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Abstract

In a previous paper we gave a representation of, and simultaneously a way of programming with, continuous
functions on streams, whether discrete-valued functions, or functions between streams. We also defined a
combinator on the representations of such continuous functions that reflects composition. Streams are one
of the simplest examples of non-trivial final coalgebras. Here we extend our previous results to cover the
case of final coalgebras for a broader class of functors than that giving rise to streams. Among the functors
we can deal with are those that arise from countable signatures of finite-place untyped operators. These
have many applications. The topology we put on the final coalgebra for such a functor is that induced by
taking for basic neighbourhoods the set of infinite objects which share a common ‘prefix’; a la Baire space.
The datatype of prefixes is defined together with the set of ‘growth points’ in a prefix, simultaneously. This
we call beheading. To program and reason about representations of continuous functions requires a language
whose type system incorporates the dependent function and pair types, inductive definitions at types Set,

I — Set and (X1 : Set) Set!, coinductive definitions at types Set and I — Set, as well as universal arrows
for such definitions.
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1 Introduction

Eating Streams: A stream of elements of a set A is a simple example of an
“infinite object”. An infinite object is an inhabitant of a final coalgebra, in this
case the coalgebra A“ of the functor X + A x X or (Ax) *. The natural notion of
map whose domain is an infinite object is that of a continuous function. Informally
we can think of continuity as meaning that output is produced after only a finite
amount of information about the input is known. This is naturally formalised using
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topology: if the set A is given the discrete topology, then the product (or ‘Baire’)
topology on A“ is generated by the family {/V(c)|c: A*} of basic opens where

N : A* — P(A%)
N(c) 2 {ae A |a(lenc) =c} .

where P(X) = X — Set, len c is the length of a list ¢ and @(n) is the truncation of
a stream « after n elements. With respect to the Baire topology, a discrete-valued
function f : AY — B is continuous if and only if it is everywhere locally constant
meaning that for all & € A“ there exists a finite prefix ¢ € A* of «a such that
the image of f throughout N(c) is the singleton { f(«)}. As is well-known, any
such function can be represented by a particular type of wellfounded tree, that is
an element of the set T4(B) = (1 X) B + X“. Such a tree can be interpreted as a
program that consumes, or eats, finitely many values from a stream of A’s, and then
terminates yielding a value of type B. This representation of continuous functions
as finite trees directly encodes the intuition that continuous functions require only
a finite amount of input to produce their output.

Continuity of functions whose values are themselves streams means, informally,
that each element of the output stream is produced after a finite amount of the input.
Topologically, continuity means that the inverse image of a value-neighbourhood is
a union of argument-neighbourhoods. In a previous paper [11], we defined a repre-
sentation of continuous functions between streams as trees, proved completeness in
that every continuous function can be represented by such a tree, and defined an
operation on the representations of two continuous functions between streams that
yields a representation of their composite. The trees we used for our representation
were non-wellfounded trees pieced together from well-founded trees: formally, we
took the set of trees to be P4o(B) = (v X) Ta(B x X). Such a tree can be interpreted
as a program to read a finite amount of a stream of A’s and then produces a B and
another such tree. Again, the intuition that continuity means a function requires
only a finite amount of information about the input to produce each successive
element of the output is hard-wired into this notion of tree.

Generalisation: The subject of this paper is the extension of our previous
work to the representation to functions on final coalgebras for the broad class of
endofunctors on the category Set known as containers. This class of functors in-
cludes besides the functor (Ax), polynomial functors as X + 142 x X + X? or
power-series functors X — > C, x X" for some family of sets C': w — Set. It
also includes all the strictly positive types and the normal functors of Girard [10].
The final coalgebra of such a functor can be obtained as the projective limit of the
w-sequence 1 «— F(1) «— F2(1) «— ... starting with a terminal object 1. In that
case, the elements of the final coalgebra behave sufficiently like streams that one
can topologise the final coalgebra much as Baire space. We find this streamification
of the final coalgebras of containers to be both illuminating and necessary to tame
the complexity of the ensuing mathematical constructions.Containers were intro-
duced in [2], [1] and [3] and, importantly, are closed a plethora of operations, such
as constants, +, x, —, -, 3, I, and least and greatest fixed points. Working with
container technology seems to be much cleaner than the alternative of working with
power-series functors. With the latter, operators are collected by their cardinality
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which is, for most purposes, unnecessarily bureaucratic.

