
Chapter 21

Short Cut Fusion of Recursive
Programswith Computational
Effects
Neil Ghani1, PatriciaJohann2
Category: Research

Abstract: Fusionis the processof improving the efficiency of modularlycon-
structedprogramsby transformingtheminto monolithicequivalents.This paper
definesa generalizationof thestandardbuild combinatorwhich expressesuni-
form productionof functorialcontexts containingdataof inductive types.It also
provescorrectafusionrulewhichgeneralizesthefold/ build andfold/buildp
rulesfrom the literature,andeliminatesintermediatedatastructuresof inductive
typeswithout disturbingthe contexts in which they aresituated. An important
specialcaseariseswhenthiscontext is monadic.Whenit is, asecondrule for fus-
ing combinationsof producersandconsumersvia monadoperations,ratherthan
via composition,is alsoavailable. We give examplesillustratingboth rules,and
considertheir coalgebraicdualsaswell.

21.1 GENERALIZING SHORT CUT FUSION

21.1.1 Intr oducingShort Cut Fusion

Fusionis the processof improving the efficiency of modularlyconstructedpro-
gramsby transformingtheminto monolithicequivalents.Shortcut fusion [7] is
concernedwith eliminatinglist traversalsfrom compositionsof componentsthat
are“glued” togethervia intermediatelists. Shortcut fusionusesa local transfor-
mation— known asthe foldr/build rule — to fusecomputationswhich can

1Universityof Nottingham,Nottingham,UK. nxg@cs.nott.ac.uk. Supportedin
partby EPSRCgrantEP/C511964/2.

2RutgersUniversity, Camden,NJ,USA.pjohann@crab.rutgers.edu.
Supportedin partby NSFgrantCCF-0700341.

1



newtype Mu f = In {unIn :: f (Mu f)}

fold :: Functor f => (f a -> a) -> Mu f -> a
fold h (In k) = h (fmap (fold h) k)

build :: Functor f =>
(forall a. (f a -> a) -> c -> a) -> c -> Mu f

build g = g In

fold k . build g = g k

FIGURE 21.1. The fold and build combinators and fold/build rule.

bewrittenascompositionsof applicationsof theuniformlist-consumingfunction
foldr andtheuniform list-producingfunctionbuild givenby

foldr :: (b -> a -> a) -> a -> [b] -> a
foldr c n [] = n
foldr c n (x:xs) = c x (foldr c n xs)

build :: (forall a. (b -> a -> a) -> a -> a) -> [b]
build g = g (:) []

The functionfoldr is standardin the Haskell prelude. Intuitively, foldr c n
xs producesavalueby replacingall occurrencesof (:) in xs byc andtheoccur-
renceof [] in xs by n. Thus,sum xs = foldr (+) 0 xs sumsthe(numeric)
elementsof the list xs. Uniform productionof lists, on the other hand,is ac-
complishedusingthecombinatorbuild, whichtakesasinputatype-independent
templatefor constructing“abstract”listsandproducesacorresponding“concrete”
list. Thus,build (\c n -> c 4 (c 7 n)) producesthelist [4,7]. Uniform
list transformerscanbewritten in termsof bothfoldr andbuild. For example,
thefunctionmap canbeimplementedas

map :: (a -> b) -> [a] -> [b]
map f xs = build (\c n -> foldr (c . f) n xs)

Thefoldr/build rule capitalizeson the uniform productionandconsump-
tion of lists to improve the performanceof list-manipulatingprograms. It says

foldr c n (build g) = g c n (21.1)

If sqr x = x * x, then this rule can be used,for example, to transformthe
modularfunctionsum . map sqr :: [Int] -> Int which producesanin-
termediatelist into anoptimizedform which doesnot:

sum (map sqr xs) = foldr (+) 0
(build (\c n -> foldr (c . sqr) n xs))

= (\c n -> foldr (c . sqr) n xs) (+) 0
= foldr ((+) . sqr) 0 xs



buildp :: Functor f =>
(forall a. (f a -> a) -> c -> (a,z)) -> c -> (Mu f, z)

buildp g = g In

fmap (fold k) . buildp g = g k

FIGURE 21.2. The buildp combinator and fold/buildp fusion rule.

21.1.2 Short Cut Fusion for Inducti ve Types

Inductivedatatypesarefixedpointsof functors.Functorscanbeimplementedin
Haskell astypeconstructorssupportingfmap functionsasfollows:

class Functor f where
fmap :: (a -> b) -> f a -> f b

The function fmap is expectedto satisfy the two semanticfunctor laws stating
thatfmap preservesidentitiesandcomposition;asusual,it is the programmer’s
responsibilityto ensurethat this is the case. It is well-known that analoguesof
foldr exist for everyinductivedatatype.As shown in [5, 6], every inductivetype
alsohasanassociatedgeneralizedbuild combinator;theextra typec in thetype
of build is motivatedin thosepapersandto lesserextentin Section21.3below.
Thesecombinatorscanbe implementedgenericallyin Haskell asin Figure21.1.
There,Mu f representsthe leastfixed point of the functorf, andIn represents
the structuremapfor f, i.e., the “bundled” constructorsfor the datatypeMu f.
The fold/build fusion rule for inductive typescan be usedto eliminatedata
structuresof typeMu f from computations.Thefoldr andbuild combinators
for lists canberecoveredby takingf to bethefunctorwhosefixedpoint is [b].
Thefoldr/build rule canberecoveredby takingc to betheunit typeaswell.
As usual,fold andbuild implementtheisomorphismsbetweeninductivetypes
andtheirChurchencodings.

