
G51FUN-E1

The University of Nottingham

SCHOOL OF COMPUTER SCIENCE

A LEVEL 1 MODULE, SPRING SEMESTER 2007-2008

FUNCTIONAL PROGRAMMING

Time allowed TWO hours

Candidates must NOT start writing their answers until told to do so

Answer QUESTION ONE and THREE other questions

Marks available for sections of questions are shown in
brackets in the right-hand margin.

No calculators are permitted in this examination.

Dictionaries are not allowed with one exception. Those whose first language is
not English may use a dictionary to translate between that language and
English provided that neither language is the subject of this examination.

No electronic devices capable of storing and retrieving
text, including electronic dictionaries, may be used.

DO NOT turn examination paper over until instructed to do so

ADDITIONAL MATERIAL: Haskell Standard Prelude

G51FUN-E1 Turn Over

2 G51FUN-E1

Question 1 (Compulsory)
The objective of the game Hangman is to guess an unknown word. At each

turn the guesser chooses a letter and all occurrences of this letter in the unknown
word are made known to the guesser. If there are no occurrences of the letter in
the word, then the guesser looses a life.

We model a game of Hangman by a triple consisting of the unknown word
to be guessed, the list of guesses that have already been made, and a list of
guesses that will be made. For example, the triple (‘‘Newcastle’’, ‘‘ae’’,

‘‘sdqkrlopmbvxz’’) represents the game of Hangman where the unknown word
is Newcastle, two guesses have been made, namely a and e, the next guess will be
s, the following guess will be d and so on. Thus a game of Hangman is modelled
as an expression of type Hang which is defined as follows:

type Word = String

type CGuess = String

type FGuess = String

type Hang = (Word,CGuess,FGuess)

where Word represents the word to be guessed, CGuess is the list of letters that
have been guessed so far and FGuess is the list of future guesses.

Each game of Hangman is in one of three states: (i) Win if the guesser has
won the game, that is the guesser has lost less than 11 lives and guessed all of
the letters in the unknown word; (ii) Lose if the guesser has lost more than 10
lives; and (iii) Alive otherwise. These states are represented by the datatype
declaration

data Result = Win | Lose | Alive

deriving (Show,Eq)

1. Define a function diff::Eq a => [a]->[a]->[a] which takes as input two
lists and returns the list consisting of all elements in the first list which are
not in the second list. (4)

2. Define a function status::Hang->Result which returns the status of a
game of Hangman. You may wish to use the function diff. (4)

G51FUN-E1

3 G51FUN-E1

3. One way to implement Hangman is to repeatedly make a guess until the
game is no longer Alive or there are no more guesses. As the first step in
implementing this algorithm, define a function repeatUntil which takes
three inputs: a function, a test (that is a function returning a boolean) and
an expression. If the expression satisfies the test, then repeatUntil returns
the expression. Otherwise, repeatUntil repeatedly applies the function to
the expression until the test is satisfied. For example, if double x = 2*x

then

repeatUntil double (>10) 2 = 16

(5)

4. Define a function noMoreGuess::Hang->Bool which takes as input a game
of Hangman and returns True if no more guesses can be made. This occurs
whenever the list of guesses to be made is empty or the game is no longer
Alive. (2)

5. Define a function makeGuess::Hang->Hang which makes a guess, that is
makeGuess takes the next guess to be made and adds it to the list of guesses
which have been made. (2)

6. Hence define a function hangman::(Word,Word)->Hang which takes a pair
of words as input, treats the first word as the unknown word and the second
as a list of guesses and returns the state of the Hangman game after the
guesser has either won or lost or there are no further guesses. (4)

7. Define a variant hangman2::(Word,Word)->Hang which behaves exactly as
hangman does, except that if the guesser chooses a letter which has already
been guessed, then that letter is ignored and not counted as a lost life. (4)

G51FUN-E1 Turn Over

4 G51FUN-E1

Question 2:

1. Give an implementation of the higher order mergesort algorithm, that is,
define functions

mergeBy :: Ord b => (a -> b) -> [a] -> [a] -> [a]

msortBy :: Ord b => (a -> b) -> [a] -> [a]

such that msortby sorts a list so that an element x comes before an element
y if f x <= f y. (6)

2. In an election the result of each constituency is a list of the parties standing
in that constituency together with the number of votes that party secured.
The overall election result consists of a list of such results. Such data is
represented using the type definitions

type Party = String

type Result = [(Party,Int)]

type ElectionRes = [Result]

Use the higher order mergesort algorithm to answer the following questions

(a) Define a function decl :: Result -> Result which takes as input
the results of a constituency and sorts the results so that the parties
occur in descending number of votes. (2)

(b) Define functions

winVotes,secVotes,totVotes :: Result -> Int

which take as input the result of a constituency and return the number
of votes obtained by the winner, the number of votes obtained by
the party coming second and the total number of votes cast in the
constituency. You may wish to use decl to calculate which party won
the election and which party came second. (6)

(c) Define a function sortWinVotes::ElectionRes->ElectionRes which
takes as input the results of an election and sorts the results into
descending order of the number of votes obtained by the winning party
in each constituency. (2)

(d) Define a function sortMaj::ElectionRes->ElectionRes which takes
as input the results of an election and sorts the results into descending
order of the majority in each constituency. The majority in a con-
stituency is the difference between the number of votes of the winning
party and the number of votes of the second party. (2)

G51FUN-E1

5 G51FUN-E1

(e) Define a function sortPerCent::ElectionRes->ElectionRes which
takes as input the results of an election and sorts the results into
descending order of the percentage share of the total vote obtained by
the winner in each constituency. (3)

(f) Define a function

sortMarginal::ElectionRes->Party->Party->ElectionRes

such that sortMarginal e p1 p2 is the result of sorting those con-
stituencies where p1 won and p2 came second, by the majority of p1
over p2 . (4)

G51FUN-E1 Turn Over

6 G51FUN-E1

Question 3: The paper-rock-scissors game is played by two people. Behind
their back, each player forms a hand into the shape of either a piece of paper (a
flat palm), a rock (a clenched fist) or a pair of scissors (two fingers extended).
Simultaneously, both players show their hands and the winner is determined by
the rules

• paper beats rock,

• rock beats scissors, and

• scissors beats paper

If both players produce the same object, then neither player wins. This question
models a series of rounds of the paper-rock-scissors game. To do so we first
introduce some relevant datatypes

data Move = Paper | Rock | Scissors

deriving Show

type Round = (Move, Move)

1. Define a function beats :: Move -> Move -> Bool which returns True

if the first move beats the second move and False otherwise. (3)

2. Define a function score :: Round -> (Int,Int) which returns (1,0) if
the result of the round is a win for the first player, (0,1) if the result of
the round is a win for the second player and (0,0) otherwise. (3)

3. Each player in the game will be represented by a strategy which is a function
taking as input a list of moves and returning the next move for the player.
We think of the input list of moves as being the moves previously made by
the opponent. Thus we make the type definition

type Strategy = [Move] -> Move

(a) One strategy, called follow :: Strategy, looks at the list of the
opponent’s moves and plays the last move. The first move of follow
is unspecified and so can be chosen to be any move. Define the function
follow.

(b) Another strategy called smart firstly calculates how many times the
opponent has chosen paper, rock and scissors and then secondly chooses
a move based upon their relative frequency. Thus smart is defined by

smart :: Strategy

smart xs = choose (count xs)

count xs :: [Move] -> (Int,Int,Int)

G51FUN-E1

7 G51FUN-E1

Define the function count which takes as input a list of moves and
returns a triple consisting of the number of times paper, rock and scis-
sors were chosen respectively. You do not need to define the function
choose.