Metatheory and Implementation: To write type-checked programs which
implement continuous functions on final coalgebras of the kind we are considering
requires, in general, a dependent type system ° This means that types may be
indexed by data. We also make use of initial algebras and final coalgebras for certain
endofunctors on a category of families of sets indexed over a given set. Finally, we
make use of a principle known as ‘induction-recursion’, which guarantees an initial
algebra for certain endofunctors on a category of families of sets in which the index
set is not fixed. For the most part, our definitions and results can be established
in a form of Martin-Lof’s type theory, with one universe, with inductive definitions
amounting to an indexed version of the W-type.

There are some exceptions: At some points, particularly those concerned with
completeness, our results depend on classical logic, and strong forms of the axiom of
choice. We regard these passages as partial justification for changing the definition
of continuity (in certain cases) to a more intensional one, pivoting on an inductive
definition (of covering). In connection with initial algebras and final coalgebras,
most of the definitions can be made with only weakly initial algebras. Completeness
results about these definitions often require uniqueness of the universal arrow for
an initial or final construction. The use we make of induction recursion is extremely
weak, and must be in some sense eliminable. What we require is only a principle
for forming a universe (a family of sets) closed under a slightly unusual form of
Y-quantifier. It seems likely that the finite ordinals can serve as such a universe.

History: The basic idea for this analysis of continuity emerged from expositions
([7], [16], [12], [13]) of Brouwer’s notion of choice sequence and associated principles
of continuity and Bar induction. There are many notions akin to choice sequence
(lawless sequence for example), and the connection between streams and choice-
sequences is not entirely clear®. Yet the principle of Bar induction can clearly be
used to model continuous functions on streams, and universal quantification over
streams. What we have done is, perhaps, broaden the scope of Bar induction to
admit other types of infinite object than streams. It is not surprising that this can
be done, as roughly speaking we can analyse these infinite objects into streams of
their approximating neighbourhoods. A different extension was made by Spector
[14] to bar-recursion on streams of objects of higher, non-discrete type.

The structure of the paper is as follows: Section 2 contains preliminaries and
notation, Section 3 discusses containers, and Section 4 discusses the final coalgebras
of containers. Then Section 5 discusses continuous functions with discrete codomain
while Section 6 discusses continuous functions whose codomains are final coalgebras.
Finally, Section 7 contains our conclusions.

5 In some particular cases, such as X — A x X B only polymorphic recursion is needed, such as is available
in the programming language Haskell. What is crucial here is that there are no coproducts; with coproducts
the number of meals remaining can change in irregular ways as successive slices through an infinite object
are consumed.

6 One connection between streams and choice sequences may lie in the idea that (in the angel/demon
terminology of the refinement calculus [6]) inputs are chosen by the demon, while the outputs are chosen
by the angel. However, choice sequences in intuitionism can involve choices to obtain further terms using a
continuous function: this seems to have no explicit counterpart in the refinement calculus.
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2 Preliminaries

Initial algebras and final coalgebras: p and v: Let (uX) F(X) = pF and
(v X) F(X) = vF denote the initial and final coalgebras for an endofunctor F' on an
ambient category of sets. In general we use in for the structure map into the carrier
of an initial algebra. Thus in : F(uF) — pF. Given an algebra C,v: FC — C, let

fold(C'; ), or simply fold(7), be the unique morphism ¢ : uF' — C such that
d-in=~-Fo:F(uF)—C.
We use in~! for fold(Fin) : pF — F(p F), which is the inverse of in.
Ex1 Finite lists A* 2 (1 X)1 + A x X. We use o and (;) as constructors
associated with _*, so
1 (f) A*
A x A* : A*
in="1[o|(;)]: 14+ Ax A* — A*

Ex2 Wellfounded trees T4(B) = (1 X) B + X4, branching over A and termi-
nating in B. T4(B) is a bifunctor, covariant in B, and contravariant in
A. Ty : Set — Set is the free monad over the functor ()4 (alias (A —),
known as the reader monad). We write F* for the free monad over a
functor F, so that Ty = (A —)*. T4 is also known as the tree monad.
We use Ret and Get for the constructors associated with T4. Thus

B Ret TA(B)
(Ta(B))A —SE—=Tu(B)
in = [Ret|Get] : B+ (TuB)* — T4B

Ex3 A more complex example of an initial algebra is for an endofunctor on
the category Fam(Set™) with set-indexed families of sets as objects, and
hom-sets consisting of pullback squares. It is provided by the family (S 0
Set, P' : S% — Set) defined in section 4. A family of sets defined in this
way is said to be defined by induction-recursion. Induction-recursion is
described for example in [9] and [8].