21.1.3 Short Cut Fusion in Context

Shortcutfusionhandlescompositionsg . f in whichthedatastructureproduced
by f is passedfrom f to g. But whatif f producesnot justasingledatastructure,
but multiplesuchstructures,embedsthesedatastructuresin anon-trivial context,
andpassesthe resultto g for consumptionof thesedatastructures“in context”?
Is it possibleto eliminatetheseintermediatedatastructuresfrom g . f while
keepingthecontext information,whichg mayneedto computeits result,intact?
Unfortunately, standardfusion techniquescannotachieve this: the intermediate
datastructuresproducedbyf cannotbedecoupledfrom thecontext in whichthey
aresituated.In [2], Fernandes,Pardo,andSaraivaintroduceatechniquefor fusing
compositionsg . f in whichf passestog notonly theintermediatedatastructure
producedby f, but anadditionaldatumaswell. Althoughg requiresthis datum
to computeits result, this datumis not usedwhen processingthe intermediate
datastructure,andsoonly thedatastructureitself needsto beeliminatedfrom g
. f. To do this, [2] usesa variantof thestandardfold/build rule basedon the
combinatorbuildp, whichcapturestheextradatumby returningadatastructure



superbuild :: (Functor f, Functor h) =>
(forall a. (f a -> a) -> c -> h a) -> c -> h (Mu f)

superbuild g = g In

fmap (fold k) . (superbuild g) = g k

FIGURE 21.3. Thesuperbuild combinator andfold/superbuild fusion rule.

embeddedin a pair context. The datatype-genericbuildp combinatorand its
associatedfold/buildp fusionrule aregivenin Figure21.2.There,fmap is the
mapfunction
fmap :: (a -> b) -> ([a],z) -> ([b],z)
fmap (as,z) = (map f as, z)

which witnessesthefact that thetypeconstructorh givenby h x = (x,z) is a
functor. Thecontext informationproducedby buildp andusedby theconsumer
in theleft-handsideof thefold/buildp fusionrule is reflectedin thepair return
typesof buildp andits templateargument,aswell asin the mappingof fold
acrossthepair in theassociatedfold/buildp rule. This ruleeliminatesinterme-
diatedatastructureswithin thecontext of pairingwith anadditionaldatum.

But now supposewewantto write a function
gsplitWhen :: (b -> Bool) -> [b] -> [[b]]

which splitsa list into sublistsat every elementthatsatisfiesa givenp. Notethat
the functiongsplitWhen splits lists into arbitrarynumbersof sublists,depend-
ing on the datathey contain,and that the type z in the type of buildp cannot
be instantiatedto allow thereturnof a numberof lists which hasthepotentialto
changeon eachprogramrun. This meansthatgsplitWhen cannotbewritten in
termsof buildp. Moreover, compositionsof gsplitWhen with functionsthat
consumeeachof the individual “inner” lists producedby gsplitWhen but re-
quiretheinformationinherentin its “context list” to computetheir resultscannot
be fusedusingthe fold/buildp rule. But why try to structureprogramsonly
with contexts of the form (-,z)? That is, why not considera generalization
of thebuildp combinator, anda generalizationof thefold/buildp fusionrule
which canbe usedto eliminateintermediatedatastructures,like thosereturned
by gsplitWhen, which appearin contexts other than just pairs? That is pre-
ciselywhat this paperdoes.We call thesegeneralizationssuperbuild andthe
fold/superbuild rule, respectively. Like buildp andthefold/buildp rule,
oursuperbuild combinatorandfold/superbuild fusionrule areavailableat
everyinductivedatatype.Datatype-genericversionsaregivenin Figure21.3;note
thatthetypeof superbuild is actuallygenericin bothf andh. Thegeneralization
of the pair context in the type of buildp is capturedby the replacementin the
typeof superbuild of thetype(x,z) by thetypeh x for amoregeneral“con-
text functor” h. This generalizationis further reflectedin thereplacementof the
fmap function for pairs in the fold/buildp rule by the fmap function for the
moregeneralcontext functorh in thefold/superbuild rule. Thefold com-
binatorin thefold/superbuild rule is theonefor Mu f, asusual.Thesefmap



andfold functionsareguaranteedto be definedpreciselybecausethe type of
superbuild requiresbothf andh to befunctors.We arguein Section21.3that
thefold/superbuild ruleholdsfor a largeclassof functorsh.

Taking h x = x givesthe generalizedbuild combinatorandfold/build
rule from Figure21.1,while taking h x = (x,z) givesthe buildp combina-
tor andfold/ buildp rule from Figure21.2. In general,thefold/superbuild
rule canfusecompositionsin which context informationdescribableby non-pair
functorsis passed,alongwith intermediatedatastructures,from producerto con-
sumer. Indeed,thefold/superbuild rule eliminatesintermediatestructuresof
typeMu f obtainedby mappingaconsumerexpressedasafold over thedataof
typeMu f storedin a context specifiedby a functorh. Thus,settingc = [b], h
x = [x], andf to bethefunctorwhoseleastfixedpoint is [b], wecanwrite

gsplitWhen p = superbuild go where
go c n z = case z of

[] -> []
[w] -> [c w n]
(w : ws) -> let xs = go c n ws

in if p w then (c w n) : xs
else (c w (head xs)) : (tail xs)

If lgh = foldr (\x -> (1+)) 0 thenusing the fold/superbuild rule to
fusethecompositionevLghs = map lgh . gsplitWhen even gives

evLghs’ z = case z of
[] -> []
[w] -> [1]
(w : ws) -> let xs = evLghs’ ws

in if even w then 1 : xs
else (head xs + 1) : (tail xs)

NotethatevLghs’ tradesproductionandconsumptionof thelist of intermediate
listsreturnedbygsplitWhen even in evLghs for productionof thecorrespond-
ing list of valuesobtainedby applyinglgh to eachsuchlist.

