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ABSTRACT
Quantitative Equational Theories (QETs) have recently attracted

significant interest as they extend powerful techniques from univer-

sal algebra to computation on quantitative models. For example, the

fundamental Wasserstein and Kantorovich metrics on probability

distributions can be given concise axiomatic presentations using

QETs and thus these metrics can now be seen as algebraic structure

on metric spaces. Crucially, QETs have a sound and complete proof

system for proving bounds on the distances between terms. How-

ever, it transpires QETs are too weak to provide a comprehensive

foundation in that there are examples which ought to be seen as

algebraic structure on metric spaces but which cant be defined

within QETs — the clearest example is that of Cauchy Completion.

This is a fundamental problem as in the traditional setting there is

a correspondence between finitary monads on the category Set and
algebraic theories, and the monad corresponding to Cauchy com-

pletion in countably presentable and thus should be an example of

algebraic structure over metric spaces. The alternative is to use En-

riched Lawvere Theories specialised to a category of metric spaces

as a foundational framework within which algebraic structure over

metric spaces can be defined and developed. However, this also is

insufficient because Enriched Lawvere theories don’t give us proof

systems and so one has no formal sound and complete system for

gauging the distance between terms.

This paper solves the fundamental problem of what are appropri-

ate sound and complete proof systems for algebraic structure over

metric spaces by taking the best of each of the approaches outlined

above. Thus we extend QETs to what we call Metric Equational

Theories (METs) where operations no longer need to have arities

which are merely finite sets (as in QETs) but rather arities are now

drawn from countable metric spaces. This extension is exactly mo-

tivated by the theory of Enriched Lawvere Theories which suggests

the arities of operations ought to be the 𝜆-presentable objects of

the underlying 𝜆-accessible category. The technical challenge of

the work then arises as these more general arities mean the validity

of terms in METs can no longer be guaranteed independently of

the validity of equations as is usually the case. Once we solve this

problem, we can adapt the sound and complete proof system for

QETs to these more general METs essentially taking advantage of

the specific structure of metric spaces to ensure METs offer the

best of both worlds — the generality and full expressive power of

Enriched Lawvere Theories and sound and complete proof systems

for the resulting equational theories.
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1 INTRODUCTION
Approximate computation arises naturally in a number of areas,

e.g. in: i) stochastic systems, where one merely has probability

distributions over values induced by inherent/simulated random-

ness; ii) resource limited environments, where exact computation

is prohibitively expensive; iii) systems with imperfect/partial recall,

where one only has limited information about what has happened

or the intentions/trustworthiness of each agent; and iv) non-exact

computation where primitive data (e.g. from sensors) is inexact

and supplied with error bars. These scenarios arise in e.g. cyber-

physical systems, machine learning, robotics, automotive engineer-

ing, aerospace, and energy systems.

Recently Mardare et al [11, 12] introduced Quantitative Alge-

bra (QA) and Quantitative Equational Theories (QETs) to extend

one of the central pillars of modern mathematics, namely univer-

sal algebra (UA), from the exact world to the approximate world.

Central to their work was the introduction of approximate equa-

tions 𝑠 =𝜖 𝑡 (for a positive real 𝜖), formalising the intuition that 𝜖

measures the behavioural similarity between terms 𝑠 and 𝑡 . The

generality of this new idea — replacing Boolean reasoning within

equational logic with a more refined approximate form of reason-

ing — gives us a new paradigm which supports a rigorous logical

framework for a proper approximation theory, where bounds can

be handled, convergences proven and limits approximated. Quanti-

tative Equational Theories [11] have been used to provide simple

axiomatic presentations of well behaved metrics for several funda-

mental computational structures, e.g. the Kantorovich-Wasserstein

metrics (resp. Hausdorff metrics) arise from convex structures (resp.

semi-lattices). See 1.1 for more details.

Quantitative Algebra and Quantitative Equational Theories have

been shown to have good meta-theoretic properties. For example,

variety and quasi-variety results have been proven for Quantita-

tive Algebra [12], revealing new insights of approximated reason-

ing. Similarly, compositionality principles have been studied for

Quantitative Algebra, providing a formal tool to control the error

propagation when computational systems interact [4, 5]. Conway

and iteration theories have also been generalised to the quantita-

tive case, to cover not only exact fixed-points 𝑥 = 𝑓 (𝑥), but also
approximate fixed-points 𝑥 =𝜖 𝑓 (𝑥) [13]. However, despite all this
work, there remains a fundamental and unanswered question:

What is the natural format/foundation for presenting
algebraic structure in a metric setting?

In the exact setting of traditional universal algebra, there are strong

results which (when adapted to the metric setting) form desiderata

for any answer to the above question. These include
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• Every equational theory gives rise to a finitary monad on

the category of Set which maps a set to the free algebra

over that set.

• Themodels of an equational theory are the Eilenberg-Moore

algebras of the associated finitary monad.

• Every finitary monad on Set arises via this construction.
• There is a sound and complete proof system for proving

equations between terms.

Unfortunately QETs fail these desiderata, for example the monad

mapping a metric space to its Cauchy Completion does not arise

from a QET as described above. We discuss this example in sec-

tion 7. Note that the above desiderata can (and perhaps should)

be framed in terms of Lawvere Theories as Lawvere theories: i)

smoothly generalise to models in other categories; and ii) give

syntax-independent presentations of algebraic theories, in the sense

that distinct syntactical presentations of equivalent algebraic theo-

ries give rise to isomorphic Lawvere theories.

Turning from the case of sets with algebraic structure to metric

spaces with algebraic structure, one approach would be to turn

to the abstract setting of Enriched Lawvere Theories [14] which

we cover in greater detail in section 2. For now, we note that the

category Met of extended metric spaces (ie where the distance be-

tween two points can be infinity) and non-expansive maps satisfied

the preconditions of that paper. A key point though is that Met
is not locally finitely presentable but countably presentable. That

means arities of operators and equations ought to be not merely

finite sets as in the case of traditional algebraic theories, nor count-

able (discrete) metric spaces and one ought to consider countably-

presentable monads in the desiderata above. The good news is that,

once these changes have been made, the work of [7, 14] seem to

give us exactly what we want. That is i) a notion of algebraic theory

consisting of operations and equations; ii) free algebras for such

algebraic theories correspond to countably presentable enriched
monads onMet such that the models of the former are the Eilenberg

Moore algebras of the latter; and iii) a notion of Lawvere theory

giving a syntax-free presentation of algebraic theories.

