University of Strathclyde 2013-2019
Robert Atkey RA, University of Strathclyde 2010-13

Peter Hancock RA, University of Strathclyde 2009-2012
Anne Heyworth RA, University of Leicester 2001-2004

Academic Service

I have significant personal and leadership skills which enable me to deliver an ambitious
and transformative agenda. These skills arose from my time as Head of Department
and Associate Dean of Science. Staff development lies at the very heart of these roles.
I regard staff as our most prized asset and so communicate, persuade and listen to
staff at both a rational and an emotional level; and continuously reflect and refine
what we do to achieve the best outcomes possible. This requires team leadership
which T achieve by i) agreeing with team members a specific remit to ensure they take
ownership of that remit; ii) offering operational autonomy so people can bring their
own creativity and innovation to bear on their remit; and iii) giving team members
continuous support and oversight. I am particularly heartened by the number of staff
taking on senior roles in the Department and University, and by those who have had
significant research success after not having any for some time.

Concretely, I was HoD of Computer and Information Sciences (CIS) for 5.5 years,
running a Department with over 100 full time staff and an annual turnover of over
£10m. T led a remarkable transformation of CIS: i) grant income has more than
doubled; ii) our PGR cohort has doubled; iii) our REF return almost doubled in size
with an associated increase in quality leading to an improvement of 19 places in the
recent REF; iv) in 2019 CIS came 5th in UK for the National Student Survey and in
2021 we came 8th; v) we launched two highly innovative Graduate Apprenticeships
(GAs) attracting over 100 students; vi) PGT numbers increased from 50 in 2017/18
to 400 in 2022/3; vii) we launched 3 highly successful new PGT courses including
an advanced MSc in Artificial Intelligence and another conversion MSc in Al and
Applications; viii) we secured our first Knowledge Transfer Partnerships (KTPs) and
are aiming at 4 KTPs next year; ix) two new research groups were successfully launched
including one in Artificial Intelligence; x) we transformed a deficit of £500K into a
surplus of £2m.

I am thus capable of i) training and developing staff to improve performance; ii)
managing complex projects with multiple/diverse stakeholders involving significant
financial and human resources; iii) developing strategic learning activities for non-
academics; iv) providing leadership across not just Computer Science, but Science in
general — from fundamental research to impactful knowledge exchange.



