
CS316 2014/5, Worksheet 2

This practical is designed to help you to understand what you have been learning
in the lectures about tuple types and lists. In particular, it is expected that many
of your answers will use list comprehensions and the functions map, filter.

The practical comes in two sections. The first section contains a series of questions
to get you started while the questions in the second section combine to form a
larger application.

Download the file Prac2.hs and edit the file to contain your answers. Since this
is the first time you will have written substantial functions of your own, I have
decided to help you out by giving the occasional hint. You may work in groups of
upto 3, but your answers can only be marked in the lab on Monday 20 October.
All members of your group need to be present and your answers must be complete
at the beginning of the lab. Half the marks will be for code correctness and half
for a SHORT explanation of why your code is corect.

1 Section A

Question 1: Evaluate the lists l1,l2,l3,l4 and write some other list expres-
sions which involve the functions take, drop, zip, reverse. Describe in words
what these functions do by writing comments in the file prac2.hs

Question 2: Write a function addup :: Int -> Int which takes a number n as
input and returns 0+1+2+..+n. Your function should only use list comprehensions
and the inbuilt function sum. Use the function addup to define another function
tri :: Int -> [Int] which takes as input a number n and returns the list

[addup 0, addup 1, addup 2, .., addup n]

In both cases, if the input is negative, an appropriate error message should be
given. [Hint: For the second part, of this question, you are being asked to apply
a certain function to every element of the list [1 .. n]].

Question 3: In the lectures you have seen the problem of summing the first n

square numbers. Write a Haskell function lssquares::Int->Int which uses list
comprehensions to sum the first n square numbers. [Hint: Start with the list [1

1

.. n], turn it into the list [1*1, .., n*n] and then apply the function sum to
the result].

Question 4: You saw the following function in the lectures which calculates a
list of factors of a number. Rewrite the factors function by using the function
filter instead of list comprehensions

factors :: Int -> [Int]

factors n = [x | x <- [1 .. n], n ‘mod‘ x ==0]

[Hint: First, define a function isFactorOfn :: Int -> Bool which takes a
number as input and returns True if the input is a factor of n]

2 Section 2: Building a Football Table

In this section you will write a larger application which will take as input the
results of a series of football matches and will return as output the associated
football table. Infact I have written the functions to sort the table and print it
out — you have to define the rest of the functions. Dont worry if you don’t know
anything about football as everything will be explained. Also if you get stuck on
one part of the question, you can test if your answers to the later questions are
correct by running them on the various test data which are supplied.

The football matches take place between teams in the following league

league = ["Newcastle", "Sheffield", "Sunderland","Liverpool"]

A football match consists of a home team, the number of goals they scored, an
away team, and the number of goals the away team scored. These types are
modelled as follows:

type Match = ((Team,Goals),(Team,Goals))

type Team = String

type Goals = Int

type Points = Int

Notice that we are modelling a match as a pair type, the first component of
which is also a pair type and so is the second component. For instance, in a

2

recent match, Newcastle played at home against Sheffield and won 8-0. This
would be represented as the value

((Newcastle,8), (Sheffield,0)) :: Match

In the file prac2.hs there is a list of matches called scores which you should look
at. This list will act as test data for the remaining questions.

Question 5: Each team taking part in a match scores a number of points as
follows:

• If the home team scores more goals than the away team, then the home
team scores 3 points and the away team scores 0 points

• If the home team scores the same number of goals as the away team, then
the home team scores 1 point and the away team scores 1 point

• If the home team scores less goals than the away team, then the home team
scores 0 points and the away team scores 3 points

Write a function points :: Match -> ((Team,Points),(Team,Points)) which
takes a match as input and returns the teams together with the points scored by
the team.[Hint: Since the input of the function points is a pair type you want to
use a pattern for the input and not a variable. Also there are various conditions
to be checked so your function should be defined using guards]

Question 6: Write a function homeresults :: [Match] -> [(Team,Points)]

which takes a list of matches as input and returns a list of pairs containing the
home team of a match and the number of points scored by the team in the match.
The result of running the function homeresults on the input scores is included
in the file as homescores.[Hint: Apply the function points to every match in
the input. You will then have to apply another function to every element of the
resulting list].

Similarly write a function awayresults :: [Match] -> [(Team,Points)] which
takes a list of matches as input and returns a list of pairs containing the home
team of a match and the number of points scored by the team in the match.

Finally, write a function results :: [Match] -> [(Team,Points)] which takes
a list of matches as input and returns a list consisting of the home results and
the away results joined together into one list. Applying the function results to
the input scores should give the list resultScores in the file prac2.hs

3

Question 7: Write a function performance :: [(Team,Points)] -> Team

-> Points which takes a list of results and a team as inputs and returns the
total number of points scored by that team as a consequence of those results.
[Hint: Use a list comprehension to answer this question. Take the input list
and keep only those elements whose first component is the team we are looking
for. Form a list containing only the second component of those elements we are
keeping. Finally, apply the function sum to this list]

Question 8: Write a function collect :: [(Team,Points)]->[(Team,Points)]

which returns a list consisting of each team in the league and the number of points
scored. Hint: Use a list comprehension for this question. For each team in the
list league, use your answer to question 7 to calculate the number of points that
team has scored and put these points, together with the team name, into a list].

I’ve written the functions required to sort the table into order and print the
results. Once you have finished question 8, uncomment the remaining functions
and type

showTable scores

and you should get the following league table. Proving what we knew all along.
That Newcastle United are the greatest football team! By the way, imagine
writing this program using Java!

Newcastle 14

Sheffield 13

Liverpool 7

Sunderland 0

4