However, this abstract approach leaves a lot to be desired, be-

cause (as with finitary monads on Set) the presentations one gets
from this framework while theoretically elegant are very cumber-

some to the point of being of little practical use. In particular, given

a countably presentable monad, the associated algebraic theory has

as operators of a given arity all elemwents of the monad applied to

that arity. In the case of the cauchy completion, where we woukld

like one operator, we get a countyably infinite number of operators!

And thats before we even consider equations. A further limitation

of the work on Lawvere theories is they dont cover sound and

complete proof systems to enable proof of when one term equals

another.

This paper therefore starts from the premise of wanting the best

of both worlds, ie the theoretic clarity of Lawvere theories and the

concise presentations and proof systems of QETs. Thus we intro-

duce Metric Equational Theories which extend QETs by allowing

operators to have as arities countable metric spaces as opposed to

just countable sets. This allows us to cover for example the count-

able presentable Cauchy Completion monad. This generalisation

however, creates a difficulty. In both traditional equation theories

and QETs one can first define the definable terms over a given

arity and then the derivable equations better such terms. However

this is no longer possible with METs as metric arities mean the

definabililty of a term might require subterms to be within a certain

distance of each other, but that might only be provable by using

some of the equations of the theory. However, once we devise mech-

anisms for handling this increased complexity in METs, this paper

shows we do indeed get what we want, that is all of the above dis-

siderata when suitably generalised toMet together with sound and

complete proof systems for deriving the equality between terms.

1.1 Background on Quantitative Equational
Theories

In [11, 12] the authors develop the theory of quantitative algebras,
an extension of the theory of universal algebras that describe al-

gebraic structures over metric spaces. To do this, they propose an

equational logic in which the basic bricks are quantitative equalities
of type 𝑠 =𝜀 𝑡 , where 𝑠 and 𝑡 are Ω algebraic terms defined given an

algebraic similarity type Ω, and 𝜀 ≥ 0 is a positive real. The models

are Ω-algebras supported by metric spaces with all the operators

non-expansive, and the interpretation of the aforementioned quan-

titative equality is that the distance between the interpretation of 𝑠

and 𝑡 is upper-bounded by 𝜀. Replacing the classical equality with

a quantitative equality of type =𝜀 requires fundamental changes in

the metalogical reasoning. For instance, =𝜀 is not transitive and the

transitivity rule is replaced by the triangle inequality rule. More-

over, all the algebraic operators are required to be non-expansive.

All these differences make the quantitative equational logic a novel

logic, fundamentally different from the classic equational logic used

to define monads on Set in the theory of universal algebras. Instead,

the quantitative equational theories define monads onMet.
However, the presentation in [11, 12] does not involve opera-

tors with metric arities, that would naturally point towards Met-
enriched Lawvere theories. Instead they use the classic arities and

propose a theory that resemble the classic one.

Hereafter we present two examples studied in [11].

Example 1.1 (Quantitative Semilattices with 0). Consider the

monad 𝑃𝑓 : Met → Met which carries a metric space to the set of

finite subsets equipped with the Hausdorff metric (with the unit

being the inclusion of singleton subsets, the multiplication being

union, and the action on morphisms being given by direct image).

In [11], this monad is axiomatized using a quantitative equational

theory over the signature of semilattices with 0. Hence we have

one constant 0 and one binary operator + satisfying the following

axioms, where ⊢ is the classic logical implication indicating, as

usual, that the set of quantitative equalities on its left (hypotheses)

entail the conclusion on its right:

• ⊢ 𝑥 + 0 =0 𝑥

• ⊢ 𝑥 + 𝑥 ′ =0 𝑥 ′ + 𝑥

• ⊢ 𝑥 + 𝑥 =0 𝑥

• ⊢ 𝑥 + (𝑥 ′ + 𝑥 ′′) =0 (𝑥 + 𝑥 ′) + 𝑥 ′′

• 𝑥 =𝜖 𝑦, 𝑥
′ =𝜖 ′ 𝑦′ ⊢ (𝑥 + 𝑥 ′) =

max(𝜖,𝜖 ′ ) (𝑦 + 𝑦′).
In the free models 𝑃𝑓 (𝑋 ), the interpretation of 0 is the empty

set, and the intepretation of + is set union. The first four axioms

simply express the requirement that (+, 0) forms a semilattice (this

is natural enough, since for sets the collection of finite subsets is

2
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the free semilattice on a set), and the final axiom schema
1
bounds

the metric of unions in terms of the distances between the subsets.

One then proves that the maximal metric satisfying this bound and

the requirement 𝑑 ({𝑥}, {𝑦}) ≤ 𝑑 (𝑥,𝑦) is the Hausdorff metric.

In fact, for a compact metric space 𝑋 , this theory has even better

properties — the initial model with a map from 𝑋 among complete
metric spaces is the space of closed subsets of 𝑋 in the Hausdorff

metric.

Example 1.2 (Interpolative barycentric algebras). An other exam-

ple from [11] are the interpolative barycentric algebras proposed to

axiomatize the Kantorovich and 𝑝-Wasserstein distances on proba-

bilistic distributions. This quantitative algebraic theory is supported

by the algebraic signature of barycentric algebras [16], so the sig-

nature contains the binary operators +𝑒 for each 𝑒 ∈ [0, 1], and the

axiomas are listed below.

• ⊢ 𝑥 +1 𝑥
′ =0 𝑥

• ⊢ 𝑥 +𝑒 𝑥 =0 𝑥

• ⊢ 𝑥 +𝑒 𝑥 ′ =0 𝑥 ′ +1−𝑒 𝑥
• ⊢ (𝑥 +𝑒 𝑥 ′) +𝑒′ 𝑥 ′′ =0 𝑥 +𝑒𝑒′ (𝑥 ′ + 𝑒′−𝑒𝑒′

1−𝑒𝑒′
𝑥 ′′)

• 𝑥 =𝜀 𝑦, 𝑥
′ =𝜀′ 𝑦′ ⊢ (𝑥 +𝑒 𝑥 ′) =𝑒𝜀+(1−𝑒 )𝜀′ (𝑦 +𝑒 𝑦′).