Ex4 A different example, generalising T4 from the category Set to the category
Set” h, is provided by Bar defined in section 4. In this case the initial
algebra category is that of sets over an index set S%, and the endofunctor
is an example of an indexred container.

Final coalgebras: In general we use out for the structure map on the carrier of
a final coalgebra. Thus out : vF' — F(vF'). Given a coalgebra C,v : C' — FC, we
use unfold(C;~y), or simply unfold(y) (sometimes called coiteration of ) to denote

the unique morphism ¢ : C — v F such that
out-6 =F§-v:C — F(vF).

We use out™! for unfold(F out) : F(v F) — vF, which is the inverse of out. For
readability, we sometimes suppress notation for the isomorphisms out and out™!.

Ex1 Streams AY = (v X) A x X. We use hd and tl to access components of a
4
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stream. out = (hd, tl) : AY — A x A“ while out™{a,a) = a;a.

Ex2 Stream processors P4(B) = (v X) Ta(B x X) is a bifunctor, covariant in
B, and contravariant in A.

Ex3 A more complex example, is provided by the function Live in section 6.

In this case the category is that of sets over an index set S

Terminal sequences and topology: To construct a weakly final coalgebra
vF for an endofunctor F' on a category with a terminal object 1, one commonly
takes the limit of a certain inverse w-chain

| |
l~———F1<~——p2
The limit exists in a category such as Set: take the object part of the limit to be

the set of o € [, o, F"(1) that satisfy the equations a, = F""(!)(an41), and take
the cone of projections to be {a — ap, |m :w}.

2|

For well behaved functors the limit of this chain will be a final coalgebra for
F'. In such a case, there is a natural topology on vF. This is in fact the topology
induced by the rational-valued ultrametric distance or apartness | — 3| = 1/2"
where n is least such that «a, # (,. Define a ~¢ 8 to be vacuously true, and
« ~py1 B to mean that o and § lie within 1/2" of each other. Such a sequence
of shrinking equivalence relations is a separating family in the sense of [15] if their
intersection coincides with equality.

3 Containers: (S < P)

What are Containers? Containers are representations of certain endo-functors on
a category. A (unary) container is given by a set S whose elements are conventionally
called ‘shapes’, and a family of sets P : S — Set, giving the possible ‘positions’
p @ P(s) within each shape s : S at which data may be accessed or stored. As
an alternative to the talk of shapes and positions, one may also think of s € S as
symbols for (untyped) multi-place operators, with each of which is associated a set
of argument places. The data S, P represents an endofunctor (S <1 P) as follows.

(<) : (ILS : Set) (S — Set) — (Set — Set)
(S<AP)X £ (Zs:8)P(s) = X

Some examples of containers are:

S P (Ls:8)XPs (S<P)
1={0} 01 X identity
A a+— 0 A constant A
A a1 Ax X tagging with A
1 0— w X« infinite sequences
w n— Fin(n) | X* finite sequences
2={0,1} |0—0,1—1|1+X Haskell’s ‘Maybe’

Here Fin(s) is the set of predecessors {0---(s — 1)} € w of a natural number
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s € w. Container morphisms represent natural transformations between container
functors. To be precise, the category Cont = Fam(Set°P) of containers and
container morphisms is fully and faithfully embedded in the functor category Set>¢t
by the mapping S, P — (S <0 P). The category Cont has a rich algebraic structure
(3], [1]. It has 0 and +, 1 and X, -, ¥, II¢, Ay, p and v, not to mention some linear
logic connectives and connections with the Newton-Leibnitz differential calculus.
This is the basis for a powerful theory of datastructures, and polymorphic functions.