21.1.4 Short Cut Fusion in Effectful Contexts

The ability to fuse intermediatedatastructuresin context turns out to be the
key to extendingshort cut fusion to the effectful setting. Although fusion in
thepresenceof computationaleffectshasbeenstudiedby otherresearchers(see,
e.g.,[11, 12, 14, 16]), shortcut fusion in particularhasnot previously beenfor-
mally exploredin thiscontext. To performshortcut fusionin aneffectful context,
thefunctionalargumentto superbuild, andthussuperbuild itself, musthave
a monadicreturntype. Monadscanbeimplementedin Haskell astypeconstruc-
tors supporting>>= andreturn operationsasfollows; theseoperationsareex-
pectedto satisfythesemanticmonadlaws,but ensuringthis for allegedinstances
of Haskell’sMonad classis, asusual,theprogrammer’sresponsibility.

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> mb



msuperbuild :: (Functor f, Monad m) =>
(forall a. (f a -> a) -> c -> m a) -> c -> m (Mu f)

msuperbuild g = g In

msuperbuild g c >>= fold k = g k c >>= id

FIGURE 21.4. The msuperbuild combinator and fold/msuperbuild fusion
rule.

If m is a monad,then instantiatingthe context functorh to m in superbuild’s
type gives the msuperbuild combinatorin Figure 21.4. The accompanying
fold/msuper build ruleis thenatural“monadification”of thefold/superbuild
rule; we give anexampleof its usein Section21.2. This rule doesnot eliminate
the monadiccontext describedby m, but doeseliminateintermediatedatastruc-
turesof typeMu f within thatmonadiccontext. Moreover, theruledoesin general
changethecontext containingthedatastructure,andsois moresophisticatedthan
its non-monadiccounterpart.

The remainderof this paperis structuredasfollows. In Section21.2we ap-
ply our new fold/superbuild and fold/msuperbuild rules to substantive
examples. In Section21.3 we show how the superbuild andmsuperbuild
combinatorsare derived from initial algebrasemantics,and prove the correct-
nessof their associatedfusion rules. In Section21.4we give non-monadicand
monadicsuperdestroy/unfold rules dual to our non-monadicand monadic
fold/super build rules; our resultsfor superbuild andmsuperbuild are
easilydualizedto prove themcorrect. In Section21.5we discussrelatedwork,
and in Section21.6 we concludeand offer directionsfor future research. A
Haskell implementationof our resultsandanadditionalexamplehighlightingthe
versatilityof our rulesareavailableathttp://www.cs.nott.ac.uk/ � nxg.

21.2 EXAMPLES

In this sectionwe give somemoresophisticatedexamplesshowcasingthepower
of the fold/superbuild andfold/msuperbuild fusion rules. Our first ex-
ampleshows that the fold/superbuild rule can be usedto eliminate inter-
mediatedata structuresother than lists. Our secondexample shows that the
fold/msuperbuild rule caneliminatedatastructureswithin thestatemonad.

Example21.1.Considerthesimplearithmeticexpressiondatatypegivenby

data Oper = Add | Mul | Sub deriving (Eq, Show)

data Expr = Lit Int | Op Oper Expr Expr deriving (Eq, Show)

Thefold combinatorfor expressions,the instanceof superbuild for expres-
sionswherec is Expr andh x is [x], andtheassociatedfusionrule are

foldExpr :: (Int -> a) -> (Oper -> a -> a -> a) -> Expr -> a
foldExpr l o e = case e of

Lit i -> l i



Op op e1 e2 -> o op (foldExpr l o e1)
(foldExpr l o e2)

superbuildExpr :: (forall a. (Int -> a) ->
(Oper -> a -> a -> a) -> Expr -> [a]) -> Expr -> [Expr]

superbuildExpr g = g Lit Op

map (foldExpr l o e) (superbuild g) = g l o e

If we defineopToHas Add = (+), opToHas Mul = (*), and opToHas
Sub = (-), thenwe can implementan interpreterwhich tracesthe evaluation
stepstakenin computingtheintegervaluesrepresentedby expressionsas

trace :: Expr -> [Expr]
trace = superbuildExpr g

g :: (Int -> a) -> (Oper -> a -> a -> a) -> Expr -> [a]
g l o e = case e of

Lit i -> [l i]
Op op e1 e2 -> let b1 = foldExpr l o e1

b2 = foldExpr l o e2
e’ = o op b1 b2
Lit k = last (g Lit Op e1)
Lit j = last (g Lit Op e2)
b1s = g l o e1
b2s = g l o e2

in (e’ : (map (\x -> o op x b2)
(tail b1s))

++ (map (o op (last b1s))
(tail b2s))

++ [l (opToHas op k j)])

For example,thecall

trace (Op Mul (Op Add (Lit 5) (Lit 6)) (Op Sub (Lit 7) (Lit 4)))

generatesthetrace

[ Op Mul (Op Add (Lit 5) (Lit 6)) (Op Sub (Lit 7) (Lit 4)),
Op Mul (Lit 11) (Op Sub (Lit 7) (Lit 4)),
Op Mul (Lit 11) (Lit 3), Lit 33 ]

Onceaninterpretertraceis built, it is possibleto performvariousanalysesof
it. For example,we canmeasurethe computationaleffort requiredto compute
thevaluerepresentedby eachexpressionarisingin theevaluationof a givenex-
pression. For this we usecount, which counts0 units of effort to computea
literal, 2 to performan addition,3 to performa subtraction,and5 to performa
multiplication.

count Add x y = x + y + 2
count Sub x y = x + y + 3
count Mul x y = x + y + 5



We thenhave

costExprs :: Expr -> [Int]
costExprs expr = map (foldExpr (\x -> 0) count)

(superbuildExpr g expr)

Forexample,thecallcostExprs (Op Mul (Op Add (Lit 5) (Lit 6)) (Op

Sub (Lit 7) (Lit 4))) generatestheresult[10,8,5,0]. Fusionusingthe
fold/superbuild rulegivestheequivalentfunctioncostExprs’ g (\x -> 0)

count, in which theintermediatelist of expressionsis not constructed.

