G51FUN-E1

The University of Nottingham

SCHOOL OF COMPUTER SCIENCE
AND INFORMATION TECHNOLOGY

A LEVEL 1 MODULE, AUTUMN SEMESTER 2006-2007
FUNCTIONAL PROGRAMMING

Time allowed TWO hours

Candidates must NOT start writing their answers until told to do so
Answer QUESTION ONE and THREE other questions

Marks available for sections of questions are shown in
brackets in the right-hand margin.

No calculators are permitted in this examination.

Dictionaries are not allowed with one exception. Those whose first language is
not English may use a dictionary to translate between that language and
English provided that neither language is the subject of this examination.

No electronic devices capable of storing and retrieving
text, including electronic dictionaries, may be used.

DO NOT turn examination paper over until instructed to do so

ADDITIONAL MATERIAL: Haskell Standard Prelude

GH1FUN-E1 Turn Over



2 G51FUN-E1

Question 1 (Compulsory)

1. What are the values of the following expressions (10)

(a) [(x,x+2) | x <= [1 .. 4], x > 2]
(b) map k [1,2,5,7] where k x = (x, x ‘mod‘ 3)
(c) phi 4 where phi x = 1 + sum [phi y | y <= [1 .. (x-1)]1]

2. A small document package models a book as a list of lines, a line as a list
of words and a word as a string. Thus we make the type definitions

type Word = String
type Line = [Word]
type Book = [Line]

Using list comprehensions.

(a) Define a function words :: Book -> [Word] which returns the list
of words appearing in a book. You need not remove multiple copies of
the same word from your answer. (3)
(b) Define a function freq :: Word -> Book -> Int which returns how
often a word appears in a book. (3)
(¢) Define a function bookFreq :: Book -> [(Word,Int)] which takes
as input a book and returns a list consisting of every word in the book
and the number of lines it occurs on. (4)
(d) Define a function index :: Word -> Book -> [Int] which takes a
word and a book and returns the line numbers the word appears on.
For example, (5)
index ’’This’’ [[’’This’’, ’’Town’’],
[) ’ThiS’ ) s ) ’Cat’ ) s ) ’ThiS’ ;]
]
= [1,2]

G51FUN-E1



3 G51FUN-E1

Question 2:

1. Give an implementation of the sorting algorithm quicksort whose type is
gsort :: 0Ord a => [a]l -> [a] (5)

2. Give an implementation of the higher order version of the sorting algorithm
quicksort, gsortBy :: 0rd b => (a -> b) -> [a] -> [a] (6)

3. A sporting team is represented by its name and the number of points they
have scored in recent games. For example ("Newcastle", [3,3,3,0])
represents a team called "Newcastle" which scored 3 points in their last
game, 3 points in the previous two games and 0 points in the game before
that. This data is modelled by the type definitions

type TName = String
type Points = [Int]
type Team = (TName,Points)

Define the following functions

(a) sortPoints :: [Team] -> [Team] which places one team before
another if it has a higher total number of points. (3)
(b) sortPointsPlayed :: [Team] -> [Team] which places one team

before another if it has a higher total number of points. If two teams
have the same total number of points, then the team which has played
fewer games should come first. (5)

(c) sortPlayedLast :: Int -> [Team] -> [Team] which places one
team before another if it has a higher total number of points in the
last n games, where n is the first input of the function. (6)

GH1FUN-E1 Turn Over



4 G51FUN-E1

Question 3:
A bank stores details on its customers via their national insurance number,
their age, and their balance. This gives the following type definitions.

type
type
type
type
type

1.

NI = Int

Age = Int

Balance = Int

Person (NI, Age, Balance)

Bank = [Person]

Define a function retired :: Person -> Bool which decides if the per-
son is at least 65 years old. (2)
Define a function deposit :: Person -> Int -> Person which adds the
second input to the first input’s balance. (4)
Define a function credit :: Bank -> [Person] which returns those peo-
ple who are not overdrawn. (3)
Define a function equityAge :: Bank -> (Int,Int) -> Int which re-
turns the total deposits held at the bank by people between the two ages
specified in the second input of the function. (4)

In society there are lots of banks and the population can be represented by
their national insurance numbers. Hence we define

type Market = [Bank]
type Pop = [NI]

Define a function creditNI :: NI -> Market -> Int which returns the
total deposits held by the person whose national insurance number is the
first input at all the banks in the second input. (5)

Define a function bankFree :: Pop -> Market -> Pop which returns
those people who do not have any bank accounts. (7)

G51FUN-E1



o G51FUN-E1

Question 4:

1. Define the polymorphic type Tree a of binary trees which store data of

type a at only the leaves of the tree. (4)

2. Define expressions treel and tree2 which represent the following trees.(4)

/ \ /\
8 3 . 8

/' \
4 6

. Define functions
lowest, highest :: 0Ord b => Tree b -> b

which take a binary tree as input and return the least and greatest elements
stored in the tree. For example lowest tree2 = 4 and highest tree2 =
8. (4)

. Using the functions lowest and highest, define a function
ordered :: 0Ord b => Tree b -> Bool

which returns true if every element in a left subtree is no more than any
element in a right subtree. Trees which are leaves are ordered. For example
ordered treel = False while ordered tree2 = True. (6)

. Paths are used to locate data stored within a tree. A path is a list of
directions from the root of the tree to a piece of data stored in the tree.
Each direction is either L signifying the left-hand branch or R signifying the
right hand branch. Thus we make the type definitions

data Dir =L | R

type Path = [Dir]

Define a function paths :: Tree a -> [Path] which calculates the paths
in a tree. For example (7)
paths treel = [[L], [R]]

paths tree2 = [[L,L], [L,R], [R]]

G51FUN-E1 Turn Over



6 G51FUN-E1

Question 5:

Write clear and precise descriptions of each of the following concepts that
arise within functional programming. Make sure your answer explains the prac-
tical benefits of these concepts and also includes both simple and more complex
examples.

1. Recursion (8)
2. List Comprehensions (7)
3. Algebraic types (10)

You may not use examples taken from other questions in this paper,
your answers to them, or the standard prelude.

G51FUN-E1 End