Consider the Giry monad 𝐺 : Met → Met which carries a met-

ric space (𝑀,𝑑) to the space of (𝐺 (𝑀,𝑑), 𝑑𝐾 ) of the distributions
with finite support defined on Borel algebra of (𝑀,𝑑), and with

the Kantorovich metric 𝑑𝐾 defined by the classic transportation

problem [17]. In this context 𝑠+𝑒 𝑡 for 𝑒 ∈ [0, 1] defines the 𝑒-convex
combination of the distributions 𝑠 and 𝑡 . Thus, the first four axioms

state that this is indeed a barycentric algebra, while the last one de-

fines an upper bound between convex combination of distributions

based on the pairwise upper bound of the given distributions. In

[11] it is proven that the maximal metric satisfying this bound is

indeed the Kantorovich metric, that the spaec (𝐺 (𝑀,𝑑), 𝑑𝐾 ) is the
free IB-algebra generated by 𝑋 , and that with a small modification

in the last axiom one can get also 𝑝-Wasserstein metric [17].

Moreover, for a separable 𝑋 , the initial model among complete
metric spaces with a map from 𝑋 is the full space of Radon proba-

bility measures on 𝑋 in the Kantorovich metric.

1.2 Operations of metric arity
The examples above demonstrate the expressiveness of quantita-

tive equational theories. However, we also see a limitation — to

construct a metric space of interest, we often have to pass to a

Cauchy completion of the free algebra. For example, the space of

Radon probability measures on a (separable) metric space 𝑋 is the

completion of the free IB-algebra generated by 𝑋 .

On the other hand, Cauchy completion is itself a monad on

Met (since it is the left adjoint to the inclusion of complete metric

spaces Met). And this monad, though it is not finitary, is in fact of

countable arity (in the sense of commuting with countably filtered

colimits). Thus, if quantitative equational theories are supposed to

be the metric space answer to traditional equational theories, we

might ask whether the completion monad can’t be presented as

the free monad of an equational theory (with some operations of

countably infinite arity, possibly). After all, this would be possible

for a monad on Set of countable arity.

1
It generates one axiom for each choice of 𝜖, 𝜖 ′ .

However, this is not possible. The basic problem is that the

Cauchy completion of a discrete metric space is always the space

itself. So if a theory had the Cauchy completion as its free model,

the free model on a discrete space 𝑋 is just 𝑋 . This means all the

operations 𝑓 in the theory must satisfy ⊢ 𝑓 (𝑥1, . . . ) =0 𝑥𝑛 for some

𝑛. But clearly that means the inclusion of 𝑋 in the free model on 𝑋

is surjective for any metric space (it may not be an isomorphism —

the theory could have the equation ⊢ 𝑥 =0 𝑦, for example, meaning

the free model is a singleton for any nonempty space), so the free

model can’t possibly be the completion in general.

From an algebraic point of view, the limitation is that quantitative

equational theories only have operations of discrete arity. We can’t

define an operation 𝑓 (𝑥1, . . . ) which is only defined subject to a

restriction on the distances between the 𝑥𝑖 . For a monad 𝑇 on Met,
on the other hand, there is no particular reason 𝑇 (𝑓 ) : 𝑇 (𝑋 ) →
𝑇 (𝑋 ′) should be surjective just because if 𝑓 : 𝑋 → 𝑋 ′

is a bijection.

We might look around for a different framework to replace QETs,

given this limitation. There is a completely general framework in the

literature, due to Kelly and Power ([7]), for presenting an enriched

monad (over essentially any base of enrichment) by generators and

relations. In their approach, one gives a (possibly empty) metric

space of generators of each possible arity, and sets of equations

between terms in these generators. Since these equations can only

identify terms, not express distances between them, wemust encode

themetric in the generators —we can do this because the generators

of a given arity form a metric space.

However, in the examples above, since we need to impose a

different bound on the distance between 𝑥 +𝑒 𝑥 ′ and 𝑦 +𝑒 𝑦′ respec-
tively, depending on our assumed bound on the distance between

𝑥 and 𝑦 (and 𝑥 ′ and 𝑦′), we are faced with a problem.

The resolution of this problem is to introduce a family of generat-

ing operators, two for each choice of (𝜖, 𝜖′, 𝑒), call them 𝑓
𝜖,𝜖 ′
𝑒 , 𝑔

𝜖,𝜖 ′
𝑒

which are four-ary. Given arguments 𝑥, 𝑥 ′, 𝑦,𝑦′, one of these fam-

ilies is supposed to compute 𝑥 +𝑒 𝑥 ′, the other 𝑦 +𝑒 𝑦′. The dis-

tance between these generators in the space of operations of arity

({𝑥, 𝑥 ′, 𝑦,𝑦′}, 𝑑 (𝑥,𝑦) = 𝜖, 𝑑 (𝑥 ′, 𝑦′) = 𝜖′) is then set to 𝑒𝜀 + (1 − 𝑒)𝜀′.
Finally, we impose the equation

𝑓 𝜖,𝜖
′
(𝑥, 𝑥 ′, 𝑦,𝑦′) = 𝑥 + 𝑥 ′, 𝑔𝜖,𝜖

′
(𝑥, 𝑥,′ , 𝑦,𝑦′) = 𝑦 + 𝑦′ .

This is clearly a much more awkward approach. We are forced

to introduce a large family of auxiliary generating operations to

express the desired information about distance. These operations

aren’t very natural — they are always equal to some term in the

“proper” operations, and only exist so we can express conditional

distance bounds. It seems much more natural to think of distance

information as a generalization of information about which terms

are equal, and thus to give it as generating “quantitative equations”,

as in the method of [11]. In that case, we make conditional distance

bounds possible by admitting some preconditions into the theory.