Example21.2.Pardo[14] shows that graphtraversalalgorithms,suchasdepth-
first traversaland breadth-firsttraversal, can be written as calls to a monadic
unfold combinator. Here,weshow thatthesealgorithmscanbewritten in terms
of msuper build. Therelationshipbetweenmonadicandnon-monadicunfold
combinators,andbetweensuperbuild andmsuperbuild, is discusssedin Sec-
tion 21.5below.

A graphtraversalis representedasa function which takesas input a list of
root verticesof a graphandreturnsa list containingtheverticesmet in orderas
thegraphis traversed.We canrepresenttheverticesof a graphby integers,anda
graphby anadjacency list functionfor verticesasfollows:

type V = Int
type Graph = V -> [V]

In a graphtraversal,eachvertex is visitedat mostonce.To avoid repeatedvisits
to verticeswecanusethestatemonad[13, 15] to maintainalist of verticesvisited
previously in thecomputationandthreadthis list throughthetraversal.We there-
foredefineadatatypeof visit-dependentdata, eachelementof whichis afunction
takinga list of verticesalreadyvisitedasinput andreturninga datumdepending
on thatlist togetherwith anupdatedlist of visitedvertices.We have

data State s a = State {runstate :: s -> (s,a)}

instance Monad (State s) where
return a = State (\s -> (s,a))
t >>= f = State (\s -> let (s’,v) = runstate t s

in runstate (f v) s’)

type Vis a = State [V] a

Visit-dependentdatasupportthefollowing usefulauxiliary functions:

data Unit = Unit

bot :: a
bot = bot

emp :: Vis a -> a
emp xs = snd (runstate xs [])



dft :: (V -> [V]) -> [V] -> [V]
dft g vs = emp (depthFirst g vs)

depthFirst :: (V -> [V]) -> [V] -> Vis [V]
depthFirst g = superbuild (df g)

df :: (V -> [V]) ->
forall a. (V -> a -> a) -> a -> [V] -> Vis a

df g c n vs = case vs of
[] -> return n
(x:xs) -> mem x >>=

(\b -> if b then df g c n xs
else sunion x >>=

(\z -> df g c n (g x ++ xs) >>=
(\ys -> return (c x ys))))

FIGURE 21.5. Depth-first graph traversal functions.

sunion :: V -> Vis Unit
sunion v = State (\vs -> (v:vs, bot))

mem :: V -> Vis Bool
mem v = State (\vs -> (vs, elem v vs))

With this machineryin placewe can definedepth-firsttraversalas in Fig-
ure 21.5. There,dft first allocatesan empty list of visited vertices,then runs
depthFirst, yielding a final list of visited vertices,andthende-allocatesthis
visitation list andreturnsthe list resultingfrom the traversal. At eachiteration
of the traversal,df exploresthecurrentlist of rootsin vs to find a vertex it has
not reachedbefore. This is accomplishedby removing from the front of vs all
verticesfor which mem x is trueuntil eitheranunvisitedvertex or theendof vs
is encountered.Whenanunvisitedvertex x is encountered,df addsx to the list
of verticesvisited, recursively computesthe depth-firsttraversalsof the graphs
rootedat x’s children,aswell asthosespecifiedby therestof theverticesin vs,
and thenreturnsthe list of verticesobtainedby addingx to the list of vertices
recordingthe orderin which the restof the verticesaretraversed.Thecodefor
breath-firstsearchis identical,except that the function bf correspondingto df

usesxs ++ g x ratherthang x ++ xs. To traverseaparticulargraphwespec-
ify thedesiredtraversal,thegraph’sadjacency list function,andits root vertices.
For example,if thegraphG is modeledbyg 0 = [2,1], g 1 = [], andg x =

[x+1], thendepthFirst g [0] computesthe depth-firstsearchof G starting
at rootvertex 0.

For example,to consumetheresultof atraversalwith filtergph odd where

filtergph :: (V -> Bool) -> [V] -> Vis [V]
filtergph p = foldr (\v i -> if p v then return (v : emp i)

else return (emp i)) (return [])

wecanwrite oneof thefollowing, dependingon thedesiredtraversal



dfFil g = emp (depthFirst g [0] >>= filtergph odd)

bfFil g = emp (breadthFirst g [0] >>= filtergph odd)

To performthesamecomputationswithout constructingthe intermediatelists of
visit-dependentvertices,we canusethefold/msuperbuild rule to get

dfFil’ g = emp ((df g) (\v i -> if odd v then return (v : emp i)
else return (emp i))

(return []) [0] >>= id)

bfFil’ g = emp ((bf g) (\v i -> if odd v then return (v : emp i)
else return (emp i))

(return []) [0] >>= id)

Notethatthelistsobtainedby takingany non-emptyinitial segmentsof theresults
of dfFil g andbfFil g — andthusof dfFil’ g andbfFil’ g — reflectthe
distinctionbetweentheunderlyingdepth-firstandbreadth-firsttraversals.

21.3 CORRECTNESS

21.3.1 Categorical Preliminaries

Let
�

bea category andF beanendofunctoron
�

. An F-algebra is a morphism
h : FA � A in

�
. The objectA is called the carrier of the F-algebra. The F-

algebrasfor a given functor F arethe objectsof a category calledthe category
of F-algebras anddenotedF-� lg. In the category of F-algebras,a morphism
from h : F A � A to g : F B � B is amorphismf : A � B suchthatthefollowing
diagramcommutes:

FA
F f ��

h ��
FB

g��
A

f ��
B

We call sucha morphismanF-algebra morphism. If thecategory of F-algebras
hasaninitial objectthenLambek’sLemmaensuresthatthis initial F-algebra is an
isomorphism,andthusthat its carrieris a fixedpoint of F . Initiality ensuresthat
thecarrierof theinitial F-algebrais actuallya leastfixedpoint of F . If it exists,
theleastfixedpoint for F is uniqueup to isomorphism.Henceforthwe write µF
for theleastfixedpoint for F andin : F � µF 	
� µF for theinitial F-algebra.