Weighted containers: (S <¢ P) Notions of power series are of two styles.
In the first >, X B(a) which is ‘cardinal-free’, we may have several summands a,
a’ with the same arity B(a) = B(a'). In the second ), C(n) x X", which is
‘bureaucratic’, or bean-counting, we collect together the arities by their cardinal
number, and put all the information into the coefficient sets C'(n). The notion of
a weighted container - which we introduce in this paper - is a compromise. The
coefficients or weights allow us to track separately information in a shape which
does not affect the position sets.

<:(I1.S : Set) (PS)? — (Set — Set)
(S<c P)X 2 (s:8)C(s) x (P(s) — X)
Examples of weighted containers are:
S | C(s) | P(s) | (S<c P)X
1 A 1 Ax X
A 1 1 Ax X
1| A B | Ax X"B
Al 1 B | AxXB

The notion of a weighted container is clearly connected with the notion of a left
Kan extension, namely of C' along P.
Note that weighted containers support various maps

(S<c P)X — X(S,0) Ignore power of X
(S<¢P)X — (S<aP)X Ignore coefficient
(S<c P)X = (X(S,C) < (s,-) — P(s))X Move coefficient to shape

4 Final coalgebras of containers

We want to capture the idea of finite information about a point in the final
coalgebra v(S <1 P). We express finite information in trees of bounded depth, where
there are special leaf nodes (all at the same distance from the root) where new
growth is possible. The trees grow (ie. the neighbourhoods shrink) ‘salami style’.
In each step, a layer of new nodes of depth one is grown at formerly leaf positions.
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Finite neighbourhoods: (S% P%) We define an operator on families of sets
(S,P) (with S : Set and P : S — Set). We write the result of this operation
(S, P%). Beware! S” depends on P as well as S, and the very type of P? depends
on S. 7 The type of our operator is:

Fam(Set) — Fam(Set)

where Fam(X) = (X5 : Set) S — X. An element s of S% plays the role here that
finite sequences play in the stream case, namely it is intended to represent a finite
approximation to, or neighbourhood of points, in v(S <1 P). The elements of P¥(s)
are locations at which the approximation s can be further refined. The operator
can be defined in several ways.

e One definition is by induction-recursion. In induction recursion, one defines a
set inductively, while at the same time defining a (typically set-valued) function
on that set, that may be mentioned in the inductive clauses. The solution is
an initial algebra for an endofunctor on a category of families. The reason that
this is an induction recursive definition of a family of sets, rather then a plain
inductive definition, followed by a recursive definition of sets is that the second
component of the operand family is used in the definition of the first component
of the output family. For an explanation of the principles underlying induction
recursion see the papers [9] [8] by Dybjer and Setzer and the references therein.
The constructors and their associated decoding functions are as follows:

o: 5

Pi(e) =1

(:): (ILs : S%) (PA(s) — §) — 5"
Pi(s;0) = (Sp: Pi(s)) P(o(p))

We think that the container of finite neighbourhoods is an interesting example
of an inductive-recursive definition that arises ‘in nature’, albeit one that doesn’t
exploit the peculiar power of that definitional scheme, eg no ‘negative’ quantifiers
or connectives like IT or — are used in defining the values of P%. Usually, trees
are grown by constructing a root for a forest. The inductive-recursive definition
allows trees to grow at the leaves. The recursion scheme this induces has a com-
putational behaviour which is appropriate in connection with the bar theorem,
when typically the ‘business end’ of a formal neighbourhood is the one at which
the finer distinctions are made.

e One can also define S% P9 by using a universe closed under ¥ and 1. First
define F' : w — Fam(Set) by recursion into our universe. We write F(n) =
(S%(n), P%(n)). In the base case

F0)=(1a1)=id .

7 A more ‘logical’ sotation might be N(S, P) for the neighbourhoods 5% and L(S, P) for the locations Ph.
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In the step case
Si(n+41) = (2s:S%n)) Pi(n,s) — S,
Pin+1,(s,0)) = (Zp: Pi(n,s)) P(o(p)),
Fn+1)=F(n)-(S<P).
Second, set S = (¥n € w)S%n) and P¥(n,s) = P%n,s). The endofunctor
S% < P% is the coproduct (not colimit of a chain!) (Xn : w) (S < P)".