The approach of this paper is to generalize the quantiative equa-

tional theories of [11], to encompass the full class of countable-arity

monads in Met. This is accomplished by extending the class of sig-

natures to allow operations with metric arity, which amounts to

letting them be defined only subject to a restriction on the distances

between the arguments. We also extend the logic to accomodate

reasoning about terms in these operations.

3
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Thus, for example, the monad which carries a metric space to its

Cauchy completion is axiomatized by a theory with one operation

lim, of countably infinite arity, with the metric of the arity being

𝑑 (𝑛,𝑚) = 1/2
min(𝑛,𝑚)

. Thus lim(𝑥0, . . . ) is defined if and only if

𝑑 (𝑥𝑛, 𝑥𝑚) ≤ 1/2
𝑛
whenever𝑚 > 𝑛. The theory has the equations

{𝑥𝑛 =
1/2

𝑛 𝑥𝑚 | 0 ≤ 𝑛 < 𝑚} ⊢ lim(𝑥0, . . . ) =
1/2

𝑘 𝑥𝑘 , for each

𝑘 = 0, 1, . . . , which imply that, supposing the variables are such

that lim is defined, it is in fact a limit of the sequence.

1.3 Outline of the paper
We begin in section 2 by recalling some aspects of the category the-

ory of metric spaces, and the theory of enriched Lawvere theories

as it specializes to this case.

In section 3 we proceed to introduce the main topic of the paper,

Metric Equational Theories, their categories of models, and proving

basic properties of these. In section 4, we construct a free-forgetful

adjunction for each MET, and prove that these correspond to en-

riched Lawvere theories — this is the first direction of the central

correspondence, corollary 4.10. In section 5, we carry out the other

direction, constructing for each enriched Lawvere theory T over

Met an MET whose category of models is equivalent to Mod(T )
(proposition 5.2).

Finally, we prove a completeness theorem for METs in section 6,

discuss the MET of Cauchy completeness in section 7, and consider

some special classes of METs and study their corresponding monads

in section 8 — in particular, we characterize the class of monads

axiomatized by ordinary QETs.

1.4 Related work
As discussed above, quantitative equational theories were intro-

duced by Mardare, Panangaden and Plotkin in [11], and further

developed in [12]. Apart from the papers mentioned above, there is

also [6], developing coproducts and tensors of QETs.

The work of Adámek, Dostál, and Velebil in [2] is also highly

relevant in this context — they study a subclass of QETs and prove

a classification theorem quite analogous to ours in the context of

ultrametric spaces, showing that they present exactly the strongly
finitary monads on ultrametric spaces ([2, Theorem 5.8]). However,

their classification does not extend to monads with operations of

metric arity.

Further afield, there is much recent work describing the category

theory oMet from other points of view, for example [1], describ-

ing “Hausdorff polynomial functors” onMet and their associated

monads, as well as [3], developing various species of “approximate

limits” in Met.

2 ENRICHED LAWVERE THEORIES IN Met
The concept of enriched Lawvere theory was proposed by Power in

[14]. Up to equivalence, a Lawvere theory is a category with finite

products, whose objects are generated by a distinguished object

under finite products. These then classify finitary monads on Set.
Power states these results for the finitary case, remarking although

that they generalize straightforwardly to any regular cardinal.

Given a regular cardinal 𝜅 and a 𝜅-presentable biclosed monoidal

categoryV , we obtain a theory ofV-enriched Lawvere theories.

These are defined to be V-categories generated under products

of cardinality less than 𝜅 and powers by 𝜅-small objects of V by

a distinguished object. These then classify strong (i.e enriched) 𝜅-

presentable monads onV . The classical Lawvere theory is obtained

by takingV = Set and 𝜅 = ℵ0.

In this paper, we will consider the case in whichV = Met and
𝜅 = ℵ1. Since Met is not finitely presentable, we will be looking at

countable-arity operations in general, but we will also discuss the

subset of finitary monads.

We recall, in what follows, some general definitions and results

about the category Met, see [15] for details. To simplify the lan-

guage, in what follows we will refer to ℵ1-locally presentable cat-

egories as countably locally presentable, ℵ1-accessible monads as

countable-arity monads, and so on.

As emphasized above,Met is the category where

(1) Objects are extended metric spaces, i.e., sets𝑋 equipped with

a metric 𝑑 : 𝑋 × 𝑋 → [0,∞];
(2) A morphism (𝑋,𝑑𝑋 ) → (𝑌,𝑑𝑌 ) is a nonexpansive map

𝑓 : 𝑋 → 𝑌 so that 𝑑𝑌 (𝑓 (𝑥), 𝑓 (𝑥 ′)) ≤ 𝑑𝑋 (𝑥, 𝑥 ′) for all
𝑥, 𝑥 ′ ∈ 𝑋 ;

(3) Composition and identities are the ordinary function com-

position and the identity functions.

The tensor product ⊗ onMet is given by

(𝑋,𝑑𝑋 ) ⊗ (𝑌,𝑑𝑌 ) = (𝑋 × 𝑌,𝑑𝑋⊗𝑌 )

where 𝑑𝑋⊗𝑌 ((𝑥,𝑦), (𝑥 ′, 𝑦′)) = 𝑑𝑋 (𝑥, 𝑥 ′) + 𝑑𝑌 (𝑦,𝑦′).
Met is a symmetric monoidal category, with associator, unitor and

symmetry given as for the Cartesian symmetric monoidal structure

on Set. Moreover,Met is closed as a monoidal category, with the

internal hom [𝑋,𝑌 ] being given by the set of nonexpansive maps

𝑋 → 𝑌 in the metric𝑑 [𝑋,𝑌 ] (𝑓 , 𝑔) = sup𝑥 𝑑𝑌 (𝑓 (𝑥), 𝑔(𝑥)). Moreover,

Met is countably locally presentable [10], and its countable objects

are precisely those metric spaces with a countable underlying set

[3].