Within theparadigmof initial algebrasemantics,every datatypeis thecarrier
µF of theinitial algebraof asuitableendofunctorF onasuitablecategory

�
. The

uniqueF-algebramorphismfrom in to any otherF-algebrah : F A � A is given
by theinterpretationfold of thefold combinatorfor theinterpretationµF of the
datatypeMu F. The fold operatorfor µF thusmakesthefollowing commute:

F � µF 	 F � foldh� ��
in ��

FA

h��
µF

foldh ��
A



Fromthisdiagram,weseethatfold hastype � FA � A 	
� µF � A andthatfold h
satisfiesfold h � in t 	�� h � F � fold h 	 t 	 . The uniquenessof the mediatingmap
ensuresthat,for everyF-algebrah, themapfoldh is defineduniquely.

As shown in [6], the carrierof the initial algebraof an endofunctorF on
�

canbeseennot only asthecarrierof theinitial F-algebra,but alsoasthelimit of
theforgetful functorUF : F-� lg � �

mappingeachF-algebrah : F A � A to its
carrierA. If G :

� ��� is a functor, thena coneτ : D � G to the baseG with
vertex D comprisesanobjectD of � anda family of morphismsτC : D � GC,
onefor everyobjectC of

�
, suchthatfor everyarrow σ : A � B in

�
, τB � Gσ � τA

holds.
GA

Gσ ��
GB

D

τA

� �
τB

� ���������
We usually refer to a conesimply by its family of morphisms,ratherthan the
pair comprisingthe vertex togetherwith the family of morphisms. A limit for
G :

� ��� is anobjectlim G of � anda limiting coneν : lim G � G, i.e.,a cone
ν : lim G � G with the propertythat if τ : D � G is any cone,then thereis a
uniquemorphismθ : D � lim G suchthatτC � νC � θ for all C � � .

GA
Fσ ��

GB

D

τA

� �
τB � ����������

θ

��
lim G

νA

�� � � � � � � � � νB

� �

Thecharacterizationof µF aslimUF providesaprincipledderivationof thein-
terpretationbuild of thebuild combinatorfor µF whichcomplementsthederiva-
tionof its fold operatorfrom standardinitial algebrasemanticsgivenabove. It also
guaranteesthecorrectnessof thestandardfold/build rules.Indeed,theuniver-
salpropertythatthecarrierµF of theinitial F-algebraenjoysaslimUF ensures:

 Theprojectionfrom the limit µF to thecarrierof eachF-algebradefinesthe
fold operatorwith type � FA � A 	!� µF � A. Givenaconeθ : C � UF , themediatingmorphismfrom it to thelimiting cone
ν : limUF � UF definesa mapfrom C to limUF . Sincea coneto UF with
vertex C hastype " x#$� Fx � x 	%� C � x, thismediatingmorphismdefinesthe
build operatorwith type �$" x#&� Fx � x 	
� C � x 	'� C � µF. Thecorrectnessof thefold/build fusionrule thenfollowsfrom thefactthat
fold afterbuild is a projectionaftera mediatingmorphism,andthusis equal
to theconeappliedto thespecificalgebra.Diagrammatically, wehave

A

C

gk (*)++++++++
buildg

��
µF

foldk

� �



21.3.2 Corr ectnessof the fold/superbuild Rule

To provecorrectnessof ourfold/superbuild rule we areactuallyinterestedin
thefollowing variationof theprecedingdiagram:

H A

C

gk
� ����������

superbuildg

��
H � µF 	

H � foldk�
� �

Here,superbuild is theinterpretationin
�

of superbuild. If thefunctorH : �,�-
preserveslimits — i.e., if, for everyfunctorG :

� �.� andevery limiting cone
ν : lim G � G, theconeHν : H � lim G 	/� H � G is alsoalimit, henceforthdenoted
lim � H � G 	 — thenthis is thediagramfor theuniversalpropertyof lim � H � UF 	 .
This leadsusto askwhich functorsH preserve limits. It is well-known thatright
adjointspreserve limits, but this is a more restrictive classof functorsthanwe
would ideally like. On theotherhand,H needn’t preserveall limits, just limUF .

A connectedcategory is anon-emptycategorywhoseunderlyinggraphis con-
nected. A connectedlimit is a limit of a functor whosedomainis a connected
category. The limit limUF : F-� lg � �

is a connectedlimit since the cate-
gory of F-algebrasis connected(thereis a morphismfrom the initial F-algebra
in : F � µF 	%� µF to any otherF-algebra),soknowing thatthefunctorH interpret-
ing thetypeconstructorh in thetypeof superbuild preservesconnectedlimits
is sufficientto ensurecorrectnessof thefold/superbuild rule. It is well-known
that strictly positive functorspreserve connectedlimits [3, 8]; in particular, all
polynomialfunctorspreserve them. More generally, all functorscreatedby con-
tainerspreserve connectedlimits [8]. The classof containersincludesfunctors,
suchasthosewhoseleastfixedpointsarenestedtypes,whicharenotstrictly pos-
itive; theabove proof thuscoversmany situationsthatareinterestingin practice.
To provecorrectnessof thefold/superbuild rule for functorsH which do not
preserve connectedlimits, it shouldbepossibleto give a formal argumentbased
on logical relations[1]. However, a proof baseduponlogical relationswould not
coverexamplessuchsuchasnestedtypeswhichpreserveconnectedlimits but are
not definablein theunderlyingtypetheoryof thelogical relation.