(5)

4. Define a function nextround::(Strategy,Strategy)->[Round]->Round

which takes as input two players, represented by their strategies, and a
list of rounds played so far and returns the next round, ie the pair consist-
ing of the next move for each player as determined by their strategies. For
example

nextround (follow,follow) [(Rock,Scissors),(Rock,Paper)]

= (Paper,Rock)

since the first player looks at the second player’s moves and chooses the last
move, and similarly for the second player. (4)

5. Define a function rounds::(Strategy,Strategy)->Int->[Round] which
takes a pair of strategies as input and a number and returns the result of
playing that number of rounds. For example

rounds (follow, follow) 0 = []

rounds (follow, follow) 3 = [(Rock,Paper),

(Paper,Rock),

(Rock, Paper)]

where the first move of player one was chosen (by some random process) to
be Rock and that of the second player was Paper. (4)

6. Finally, define a function match::(Strategy,Strategy)->Int->(Int,Int)

which takes as input a pair of strategies and a number n and returns a pair
consisting of the number of rounds won by the first player and the num-
ber of rounds won by the second player where the total number of rounds
played is n. For example

match (follow, follow) 3 = (1,2)

since the first player won 1 round, namely the second round, while the
second player won two rounds, namely the first and third. Hint: Proceed

as follows. First calculate the result of playing n rounds using the function

rounds. Then work out who won each round using the function score.

Then calculate the total number of rounds won by each player. (6)

G51FUN-E1 Turn Over

8 G51FUN-E1

Question 4:
This question concerns the following datatype for representing arithmetic ex-

pressions.

data Exp = Val Int

| Add Exp Exp

| Mul Exp Exp

| Sub Exp Exp

| Div Exp Exp

| Try Exp Exp

deriving Show

The first five constructors should be familiar to you from the lectures. The Try-
constructor is required in part (2b) and hence you can ignore it before.

1. Define a function eval :: Exp -> Int which takes an expression as input
and returns the value of the expression. For example

eval (Add (Sub (Val 7) (Val 2)) (Mul (Val 7) (Val 1))) = 35

(8)

2. Assume we want to use the arithmetic expressions to model computation
of positive integers with a maximum value where the only divisions that
are allowed are ones where there is no remainder. In doing so a number of
exceptions may arise

• The exception NegNumberException occurs if part of the evaluation
process produces a negative number.

• The exception MaxNumberException occurs if part of the evaluation
process produces a number larger than a given constant maxInt.

• The exception DivByZeroException occurs if part of the evaluation
process attempts to divide a number by 0.

• The exception RemainderException occurs if part of the evaluation
process attempts to divide a number by another number if a remainder
is produced.

These exceptions are modelled by the datatype

data Exception = NegNumberException

| MaxNumberException

| DivByZeroException

| RemainderException

deriving Show

G51FUN-E1

9 G51FUN-E1

The rest of this question defines a new evaluator which, if such an exception
arises, will throw the exception. Thus we shall define a new evaluation
function with type eval2: Exp -> Excep Int where

data Excep a = Throw Exception

| Ok a

deriving Show

(a) In evaluating expressions formed by the Val-constructor, we must
check whether an integer lies between 0 and maxInt and throw the
appropriate exception if not. Define a function checkIntOk :: Int

-> Excep Int which does this.

(10)

(b) In evaluating a recursive expression such as Add e1 e2, we shall want
to recursively evaluate e1 and e2. If either of these computations
throws an exception then so should the overall computation - it doesn’t
matter which exception is thrown. On the other hand, if these com-
putations produce Ok-values, then the addition function should be ap-
plied to these values.

To capture this situation, define a function

applyIfOk :: (a -> b -> c) -> Excep a -> Excep b -> Excep c

which throws an exception if both of the second and third inputs are
exceptions and applies the first input appropriately if not. (7)

G51FUN-E1 Turn Over

10 G51FUN-E1

Question 5:
Write clear and precise descriptions of each of the following concepts that

arise within functional programming. Make sure your answer explains the prac-
tical benefits of these concepts and also includes both simple and more complex
examples.

1. Recursion (8)

2. List Comprehension (7)

3. Algebraic Data Types (10)

You may not use examples taken from other questions in this paper,
your answers to them, or the standard prelude.