Of course, unless the position sets are restricted to be finite such a tree may
contain more than finite information, and in that case the topology is unrealistic.
The question arises of whether we can choose neighbourhoods (and the associated
relations of refinement and covering) in some other way to yield a useful topology
when the cardinal of the index set can be countable or worse. We think there is
room for speculation — the question is more subtle than it appears at first sight.

Meals : v(S<P) We use the term ‘meal’ for an element of the final coalgebra of a
container, and usually use Greek letters for meal variables and names. The foodstuff
a meal most resembles is perhaps broccoli, except that unlike normal broccoli, it
may have infinitely long stems. Meals are so called because (as we will see) they
are ‘eaten’, as it were in mouthfuls, a slice at a time, when the implementation of
a continuous function is run on a meal.

M : Set
M 2 y(S < P)
The final coalgebra gives us the following destructors:

hd : M — S
tl:(Ila: M)P(hd(a)) — M
We have out(m) = (hd(m),(Ap: P(hd(m))) ti(m,p)).
The elements of S are formal neighbourhoods for points in M. We write m Es

to mean that s is a neighbourhood of m. If m k= s, we define m[], : Pi(s) — M.
This gives a notion of location ‘inside’ m.

(i) (m k= e) 2 True
m[Je = const(m):1 — M
(ie e is the topmost neighbourhood, containing all points in the space).
(i) (mEs;o) 2 (mEs)Ahd-m[]s=0:Pis)— S
M) = (pp)) = mlpls,pl) 2 Po(s0) — M
(ie for any p : Pi(s), the symbol/shape in m at location p is o (p)).

We can define a reflexive and transitive relation (C) of inclusion between neigh-
bourhoods, without quantification over M, so that sC s’ «<— (lla: M)a s —
a | §'. This relation holds when s is a prefix of s/, or s is a refinement of s.
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5 Representation of continuous functions with discrete
co-domain

We begin by defining an inductive family of sets Bar(B) : S % — Set, parametrised
by a given family of sets B : S% — Set. If one regards the set valued functions as
predicates, the operation Bar can be recognised as a familiar closure operation that,
as it were, fills in any concavity present in the predicate B (the convex closure). The
very paradigm of this operation is present in Brouwer’s principle of bar-induction,
which explains our choice of its name. The operation can also be recognised as
a form of the construction of a free monad over a functor, in this case a functor
intrinsic to the topology of a final coalgebra.

Bar : PS* — PS°
Bar(B) = (uX : PS%) (As: S
B(s)+ (o : Pi(s) — S) X(s;0)

If B:PS%and s : S%, then an element of Bar(B, s) is a program that implements
(via the function eat below) a continuous function from the product space M” “(s)
to the discrete space (X s € S%) B(s). The point is that we have to define the entire
family of representation functions simultaneously. Crucially, it is the use of the
dependent function space that makes this possible.

Just as T4 _ is the free monad over the functor 4, Bar is the free monad Bar}

over the following endofunctor Bar; on the category of families of sets indexed over
St

Bary : PST — PSS
Bary(B,s) £ (Ilo : Pi(s) — S) B(s;0) .

If we regard S? as a category with edges between s and s; o for o : P%(s) — S, then
we can shed more light (categorically) on BariB. It is simply 1 — B where the
exponential is of objects in the category S? — Set and thus Bar is simply (1 —)*
since Bar is just

(uX : PS%) B+ Bari(X) .

where the coproduct is again in S? — Set and is thus taken pointwise. As a predi-
cate, Bari(B) says of s that B holds in one refinement step, while Bar(B,s)® says
of s that it is barred by B, meaning that B will inevitably hold sooner or later in
any sufficiently prolonged sequence of successive refinements. One says that any m
with m [ s inevitably ‘enters the bar’? | ie there is a refinement s’ C s such that
B(s') and m = ¢'.

8 In Sambin’s notation for formal topology one would write this set in the iconic form s <1 B. Unfortunately,
with container notation we already use the symbol < infix at type (S : Set) — PS — Set — Set for the
container extension operation.