Recall that in a category C enriched overV , a power or cotensor
of an object 𝑋 ∈ C by 𝑉 ∈ V is an object 𝑋𝑉 so that C(𝐴,𝑋𝑉 ) �
[𝑉 , C(𝐴,𝑋 )] (with [−,−] being the internal hom in V , here). In

the self-enrichment of V , powers are given by the internal hom

𝑊𝑉 = [𝑉 ,𝑊 ]. In the present case of metric spaces, we generally

prefer the exponential notation𝑌𝑋 for this space, which to reiterate

is given by the set of nonexpansive maps 𝑋 → 𝑌 in the sup-metric

𝑑 (𝑓 , 𝑔) = sup𝑥 𝑑𝑌 (𝑓 (𝑥), 𝑔(𝑥)).
Note that a category enriched in Met is simply an ordinary

category C equipped with a metric on each hom-set, so that the

composition operation ◦ : C(𝑌, 𝑍 ) ⊗ C(𝑋,𝑌 ) → C(𝑋,𝑍 ) is non-
expansive. A functor C → D in the enriched sense is simply a

functor 𝐹 between the underlying categories so that each map

𝐹 : C(𝑋,𝑌 ) → D(𝐹𝑋, 𝐹𝑌 ) is nonexpansive. In particular, being

enriched is a property of an ordinary functor, not extra data.

We will primarily be interested in monads onMet itself — here

an “enriched monad” is just an ordinary monad (𝑇, 𝜇, 𝜂) on the

category Met where the functor 𝑇 happens to be nonexpansive,

and the Eilenberg-Moore category of such a monad is just the

EM category in the ordinary sense, metrized with the sup-metric

restricted to the subset of homomorphisms.

An enriched functor is also called strong (because for a closed

monoidal categoryV , an enriched endofunctor onV is equivalent

4
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to a strong endofunctor, [8, Theorem 1.3]), and we will also use the

term strong monad.
Almost every functor we work with will be enriched in this

sense, so we will often not bother to be precise about the difference.

Recall that a pseudometric space is the generalization of metric

spaces without the requirement that 𝑑 (𝑥,𝑦) = 0 ⇒ 𝑥 = 𝑦. There is

an obvious category PMet of pseudometric spaces and nonexpan-

sive maps. Met is a full subcategory of PMet, and this inclusion is

reflective — for each pseudometric space 𝑋 , the reflection is given

by the quotient 𝑋/∼ where 𝑥 ∼ 𝑦 if 𝑑 (𝑥,𝑦) = 0. We refer to this

as the metric quotient of 𝑋 . It will often be convenient to describe

metric spaces in this way.

Definition 2.1. Let CMet denotes the full subcategory ofMet of
countable extended metric spaces. CMet inherits aMet enrichment.

Since CMet is closed under tensor products, the opposite category

CMetop
, has all powers by countable objects (and they are simply

given by the tensor product).

Definition 2.2. A Met Lawvere theory is an Met-category L
equipped with an identity-on-objects functor CMetop → L which

is enriched and preserves powers by countable objects.

Remark 2.3. Note that every object 𝑋 in CMetop
can be written

as a (countable) power of the singleton ∗ by 𝑋 . Hence, if 𝐹 is the

functor CMetop → L, we have 𝐹 (𝑋 ) = 𝐹 (∗)𝑋 , and these are all

the objects of L, up to isomorphism.

Note that CMetop
has products (given by coproducts in Met),

and these are automatically preserved by 𝐹 , since

𝐹 (𝑋 ⊔ 𝑌 ) = 𝐹 (∗)𝑋⊔𝑌 = 𝐹 (∗)𝑋 × 𝐹 (∗)𝑌 .
In what follows, we abuse the notation as usual, and denote a

Met Lawvere theory (L, 𝐹 : CMetop → L) simply by L.

We will denote the object 𝐹 (∗) by 𝑥 , and hence we can use the

notation 𝑥𝑋 , with 𝑋 a countable metric space, to denote a general

object of L.

Note that, by definition of powers, the hom-object L(𝑥𝐴, 𝑥𝐵)
is isomorphic to the metric space [𝐵,L(𝑋𝐴, 𝑥)] of maps 𝐵 →
L(𝑥𝐴, 𝑥). Hence the hom-objects of a Met Lawvere theory are

determined by the spaces L(𝑥𝐴, 𝑥).

Definition 2.4. The metric space L(𝑥𝐴, 𝑥) is called the space of
𝐴-ary operations of L.

Definition 2.5. A model of aMet Lawvere theory L is a power-

preserving Met-functor 𝑀 : L → Met. The category of models,

denoted Mod(L), is the category of such functors and natural trans-
formations between them. Note that this carries aMet-enrichment.

There is a forgetful functor Mod(L) → Met which carries a model

𝑀 to𝑀 (𝑥).

The following result is [14, Theorem 4.3] specialized to our case.

Let Law denote the category ofMet-Lawvere theories and CMnd
the subcategory of countable-arity monads and monad transforma-

tions.

Proposition 2.6. Given a Met Lawvere theory L, the category
of its models is monadic over Met. The monad arising from this
adjunction is always of countable arity (it preserves countably filtered
colimits). This construction induces a functor Law → Mnd(CMet),

which is an equivalence of categories. Its inverse carries a monad
𝑇 from Mnd(CMet) to the dual of its Kleisli category restricted to
countable metric spaces.

3 METRIC EQUATIONAL THEORIES
In this section we revisit the theory of quantitative equational logic

with the intention of making use of metric arities and produce

explicit Met-enriched Lawvere theories. To this end, we need to

extend the syntax proposed in [11] to properly encode operators

with metric arities.

Our generalization, which we call metric equational theories, will
have two kinds of judgement. The structural judgements, of type

Γ ⊢ 𝑠 =𝜖 𝑡 , where 𝑠 and 𝑡 are terms, express the claim that 𝑠 and 𝑡 ,

given the set of hypotheses Γ on the variables, are within distance 𝜖

of each other; these are the judgements used in [11]. In addition, we

will also need formational judgments of type Γ ⊢ 𝑡 ok, asserting that

in the given context, 𝑡 is a well-formed term — that is, it is provably

well-defined. The constructs of type 𝑡 ok (for terms 𝑡 ) are called

formational atoms, and together with the quantitative equalities of
type 𝑠 =𝜀 𝑡 (for terms 𝑠 and 𝑡 and positive reals 𝜀) are the building

blocks for our judgements. We need to combine these types of

judgment because we don’t want to ever make any assertions about

ill-formed terms, so we need to prove 𝑡 ok before we apply certain

inference rules. But we cannot know which terms are well-formed

without reasoning about their distances. Of course, a judgment that

a term is well-defined ultimately boils down to a judgment about

distances between the subterms — as such, the theory could be

rewritten without the ok judgments. However, they are a useful

bookkeeping device and as such have been left in.