21.3.3 Corr ectnessof the fold/msuperbuild Rule

To seethatthefold/msuperbuild rule is correct,weconsiderthediagram

M � MA 	 id 0 ��
MA

C

gk
� ����������

msuperbuildg

��
M � µF 	

M � foldk�
� �

� foldk� 0� �
111111111

whereM is the interpretationof m in thetypeof msuperbuild, bind andreturn
aretheinterpretationsof the>>= andreturn operationsfor m, respectively, and
f 2 x � bindx f . Correctnessof thefold/msuperbuild rule is exactly commu-
tativity of the diagram’s outer parallelogram.The diagram’s left-handtriangle



commutesbecauseit is aninstanceof thepreviousdiagram,andstandardproper-
tiesof monadsensurethatits right-handsidecommutesaswell. Then

g k c 3435� id � id 2�� g k c 	� � id 2/� g k 	 c� �6� fold k 	62/� msuperbuild g 	 c� � fold k 	728� msuperbuild g c 	� msuperbuild g c 3935� fold k

It is worth notingherethatmany monadsthatarisein applications— including
theexceptionsmonad,thestatemonad,andthelist monad— preserveconnected
limits. Thecontinuationsmonad,however, doesnot.

21.4 DUALITY
Ourfold/superbuild andfold/msuperbuild rulesdualizeto thecoinductive
setting. Shortageof spacepreventsus from giving the correspondingconstructs
andresultsin detailhere,sowesimply presenttheir implementation.We have

unfold :: Functor f => (a -> f a) -> a -> Mu f
unfold k x = In (fmap (unfold k) (k x))

superdestroy :: (Functor f, Functor h) =>
(forall a. (a -> f a) -> h a -> c) -> h (Mu f) -> c

superdestroy g = g unIn

superdestroy g . fmap (unfold k) = g k

Whenc is Mu f, superdestroy returnsanh-algebrawhich storescoalge-
braicf-data.Whenh is acomonad,i.e.,aninstanceof theComonad class

class Comonad cm where
coreturn :: cm a -> a
(=<<) :: cm b -> (cm b -> a) -> cm a

wehave

cmsuperdestroy :: (Functor f, Comonad cm) =>
(forall a. (a -> f a) -> cm a -> c) -> cm (Mu f) -> c

cmsuperdestroy g = g unIn

cmsuperdestroy g (x =<< unfold k) = g k (x =<< id)

21.5 RELATED WORK

Thework mostcloselyrelatedto oursis thatof Pardoandhiscoauthors.Like this
paper, [14] alsoinvestigatesconditionsunderwhichthecompositionof afunction
producingan expressionof type M � µF 	 for M a monadandF a functor, anda
function fold k of type µF � A canbe fusedto producean expressionof type
M A. But thereareseveral crucial differenceswith our work. First, Pardouses
unfold ratherthanmsuperbuild to constructtheintermediateexpression.This



giveshis fusion rule someadditionallogical generalityover ours,sinceunfold
canconstructelementsof its associatedfunctorf’s final coalgebrawhich arenot
in f’s initial algebra,whereasmsuperbuild canconstructonly elementsof f’s
initial algebra.But whentheinitial andfinal algebrasof eachfunctorcoincide,as
in Haskell, thisaddedlogical generalityyieldsno advantagein practice.

Secondly, Pardo’s monadichylofusion (and hylofusion in general)is only
known to becorrectin algebraicallycompactcategories,i.e., categoriesin which
the initial algebraand final coalgebrafor eachfunctor coincide. By contrast,
our fold/superbuild rule is correctin any category supportinga parametric
interpretationof forall, andthis conditionis independentof any compactness
condition. The requirementthat the interpretingcategory be algebraicallycom-
pactis unfortunatesinceit generatesstrictnessconditionsthatmustbesatisfied,
andalsorequiresthe underlyingmonadto be strictness-preserving.This results
in strictnessconditionpropagation.By contrast,neitherour fold/superbuild
norourfold/msuperbuild rulesrequirethesatisfactionof sideconditions.

Thirdly, Pardotradesacompositionof anunfold andamonadicfold for the
computationof an equivalentfixed point. By contrast,our fold/msuperbuild
rule tradesabind of acall to msuperbuild with a monadicfold for thebind of
theapplicationof the functionargumentto msuperbuild to thefold’s algebra
with the identity function. Like all generalizationsof thefold/build rule, our
fold/msuperbuild rule requires“paymentup front” in that the producerin a
compositionto befusedmustbeexpressedin termsof msuperbuild. (Thisis not
very differentfrom thepricepaidby expressingconsumersin termsof unfold).
But our rule delivers a fusedresult which is simpler than that obtainedusing
Pardo’s technique. In particular, the functionsobtainedfrom our fusion rules
involveonlybindsof applicationsinvolvingdatastructure“templates”,ratherthan
fixedpoint calculations.Their computationis thusguaranteedto terminate.

Finally, Pardorequiresthe existenceof a distributivity law of theunderlying
monadover the underlyingfunctor in order to constructthe lifting of functors
to the Kleisli category on which his monadichylofusionrule depends.But dis-
tributivity laws for arbitraryfunctors,eventhoseadmittingfixedpoints,neednot
exist.

Meijer andJeuring[12] alsodevelopa varietyof fusion laws in themonadic
setting,including a shortcut fusion law for eliminating intermediatestructures
of type F A in a monadiccontext M. Many fusion methods,including thoseof
both [12] and[14], eliminatedatastructuresin thecarriersof initial algebrasfor
only restrictedclassesof functors. By contrast,our methodcaneliminatedata
structuresof anyinductivetype,andcanhandlenon-monadiccontextsaswell. In
addition,Jürgensen[11] andVoigtländer[16] have eachdefinedfusioncombina-
torsbasedon theuniquenessof themapfrom a freemonadto any othermonad.
Thesetechniquesgiveverydifferentformsof fusionfrom ours.