G51FUN-E1

11 G51FUN-E1

Answers
Question 1

type Word = String

type CGuess = String

type FGuess = String

type Hang = (Word,CGuess,FGuess)

data Result = Win | Lose | Alive

deriving (Show,Eq)

a) member x [] = False

member x (y:ys) = if x == y then True else member x ys

diff :: Eq a => [a] -> [a] -> [a]

diff [] gs = []

diff (x:xs) gs = if member x gs then rs else x:rs

where rs = diff xs gs

b) status :: Hang -> Result

status (ws,gs,fs)

| length wrong < 11 $\&\&$ diff ws gs == [] = Win

| length wrong > 10 = Lose

| otherwise = Alive

where wrong = diff gs ws

c) repeatUntil :: (a -> a) -> (a -> Bool) -> a -> a

repeatUntil f p x = if p x then x else repeatUntil f p (f x)

d) noMoreGuess :: Hang -> Bool

noMoreGuess (ws,gs,fs) = (fs == []) || status (ws,gs,fs) /= Alive

e) makeGuess :: Hang -> Hang

makeGuess (ws,gs,f:fs) = (ws,f:gs,fs)

f) hangman :: (Word,Word) -> Hang

hangman (ws,fs) = repeatUntil makeGuess noMoreGuess (ws,[],fs)

g) hangman2 :: (Word,Word) -> Hang

hangman2 (ws,fs) = repeatUntil makeGuess2 noMoreGuess (ws,[],fs)

where makeGuess2 (ws,gs,f:fs)

G51FUN-E1 Turn Over

12 G51FUN-E1

| member f gs = makeGuess (ws,gs,fs)

| otherwise = (ws,f:gs,fs)

Question 2:

mergeBy :: Ord b => (a -> b) -> [a] -> [a] -> [a]

mergeBy f [] ys = ys

mergeBy f xs [] = xs

mergeBy f (x:xs) (y:ys)

| f x < f y = x : mergeBy f xs (y:ys)

| otherwise = y : mergeBy f (x:xs) ys

msortBy :: Ord b => (a -> b) -> [a] -> [a]

msortBy f [] = []

msortBy f [x] = [x]

msortBy f xs = mergeBy f (msortBy f as) (msortBy f bs)

where (as,bs) = (take l xs, drop l xs)

l = length xs ‘div‘ 2

type Party = String

type Result = [(Party,Int)]

type ElectionRes = [Result]

decl :: Result -> Result

decl cs = msortBy weight cs where weight x = 0 - (snd x)

winVotes,secVotes,totVotes :: Result -> Int

winVotes = snd . head . decl

secVotes = snd . head . tail . decl

totVotes = sum . (map snd)

sortWinVotes :: ElectionRes -> ElectionRes

sortWinVotes es = msortBy winVotes es

sortMaj :: ElectionRes -> ElectionRes

sortMaj es = msortBy fun1 es

where fun1 xs = winVotes xs - secVotes xs

sortPerCent :: ElectionRes -> ElectionRes

sortPerCent es = msortBy fun2 es

where fun2 xs = (winVotes xs)*100 ‘div‘ (totVotes xs)

G51FUN-E1

13 G51FUN-E1

sortMarginal :: ElectionRes -> Party -> Party -> ElectionRes

sortMarginal es p1 p2 = sortMaj (filter fun3 es)

where fun3 xs = (fst . head . decl) xs == p1 &&

(fst . head . tail . decl) xs == p2

Question 3:

data Move = Paper | Rock | Scissors

deriving Show

type Round = (Move, Move)

beats :: Move -> Move -> Bool

beats Rock Scissors = True

beats Scissors Paper = True

beats Paper Rock = True

beats _ _ = False

score :: Round -> (Int,Int)

score (x,y)

| x ‘beats‘ y = (1,0)

| y ‘beats‘ x = (0,1)

| otherwise = (0,0)

type Strategy = [Move] -> Move

follow :: Strategy

follow [] = Rock

follow xs = last xs

smart :: Strategy

smart ms = choose (count ms)

where

count = foldl check (0,0,0)

check (p,r,s) Paper = (p+1,r,s)

check (p,r,s) Rock = (p,r+1,s)