From the start, we’re faced with a difficulty not seen in the

classical case. Since our operations have arities in metric spaces,

their domain of definition depends on the distance between the

arguments. This means that the set of terms under consideration is

not the entire set of trees of operators as in the ordinary case, but

only a subset. But, crucially, the set of well-formed terms depends

not only on the context, but on the equational axioms.

While it would be possible to give mutually inductive definitions

of “theory”, “sequent” and “term”, we find it simpler to consider the

whole set of “preterms” and define the well-formed subset.

Definition 3.1. A metric signature (or simply signature) Ω is a

set of operation symbols, each equipped with a metric arity, which
is a countable cardinal (i.e either {0, . . . , 𝑛 − 1} for some natural

number 𝑛 ≥ 0, or {0, . . . } the set of natural numbers) equipped

with a metric. We write 𝑓 : 𝑁 ∈ Ω if 𝑓 is an operation in Ω with

arity 𝑁 = (𝑁,𝑑).

Definition 3.2. Let 𝑋 be a set. Ω̃(𝑋 ) is the set of terms (in the

classic sense) in the signature, called preterms, given inductively by

(1) For each 𝑥 ∈ 𝑋 , there is a preterm 𝑥 ∈ Ω̃(𝑋 ).
(2) If 𝑡𝑖 is a preterm for each 𝑖 ∈ 𝑁 , and 𝑓 : 𝑁 ∈ Ω, there is a

preterm 𝑓 (𝑡1, . . . ).

Definition 3.3. Let 𝑋 be a set of variables. A context Γ over 𝑋
consists of a list of equations 𝑥 =𝜀 𝑦, where 𝑥,𝑦 are variables and

𝜀 ≥ 0 is a nonnegative real number.

Given a metric space 𝑀 and an assignment 𝛼 : 𝑋 → 𝑀 of the

variables, we say 𝛼 satisfies an equation 𝑥 =𝜀 𝑦 if 𝑑 (𝛼 (𝑥), 𝛼 (𝑦)) ≤ 𝜀.
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A variable assignment 𝛼 : 𝑋 → 𝑀 satisfies a context if it satisfies

all the equations.

Definition 3.4. Fix a countably infinite set of variables𝑋 . A collec-

tion of judgments (formational and structural) is called a deducibility
relation if it is closed under the following inference rules stated for

arbitrary 𝑥, 𝑥𝑖 ∈ 𝑋 , 𝑓 : (𝑁,𝑑) ∈ Ω, 𝑡, 𝑡 ′, 𝑡𝑖 , 𝑡 ′𝑖 , 𝑢𝑖 ∈ Ω̃(𝑋 ), 𝜙 either a

quantitative equality or a formational atom, and 𝜖, 𝜖′ ∈ R≥0

Γ ⊢ 𝑥 ok

Var

∀𝑖 : Γ ⊢ 𝑡𝑖 ok, ∀𝑖, 𝑗, 𝑑 (𝑖, 𝑗) < ∞ : Γ ⊢ 𝑡𝑖 =𝑑 (𝑖, 𝑗 ) 𝑡 𝑗
Γ ⊢ 𝑓 ((𝑡𝑖 )) ok

App

𝑥 =𝜖 𝑦 ∈ Γ

Γ ⊢ 𝑥 =𝜖 𝑦
Assum

Γ ⊢ 𝑡 ok

Γ ⊢ 𝑡 =0 𝑡
Refl

Γ ⊢ 𝑡 ′ =𝜖 𝑡
Γ ⊢ 𝑡 =𝜖 𝑡 ′

Symm

Γ ⊢ 𝑡 =𝜖 𝑡 ′, Γ ⊢ 𝑡 ′ =𝜖 ′ 𝑡 ′′
Γ ⊢ 𝑡 =𝜖+𝜖 ′ 𝑡 ′′

Triang

𝜖′ < 𝜖, Γ ⊢ 𝑡 =𝜖 ′ 𝑡 ′
Γ ⊢ 𝑡 =𝜖 𝑡 ′

Max

Γ ⊢ 𝑡 =𝜖 ′ 𝑡 ∀𝜖′ > 𝜖

Γ ⊢ 𝑡 =𝜖 𝑡 ′
Cont

Γ ⊢ 𝑠𝑖 =𝑑 (𝑖, 𝑗 ) 𝑠 𝑗 , Γ ⊢ 𝑡𝑖 =𝑑 (𝑖, 𝑗 ) 𝑡 𝑗 , Γ ⊢ 𝑠𝑖 =𝜖 𝑡𝑖∀𝑖, 𝑗
Γ ⊢ 𝑓 ((𝑠𝑖 )) =𝜖 𝑓 ((𝑡𝑖 ))

Nexp

Γ ⊢ 𝑢𝑖 =𝛿𝑖 𝑗 𝑢 𝑗 , {𝑥𝑖 =𝛿𝑖 𝑗 𝑥 𝑗 } ⊢ 𝑠 =𝜖 𝑡
Γ ⊢ 𝑠 [𝑢𝑖/𝑥𝑖 ] =𝜖 𝑡 [𝑢𝑖/𝑥𝑖 ]

Subst

Given a set 𝑆 of judgments, the least deducibility relation generated

by them is denoted ⊢𝑆 .

Since the arity of the operations in the theory are supposed to

determine their domain of definition entirely, we don’t want to have

any axioms of the form Γ ⊢ 𝑡 ok, only equations. Furthermore, when

axiomatizing a theory, we need to ensure that for each axiomatic

equation, the terms are well-formed. But which terms are well-

formed in a given context depends on the theory, since the theory

provides bounds on distance that may imply well-formedness.

This means we have a kind of cyclic dependency, which makes

things more difficult than they would be without the metric arities.