9 No doubt to partake of an alcoholic refreshment. A monotone bar is one that you cannot leave.
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Now fix a family of discrete sets B : PSE.

cat : (S° <par(sy P(M) — (5% < PE)(M)

eat(s, Ret(b),m) = (s,b,m)

eat(s, Get(¢),m) = eat(s; o, p(o),m’)

whereo : Pi(s) — S

o(p) = hd(m(p))
m': Pi(s;0) — M
m/(p,p') = tl(m(p),p')

The definition of eat can be justified in various ways. One is by the principle of
structural recursion corresponding to the inductive definition of Bar. In fact this
is bar-recursion [14]. Another exploits the freeness of the monad Bar = Bar] on
PSH. To use the latter, we define a natural transformation from the functor Bari
to the functor

R:PS" — PS"
R(B,s) & MP*®) — (S5 <p P?)(M)

The latter is the underlying functor of a monad. This monad can be seen as a
generalisation in some sense of the simply-typed state monad B — @ — (B X Q)
where the state @Q is {MPhs |s:S1Y.

It is convenient to introduce a notion of ‘untidy’ eating, that simply throws away
the residue, or lets it fall to the floor. When a machine has run into its final state,
we are interested only in the result.

eat! : (I1s : S%) Bar(B,s) — MFe) (Y s: 5% B(s)
eat’ = ({s,b, ) s (s,b)) - eat

Definition 5.1 If s : S%, and ¢ : M) — (X s : S%) B(s) is extensionally equal
to eat’(s,t) for some t : Bar(B,s), then t is said to represent ¢ at s, or to be a
representative of it. The representation is the function eat.

Theorem 5.2 (Completeness of representation for discrete codomain) Given s : St
and a function ¢ : MF*®) — (X5 : 8% B(s) with no representative t : Bar(B, s) at
s, we can ‘construct’ (ie. prove the classical existence of) o : M such that o = s
and ¢ is not continuous at o ]s.

6 Representatives of continuous functions with general
codomain.

We consider now the problem of finding data-structures that can represent (using a
suitable interpreter) functions between final coalgebras of containers. However the
task is more complicated than it at first appears. Let (S, P) and (@, R) be a pair
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of containers. In order to represent functions of type
v(S<P)— v(Q<R)

we need to devise a representation for an entire doubly indexed family of such
functions, namely

(PH(s) = v(S 2 P)) — (R*(q) — v(Q < R))

where s : S% and ¢ : Q. The reason is that we want our representation to be
compositional. As our representation ‘munches’ its way through an infinite object
in v(S < P), it is faced at successive stages with an indexed family of subobjects,
having a type of the form

Pi(s) — v(S < P)

where s : S is the prefix of the infinite object that has been eaten so far. Con-

sider now the output side of our program, and imagine now that there is another

such program, ‘upstream’, expecting output of successive ‘slices’ through an infinite

object in v(Q < R). Our representation has to produce successive slices of this kind.
The interpreter eats, we need to define will have type

(Ilq: Q% s: 5% Posqs — (P's — (S < P)) — (R'qg — v(Q < R))

where Pos is a doubly indexed family of sets, that we have yet to define, whose type
is

Pos : Q% — S% — Set .
Here is an isomorphic variant of the type our interpreter will inhabit
[(Sq: Q%) (S* Qposq PP)(W(S < P)) x R q] — v(Q < R)

Since this type is a function space with a codomain which is a final coalgebra
v(Q < R), we will define it using the universal property of final coalgebras. So we
set

C':Set = (X q: Q) (S Aposq P)(1(S <1 P)) x Riq
and define
eatoo : C — v(Q < R)
eatoo = unfold(y)

where the coalgebra v : C' — (Q < R)C' is yet to be defined.
It is time to define our family of programs.

Definition 6.1 Define Pos : Q! — S% — Set as the following final coalgebra
Pos = (WW : Q% — S% — Set) {q: Q%| Bar{s' : S"|(S7: Riq — Q)W(q;7)s'}}

This definition has been devised to yield the fixed point isomorphism (for q : Q",
at type S% — Set):

Posq= Bar{s :S%|(S7:R'q— Q) Pos(¢;7)s"}
The direction of this isomorphism we shall need is the function
out : (Il q : Qs Sh) Pos(q,s) — Bar({s: X [(X7: Rh(q) — Q) Pos(q;7,5') },9)
11
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Note that on account of this isomorphism discrete eating (section 5) gives us a
function inhabiting

(‘S’h <’P05qph)(y(5<lp)) - (Sh <’{5:Sh|(ET:th—)Q)POS(q;T)S} Ph)(y(s < P))

What remains now is to define our coalgebra v : C' — (Q < R)C. The idea is
perhaps best conveyed first with a diagram.