check (p,r,s) Scissors = (p,r,s+1)

choose (p,q,r) = Rock

-- Note choose is defined this way only to ensure compilation

G51FUN-E1 Turn Over

14 G51FUN-E1

-- without recourse to random numbers in Haskell. Students need

-- only write count

nextround :: (Strategy,Strategy) -> [Round] -> Round

nextround (s1,s2) xs = (s1 (map snd xs), s2 (map fst xs))

rounds :: (Strategy,Strategy) -> Int -> [Round]

rounds (s1,s2) 0 = []

rounds (s1,s2) (n+1) = prevrounds ++ [nextround (s1,s2) prevrounds]

where prevrounds = rounds (s1,s2) n

match :: (Strategy,Strategy) -> Int -> (Int,Int)

match (s1,s2) = total . map score . rounds (s1,s2)

total :: [(Int,Int)] -> (Int,Int)

total xs = (sum (map fst xs), sum (map snd xs))

Question 4:

eval :: Exp -> Int

eval (Val n) = n

eval (Add e1 e2) = eval e1 + eval e2

eval (Div e1 e2) = eval e1 ‘div‘ eval e2

eval (Mul e1 e2) = eval e1 * eval e2

eval (Sub e1 e2) = eval e1 - eval e2

maxInt :: Int

maxInt = 1000

data Exception = NegNumberException

| MaxNumberException

| DivByZeroException

| RemainderException

deriving Show

data Excep a = Throw Exception

| Ok a

G51FUN-E1

15 G51FUN-E1

deriving Show

applyIfOk :: (a -> b -> c) -> Excep a -> Excep b -> Excep c

applyIfOk f (Ok x) (Ok y) = Ok (f x y)

applyIfOk f (Throw e) _ = Throw e

applyIfOk f _ (Throw e) = Throw e

checkIntOk :: Int -> Excep Int

checkIntOk n

| n < 0 = Throw NegNumberException

| n > maxInt = Throw MaxNumberException

| otherwise = Ok n

eval2 :: Exp -> Excep Int

eval2 (Val n) = checkIntOk n

eval2 (Add e1 e2) = case applyIfOk (+) (eval2 e1) (eval2 e2) of

Ok y -> checkIntOk y

Throw e -> Throw e

eval2 (Mul e1 e2) = case applyIfOk (*) (eval2 e1) (eval2 e2) of

Ok y -> checkIntOk y

Throw e -> Throw e

eval2 (Sub e1 e2) = case applyIfOk (-) (eval2 e1) (eval2 e2) of

Ok y -> checkIntOk y

Throw e -> Throw e

eval2 (Div e1 e2) = case (eval2 e2) of

Throw e -> Throw e

Ok 0 -> Throw DivByZeroException

Ok n -> case eval2 e1 of

Throw e -> Throw e

Ok m -> if m ‘mod‘ n == 0

then Ok (m ‘div‘ n)

else Throw RemainderException

Question 5:

a) Recursion is the basic building block for defining functions in

Haskell and ensures the language is Turing complete. A recursive function

G51FUN-E1 Turn Over

16 G51FUN-E1

is one which calls itself ie of the form

f x = exp

where exp contains f. For example

fac 0 = 1

fac (n+1) = (n+1) * fac n

More sophisticarted examples are the sorting algorithms

c) Algebraic types allow the user to define their own datatypes.

An element of an algebraic type is given by a constructor and certain

inputs. Thus if we define

data Shape = Rect Int Int | Square Int | Circle Int

we have three possible shapes which are rectangles, squares and circles.

To specify a rectangle one must supply two integers, eg Rect 3 4, while

a circle requires only one, eg Circle 7

More advanced examples are recursive and polymorphic, eg the generalised

trees

data GTree a = GNode a [GTree a]

Defining functions with algebraic types is aided by the fact that

constructors are patters and so one may write

perim :: Shape -> Float

perim (Rect x y) = 2*(x+Y)

perim (Square x) = 4 * x

perim (Circle x) = pi * x

G51FUN-E1 End