However, in practice, the theory is not difficult to work with. First,

since well-formedness of a term depends only on the distances

between its subterms, there is no actual problem of cyclical depen-

dency — we can proceed from subterms to larger terms, forming

judgments about their distances and well-definedness inductively.

And second, when working with a set of equational axioms which

define the theory we want to work with, it suffices to prove that

those equations are well-formed — then any sequents provable

from them will also be well-formed.

Definition 3.5. A collection of judgments 𝑆 is called well-formed
if, whenever Γ ⊢ 𝑡 =𝜖 𝑠 ∈ 𝑆 , we also have Γ ⊢ 𝑡 ok, Γ ⊢ 𝑠 ok ∈ 𝑆 . A

well-formed collection of judgments T is called a metric equational
equational theory (or just a theory) if T = ⊢T= , where T= ⊆ T is the
subset of equational judgments.

Proposition 3.6. Let 𝑆 be a collection of equational judgments.
Suppose for each Γ ⊢ 𝑡 =𝜖 𝑠 ∈ 𝑆 , Γ ⊢𝑆 𝑡 ok, Γ ⊢𝑆 𝑠 ok. Then T =⊢𝑆 is
a theory.

Proof. Clearly T is generated by a set of equations, so it suffices

to check that it’s well-founded.

First, we prove that whenever Γ ⊢ 𝑓 ((𝑡𝑖 )) ok ∈ T for an operation
𝑓 : (𝑁,𝑑), we have Γ ⊢ 𝑡𝑖 =𝑑 (𝑖, 𝑗 ) 𝑡 𝑗 for each 𝑖, 𝑗 ∈ 𝑁 . To see this, let

T′ ⊆ T be the subset with the same equational sequents, but only

those well-formedness sequents for which this rule holds. Clearly

this contains 𝑆 (since it contains all equations in T), so it suffices to

prove that it’s stable under the inference rules. Since it has all the

equations in T, we only have to check Var and App. The former is

true by definition, the latter because the preconditions are exactly

the extra condition necessary for the postcondition to be in T′.
Now we prove that T is well-founded. Again, we define a subset

T′ ⊆ T. This time, we let it contain the same formational judgments,

but only those equational judgments Γ ⊢ 𝑡 =𝜖 𝑠 where Γ ⊢ 𝑡 ok, Γ ⊢
𝑠 ok ∈ T. Note that this contains all of 𝑆 , so again it suffices to show

that it’s stable under the inference rules.

(1) Var and App are now clear.

(2) Assum holds because T satisfies Var.
(3) Refl holds because the precondition is exactly what’s re-

quired for the postcondition to be in T′.
(4) Symm holds because, given the precondition, we must fur-

ther have Γ ⊢ 𝑡 ok ∈ T (and also 𝑡 ′). Hence, since T satisfies
Symm, the postcondition must also be in T′.

(5) Triang,Max,Cont all hold for essentially the same reason

as Symm.

(6) To prove NExp, we have to show that, given the precondi-

tions, Γ ⊢ 𝑓 ((𝑠𝑖 )) ok ∈ T. But this follows from the precon-

ditions, the further fact that because the preconditions are

in T′ we have Γ ⊢ 𝑠𝑖 ok ∈ T for each 𝑖 , and the fact that T
satisfies App.

(7) Finally, the most difficult rule is Subst. We will prove that,

given the preconditions, Γ ⊢ 𝑠 [𝑢𝑖/𝑥𝑖 ] ok. If 𝑠 is a vari-

able not among the 𝑥𝑖 , this is obvious. If 𝑠 = 𝑥𝑖 , then

𝑠 [𝑢𝑖/𝑥𝑖 ] = 𝑢𝑖 , and we are done by assumption. Suppose

𝑠 = 𝑔((𝑠𝑘 )) for some symbol 𝑔 : (𝑁 ′, 𝑑′). By induction, as-

sume Γ ⊢ 𝑠𝑘 [𝑢𝑖/𝑥𝑖 ] ok ∈ T for each 𝑘 . By assumption,

{𝑥𝑖 =𝑑 (𝑖, 𝑗 ) 𝑥 𝑗 } ⊢ 𝑔((𝑠𝑘 )) ok ∈ T. But by the rule we

proved above, this means that {𝑥𝑖 =𝑑 (𝑖, 𝑗 ) 𝑥 𝑗 } ⊢ 𝑠𝑘 =𝑑 ′ (𝑘,𝑘 ′ )
𝑠𝑘 ′ ∈ T for each 𝑘, 𝑘′ ∈ 𝑁 ′

. Now Subst for T implies that

Γ ⊢ 𝑠𝑘 [𝑢𝑖/𝑥𝑖 ] =𝑑 ′ (𝑘,𝑘 ′ ) 𝑠𝑘 ′ [𝑢𝑖/𝑥𝑖 ]. These claims and the in-

ductive assumption, together with App, imply the desired

conclusion.

□
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Definition 3.7. Let Γ be a context. Then 𝑋Γ is the set 𝑋 equipped

with the pseudometric 𝑑 (𝑥, 𝑥 ′) = min{𝜖 | Γ𝑣𝑑𝑎𝑠ℎ𝑥 =𝜖 𝑥 ′}. (Note
that this minimum is attained because of Arch, and this is a pseu-

dometric because of Symm,Triang and Refl).
𝑋Γ is the metric reflection of 𝑋Γ . Note that a nonexpansive map

𝑋Γ → 𝑀 is precisely a variable assignment that satisfies Γ

Definition 3.8. Let Ω be a signature. A model 𝑀 of Ω is a metric

space 𝑀 equipped with, for each 𝑓 : 𝐴 ∈ Ω, a map 𝑀 [𝑓 ] : 𝑀𝐴 →
𝑀 — recall that 𝑀𝐴

is the metric space of nonexpansive maps

𝐴 → 𝑀 equipped with the supremum metric. Given models𝑀, 𝑁 ,

a homomorphism is a nonexpansive map 𝜙 : 𝑀 → 𝑁 so that

𝜙 (𝑀 [𝑓 ] (𝑥1, . . . ) = 𝑁 [𝑓 ] (𝜙 (𝑥1), 𝜙 (𝑥2), . . . ). Note that if (𝑥𝑖 ) ∈ 𝑀𝐴
,

then (𝜙 (𝑥𝑖 )) ∈ 𝑁𝐴 since𝜙 is nonexpansive. The category of models

and homomorphisms is denoted Mod(Ω).
We will now define recursively what it means for𝑀 to satisfy a

judgment, and the interpretation𝑀 [𝑡] : 𝑀𝑋Γ → 𝑀 of every term

as a function, whenever𝑀 satisfies Γ ⊢ 𝑡 ok.