21.6 CONCLUSION AND DIRECTIONS FOR FUTURE WORK

In this paperwe have defineda superbuild combinatorwhich generalizesthe
standardbuild combinatorandexpressesuniform productionof functorialcon-



textscontainingdataof inductivetypes.Wehavealsoprovedcorrectafold/super
build fusion rule which generalizesthe fold/build andfold/buildp rules
from theliterature,andeliminatesintermediatedatastructuresof inductive types
without disturbingthecontexts in which they aresituated.An importantspecial
caseariseswhenthiscontext is monadic.Whenit is,ourfold/msuperbuild rule
fusescombinationsof producersandconsumersvia monadoperations,ratherthan
viacomposition.Wehavegivenexamplesillustratingboththefold/superbuild
andfold/msuperbuild rules,andconsideredtheir coalgebraicdualsaswell.

The standardfold combinatorcan consumedatastructuresin any context
describableby a functor, but the algebrait usescannotdependon the context
in a non-trivial way. By contrast,context informationcanbe usedby algebras
to partially determinehow thepfold combinatorgiven in [2] will consumethe
datastructures,but unfortunatelythe contexts arelimited to pairs. Interestingly,
the pfold/buildp rule given therefor context-dependentfolds derives from
thefold/buildp rule from Figure21.2 for standardfolds. As alreadynoted,
it is thefold/buildp rule thatourfold/superbuild andfold/msuperbuild
rulesgeneralize.Onedirectionfor future work is to generalizetheseruleseven
furtherto accommodatebothcontext-dependentalgebrasandnon-paircontexts.

Anotherdirectionfor future work is suggestedby consideringan evenmore
monadicfusion rule basedon fold- andbuild-like combinatorswhich manip-
ulatealgebra-like functionsof typef a -> m a. Sucha rule would producein-
termediatedatastructuresusing“templates”basedonso-calledmonadicalgebras
and,in the presenceof a distributivity rule delta for m over f, would consume
datastructuresusingthemvia a monadicmafold combinator. We’d have

mafold :: (Functor f, Monad m) => (f a -> m a) -> Mu f -> m a
mafold k = fold (\x -> fmap k (delta x) >>= id)

masuperbuild :: (Functor f, Monad m) =>
(forall a. (f a -> m a) -> c -> m a) -> c -> m (Mu f)

masuperbuild g = g (return . In)

masuperbuild c >>= mafold k = g k c

Although a datatype-genericmasuperbuild combinatoris not definedin [12],
severalinstancesof theabovefusionrulearegiven(albeitin monadicdo-notation).
Yet no correctnessproofsfor any of thesespecificinstances— let aloneany for-
mulationof, or correctnessproof for, a datatype-genericfusionrule — aregiven.
We believe an independentproof of themafold/masuperbuild rule similar to
thosein Section21.3is possible.Althoughit is notentirelyclearhow suchaproof
wouldgo,a proof for monadswhich preserveconnectedlimits will likely require
independentverificationthatlim � MUF :M 	%� M � µF 	 for theforgetfulfunctorUF :M
mappingeachmonadicalgebrah : M a � F a to a, andaproof for monadswhich
do notpreserveconnectedlimits will likely bebasedon logical relations.

At first glance,the factsthat mafold is definedin termsof fold and that
masuper build g canbeexpressedasmsuperbuild (\k -> g (return . k))

togethersuggestthat the mafold/masuperbuild rule might be derivablefrom



(distributivity and)the fold/msuperbuild rule. However, we believe the two
rulesto offer distinct fusionoptionsin thepresenceof distributivity; it would be
interestingto seewhich is moreusefulfor programsthatarisein practice.

A final directionfor future work involvesextendingthe resultsof [9, 10] to
give regular andmonadicsuperbuilds, aswell asassociatedfusion rules,for
advanceddatatypes,suchasnestedtypes,GADTs,anddependenttypes.

REFERENCES

[1] T. Altenkirch,P. Levy, andM. Hasagawa, 2008. Personalcommunication,andmes-
sage1192from theTYPESmailing list archive.

[2] J.P. Fernandes,A. Pardo,andJ.Saraiva. A shortcutfusionrule for circularprogram
calculation.In Proceedings,Haskell Workshop, pages95–106,2007.

[3] N. Ghani,M. Abbott, andT. Altenkirch. Containers- constructingstrictly positive
types.Theoretical ComputerScience, 341(1):3–27,2005.

[4] N. GhaniandP. Johann.MonadicAugmentandGeneralisedShortCutFusion.Jour-
nal of FunctionalProgramming, 17(6):731–776,2007.

[5] N. Ghani,P. Johann,T. Uustalu,andV. Vene.Monadicaugmentandgeneralisedshort
cut fusion. In Proceedings,InternationalConferenceon FunctionalProgramming,
pages294–305,2005.

[6] N. Ghani, T. Uustalu,and V. Vene. Build, augmentand destroy. Universally. In
Proceedings,AsianSymposiumon ProgrammingLanguages, pages327–347,2003.

[7] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to deforestation. In
Proceedings,FunctionalProgrammingLanguagesandComputerArchitecture, pages
223–232,1993.

[8] R. Hasegawa. Two applicationsof analyticfunctors.Theoretical ComputerScience,
272(1-2):113–175,2002.

[9] P. JohannandN. Ghani. Initial algebrasemanticsis enough! In Proceedings,Typed
LambdaCalculusandApplications, pages207–222,2007.