C =2 (Zq:Q% (8 Apesqg PH((S < P)) x Rig
eat

(Zq : Qﬂ) (Sh <I{s:S“|(2'r:Rh g—Q) Pos (¢;7) s } Pu)(y(s < P)) x R q
<Qasv7—7p’fvr> =

(05 Q) Ra— (S0 Q) (8° Spmny PACE 5B X R0
(Q < R)C

The definition can be written more formally as follows.
7:C— (Q<R)C
g, (s,p, f),7)
2 (7(r), (A7 R(7(r))) (a; 7, eat (s, out(q, s,p), ), (r,7"))

Thus we have the coalgebra we want and hence the representation of continuous
functions between final coalgebras.

We have not proved that this representation is complete, but conjecture that
this can be accomplished along the lines of the proof of the simpler completeness
result in section 3.3 of our earlier paper on stream processors.

6.1 Composition

In the previous section, we defined a doubly indexed family of datatypes
{Posqs|q:QF s: 5%}
to represent functions in the doubly indexed family of function types
{(Pfs —v(SaP) — (Rl —v(Q<R))|q: Qs : 5%}

together with a function eat,, that interprets a datastructure as a function of the
appropriate type. Our representations should consume successively deeper ‘slices’ of
type P?s — S through an infinite object of type v(S <1 P) presented to it as input,
and produce successively deeper such slices of type R?q — Q through an infinite
object of type v(Q < R), generated by it as output. The form of the representation
was motivated by the goal that our representation should be compositional: it
should be possible to arrange two such representations of appropriate type in series
so as to represent the composition of the represented functions.

In this section, we define an operation (‘®’) directly on our datastructures that
represents the composition of the functions they represent. Suppose we have three
container functors (Q < R), (S < P) and (U < T'), giving the types v(Q < R) of our

12
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ultimate output object, v(S < P) of an intermediate object, and v(U < T') of our
original input object respectively. The type of the operation is as follows.

®:(Iq:Q%s:S%u:U" Posqs — Possu — Posqu

To alleviate notation, we leave the first three arguments of ® implicit, and write it
as an infix operator between its final two arguments. We aim that

eatoo (Post @q su pre) = eatoopost - eatopre

where ¢ : Q%, s : S%, w: UY, post : Posqs and pre : Pos su. Although the underlying
idea is quite simple, the details of the definition are necessarily rather technical, so
we merely sketch how the function is defined. Since the codomain of the operation
® is a final coalgebra of a certain functor on doubly indexed families, we define
the operation using an unfold. The functor at issue is that which takes a doubly
indexed family U : Q% — U? — Set to

{(Ef:Rq— QU f)slq: Q% u:U")
, and so we seek a coalgebra
v:(Mg: Q% u:U)Cqu— (Ef: Riq—Q)Cl(q; f)s

for this functor. Experience with the corresponding operator on stream functions
suggests that we take the define the carrier C' of our coalgebra as follows.

C:Q"— U% — Set
Cqu = (Xs:8% Bar{s' : 57| (2g: R'q— Q) Pos(q; g)s' } sx
Bar{v' :U%|(Sh: Pi's — S) Pos(s; h)u' }u
When the coalgebra v has been defined, we can then define ® as follows
post @ pre = (unfold~v){out post, out pre) .

It should be emphasised that we do not suggest that this is the only way to define
our composition operator. Indeed, there are other methods, some of which are quite
elegant, though not entirely straightforward to describe.