[10] P. JohannandN. Ghani. Foundationsfor structuredprogrammingwith GADTs. In
Proceedings,Principlesof ProgrammingLanguages, pages297–308,2008.

[11] C. Jürgensen.Usingmonadsto fuserecursive programs(extendedabstract),2002.

[12] E. Meijer andJ.Juering.Merging monadsandfolds for functionalprogramming.In
Proceedings,AdvancedFunctionalProgramming, pages228–266,1995.

[13] E. Moggi. Notions of computationand monads. Information and Computation,
93(1):55–92,1991.

[14] A. Pardo. Fusionof recursive programswith computationaleffects. Theoretical
ComputerScience, 260(1-2):165–207,2001.

[15] S.L. Peyton Jones,editor. Haskell 98 Language andLibraries: TheRevisedReport.
CambridgeUniversityPress,2003.

[16] J. Voigtländer. Asymptotic Improvementof Computationsover FreeMonads. In
Proceedings,Mathematicsof ProgramConstruction, pages388–403,2008.



APPENDIX: A HANGMAN GAME

In this appendixwe give anexamplebasedon thegameof hangmanto illustrate
thatthetypeof thedatastructuresbeingeliminatedby thefold/superbuild rule
neednot coincidewith the datatypewith which the combinatorsareassociated,
i.e., thatc in thetypeof superbuild neednotbeinstantiatedto Mu f. A similar
exampleappearsin [4], but thereit wasthe rosetreerepresentingthe gamethat
wasbeingeliminated,whereashereit is theinductivestructurestoredin therose
treethatis eliminated.

In thegameof hangmanthereis anunknown wordwhich aplayeris trying to
guess,anda givennumberof livesin which it mustbeguessed.At eachturn the
playerguessesa letter. If theletteroccursin theunknown word thentheplayeris
told whereall occurrencesare,otherwisetheplayerlosesa life. Thegameis won
if theplayerguessesall of thelettersin theword,andis lost if theplayerlosesall
of their allocatedliveswithout guessingtheword.

We makea simplemodelof thegameof hangman.More refinedmodelsthan
oursexist, but our goalis to demonstratefusionratherthanto make asaccuratea
modelaspossible.We modela gameof hangmanasa rosetreeof gamestates.

data Rose a = Node a [Rose a] deriving Show

instance Functor Rose where
fmap :: (a -> b) -> Rose a -> Rose b
fmap f (Node x xs) = Node (f x) (map (fmap f) xs)

type GState = [(Char, Bool)]

type Game = Rose GState

Eachgamestatecomprisesa list of character-booleanpairs,with the characters
representinga word over a predeterminedalphabet— representedby a string
constantsuchasalphabet = "abcdefghijklmnopqrstuvwxyz" — andthe
booleanvalueTrue associatedwith a characterif andonly if that characterhas
beenguessed.Theoccurrenceof map ontheright-handsideof thedefinitionin the
last line of theFunctor instancedeclarationfor Rose is that for lists, while the
occurrenceof fmap is theonebeingdefinedfor rosetrees.Thefunctionguess
below updatesastateafteracharacterhasbeenguessed,while thefunctionover
determineswhetherthecurrentstateindicatesthatthegameis over.

guess :: Char -> (GState, Int) -> (GState, Int)
guess c ([],n) = ([], n-1)
guess c ((l,s):gs, n) = let (rs, k) = guess c (gs, n)

in if c == l then ((l,True):rs, k)
else ((l,s):rs, k)

over :: (GState, Int) -> Bool
over (s,n) = n == 0 || and (map snd s)

We now turn to our centraltask,namelyconstructingconstructa gametree
for eachgameof hangman.Given an initial stateof a gameanda numberof



livesin which to guessthespecifiedword,wemustconstructtherosetreeof new
stateswhicharisesfrom returningthatinitial state,andthenrepeatedlyprocessing
a characterfrom the alphabetandreturningthe resultingstateuntil the gameis
over. To iteratethegenerationof gamestatesweusetheinstanceof superbuild
for lists in whichh x is Rose x. We have

mkGame :: (GState, Int) -> Game
mkGame = superbuild g

g :: forall a. ((Char, Bool) -> a -> a) -> a ->
(GState, Int) -> Rose a

g c n s@(lbs,k) = if over s then Node (foldr c n lbs) []
else Node (foldr c n lbs)

[g c n (guess x s) | x <- alphabet]

For example,thecall

mkGame ([(’a’, False), (’b’, False), (’c’, False)], 2)

generatesthetree

;< = = = = = = = = = = =
= = = = = = = = = = =

=
�� >? @@@@@@@@@@@

@@@@@@@@@@@
@

A
BC + + + +

+ + + + �� DE FFFFF
FFF G

BC + + + + +
+ + + �� HI JJJJJ

JJJ K
LM N N N N N

N N N �� HI JJJJJ
JJJ

A A G A K A G G G K A K G K K
Oncea gametreehasbeenbuilt usingmkGame we canperformvariousanalyses
of it. For example,we cancomputethe spaceof all possibleresultsin a game
treewith alphabet"abc" andtwo livesto liveusingacall to mkGame asabove,or
we cancomputethelist of letterswhich havebeenguessedat any point in sucha
gameusing

lettersGuessed :: Rose String
lettersGuessed = fmap letters (mkGame

([(’a’, False),
(’b’, False),
(’c’, False)], 2))

letters :: GState -> String
letters = foldr (\(l,b) ls -> if b then l:ls else ls) []

Applying thefold/superbuild rule yields the following optimizedversionof
lettersGuessedwhichdoesn’t constructanintermediatestructureof typeGame:

lettersGuessed’ = g (\(l,b) ls -> if b then l:ls else ls) []
([(’a’, False),

(’b’, False),
(’c’, False)], 2)