It remains to define the coalgebra 7. Since the domain of this function has
as its principal feature two occurrences of the family transformer Bar, we define
it using fold, which is to say bar-recursion. The form of the definition is with
an outer recursion on the postponent, and an inner recursion on the preponent.
Precise definitions are given in the accompanying type code - here we describe
in operational terms what this amounts to. We evaluate the postponent to weak
head normal form, which will be either Ret, or Get. In the former case (the
base of the outer recursion), the arguments of the constructor have type (X g :
RYq — Q) Pos(q; g)s’ for some s' : S% In that case, we form an element of 7’s
codomain by emitting the ‘slice’ ¢ : R'q — @, and forming the new state by
applying out to the body of the ¥ (so as to get an element of the postponent’s type,
and pairing this value with the preponent. In the latter case, when the postponent
has form Get, we turn our attention to the preponent, and evaluate it to weak head
normal form. Should the preponent have the form Ret, with an argument of type
(Sh: P%s — S) Pos(s; h)u' for some u' : U%, we feed the ‘slice’ h to the argument
of the postponents Get (this ‘going down’ in the outermost recursion), thus making
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an internal communication from preponent to postponent, and proceed with what
remains. Should the preponent on the other hand have the form Get, then both
postponent and preponent are reading and the value of ~ also has Get form.

It should be noted that the operator we have defined is lazy, in that if the
postponent is ready to output a ‘slice’ of ¥(Q < R), so is the component, whether
or not the preponent is ready to input a slice of v(S < P). Another variant can
be defined which is greedy, in that as long as the preponent is ready to read, the
composite will read, whether or not the postponent is prepared to write. The
definition is however still a nested recursion of the same general form: an outer
recursion on the postponent, with inner recursion on the preponent.

In fact, the definitions at which we arrived are merely an elaboration of the cor-
responding definitions in section 4.1 of our previous paper on stream processors [11].
A formal definition, type checked in a version of Agda can be found at the following
url: http://www.cis.strath.ac.uk/~ng/cont-eat.agda. We have not actually
carried out a formal proof of the equation above expressing the correctness of the
operator ®, but we expect that this can be done along the lines of section 4.2 of
our paper on stream processors, albeit with heavier technical machinery.

7 Conclusion

We have defined a system of representatives for functions on final coalgebras of
functors expressible as containers. When those functors are finitary, their final
coalgebras support a simple topology. The notion of continuity then makes sense
for functions on such arguments. We proved that our representatives implement
exactly the continuous functions in the discrete valued case, and conjecture it in
the case that the values are in final coalgebras for finitary container. We have
also defined a combinator on representatives that represents composition of the
represented functions. This involved a careful analysis of the types involved. We
used types indexed over neighbourhoods for the final coalgebra of the container. The
mathematical techniques involve working with indexed families of sets, to represent
functors F' via containers, and to represent neighbourhoods of v F' using in particular
a weak form of inductive-recursion to define such families. We also used mixed
inductive and coinductive types in our work.

As with streams, our representations are not unique. There are many different
representations of even the identity function. Indeed, representations of the iden-
tity function are among the most interesting, as they correspond to non-reordering
sequential channels, buffering, or wires. One might say that a representation de-
notes the extensional identity function, but expresses a buffering policy. It seems
probable that one can define a equivalence relation directly between representations
to coincide exactly with extensional equality of functions on streams.

Final coalgebras of indexed containers impose a form of sort-constraint on infi-
nite terms (in which the indices are type identifiers). Our definition of composition
has the smell of cut-elimination, except that no sort-structure is present. With a
sort-structure, the source of this aroma can be investigated. There may be connec-
tions here with continuous cut-elimination and continuous normalisation and the
repetition rule of Mints: see also [5].
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It is striking that we now have an analysis of continuous functions on spaces of
the form F*°B = (v X) B x F(X), ie cofree comonad over F'. These spaces, and
other such as (v X ) F(B x X) can be useful for modelling the states of hierarchically
accessed stores such as file-systems or sequentially accessed stores such as the tape of
a Turing machine. Equipped with a cursor (a ‘one-hole context’ [4]) that navigates
up and down the tree, one has an updatable store, that can be used for shared-
memory communication. A storage device is a particularly well-behaved kind of
state-machine, and indeed a state machine can be identified with an infinite object
of a type such as (¥ X)S x (P — X) = (P —)*S (in the case of a Moore machine
with output S and input P). An alternative is (v X) P x X% = (§ —)>®(S§ — P)
for a Mealy machine with input S and output P. Another kind of infinite object
that we can now model is (¥ X)A + X, which has the connotation: maybe I'll
give you a A, maybe I won’t. When combined with a suitable account of ‘hiding’
delay, this may useful for modelling partial functions that may ‘fail’ to produce
output. Finally, it is possible that one can formulate higher order eating to analyse
continuity at higher types.
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