(1) Every model satisfied every judgment Γ ⊢ 𝑥 ok for 𝑥 a

variable.𝑀 [𝑥] (𝛼) is simply 𝛼 (𝑥).
(2) 𝑀 satisfies Γ ⊢ 𝑓 (𝑡1, . . . ) ok if it satisfies each Γ ⊢ 𝑡𝑖 ok and

𝑑 (𝑀 [𝑡𝑖 ], 𝑀 [𝑡 𝑗 ]) ≤ 𝑑𝑓 (𝑖, 𝑗) for all 𝑖, 𝑗 (using the supremum

metric on the function space). In this case𝑀 [𝑓 (𝑡1, . . . )] (𝛼) =
𝑀 [𝑓 ] (𝑀 [𝑡1] (𝛼), . . . ).

(3) 𝑀 satisfies Γ ⊢ 𝑡 =𝜖 𝑠 if it satisfies both Γ ⊢ 𝑡 ok and Γ ⊢ 𝑠 ok,

and if 𝑑 (𝑀 [𝑡], 𝑀 [𝑠]) ≤ 𝜖 in the function space.

We write Γ ⊨𝑀 𝜙 if𝑀 satisfies the sequent Γ ⊢ 𝜙 .
A model of a theory T is a model of the signature of T which

satisfies every sequent in T.
The category of models of T, is the full subcategory Mod(T) ⊆

Mod(Ω) spanned by the models of T.

The following proposition is readily verified:

Proposition 3.9 (Soundness). Let𝑀 be any model of Ω. Then
the relation ⊨𝑀 is well-founded and stable under the inference rules.
In particular, to prove that𝑀 is a model of a theory T generated by
some axioms 𝑆 , it suffices to prove that𝑀 satisfies all the axioms.

Remark 3.10. A theory is always defined over some signature Ω.
We will often just leave the signature implicit when speaking of a

theory. When T is a theory over Ω and 𝑓 is a symbol in Ω, we will
abuse notation by writing 𝑓 : 𝑁 ∈ T, speak of “an operation in T”,
and so on.

4 FREE MODELS AND MONADICITY
We now turn to the comparison of METs and Lawvere theories over

Met. First, we will prove that for each MET T, the forgetful functor
admits a left adjoint (taking each metric space to a free model on it),

and that this adjunction is monadic. After proving that the monads

are of countable arity, it follows by the general theory of enriched

Lawvere theories ([14]) that these monads (and hence the categories

of models) come from enriched Lawvere theories.

First, we’ll prove that all theories have initial models. Then,

given a theory T and a metric space𝐴, we’ll construct a new theory

whose models are models of T equipped with a map from 𝐴 (that

is, objects of the comma category Mod(T)𝐴/). The initial models of

these theories are precisely the free models of T, and the fact that

they all exist proves the existence of a left adjoint.

Proposition 4.1. Let T = (Ω,T) be a metric equational theory.
Consider the metric space given by

(1) Its elements are the closed terms 𝑡 ∈ Ω̃(∅) such that ⊢T 𝑡 ok,
quotiented by the equivalence relation 𝑡 ∼ 𝑡 ′ ⇔⊢T 𝑡 =0 𝑡

′.
(2) The metric is 𝑑 ( [𝑡], [𝑡 ′]) = min{𝜖 |⊢T 𝑡 =𝜖 𝑡 ′}
Given an operation 𝑓 : 𝐴 ∈ Ω and a collection of elements [𝑡𝑖 ]

satisfying 𝑑 ( [𝑡𝑖 ], [𝑡 𝑗 ]) ≤ 𝑑𝐴 (𝑖, 𝑗) for all 𝑖, 𝑗 ∈ 𝐴, [𝑓 ((𝑡𝑖 )𝑖∈𝐴] is
another well-defined element, and this gives a model of T. This model
is the initial model of T

Proof. We will denote the space by Free
T (∅) (clearly the initial

model is the free model on the empty space — we will construct an

entire functor Free
T
soon).

Let 𝑡, 𝑡 ′, 𝑠 be elements and suppose ⊢ 𝑡 =0 𝑡
′
, and ⊢ 𝑡 =𝜖 𝑠 . Then

using Triang and Symm, also ⊢ 𝑡 ′ =𝜖 𝑠 , and vice versa. Hence the

distance is well-defined on equivalence classes. Refl, Symm,Triang
straightforwardly imply that it’s an (extended) metric. (Note that

the minimum defining 𝑑 is always attained, by Arch).

App implies that applying functions to a collection of well-

formed closed terms with suitable bounds on their distance re-

sults in another well-formed closed term. NExp implies that this

is well-defined (if we replace each input term with an equivalent

one, the resulting terms are equivalent) and nonexpansive, so these

operations Free
T (∅) of Ω.

Given some equation Γ ⊢ 𝑠 =𝜖 𝑡 in T using the variables {𝑥𝑖 },
and elements 𝑢𝑖 ∈ Free

T (∅) so that 𝑑 ( [𝑢𝑖 ], [𝑢 𝑗 ]) ≤ 𝜖 whenever

𝑥𝑖 =𝜖 𝑥 𝑗 ∈ Γ (in other words, a variable assignment satisfying Γ),
by Subst this variable assignment also satisfies 𝑠 =𝜖 𝑡 . Hence this

is a model of T.
Now suppose 𝑀 is another model of T. Note that if 𝑡 is a term

without variables,𝑀 [𝑡] : 𝑀𝑋Γ → 𝑀 is constant (by induction on 𝑡 )

- let’s abuse notation by writing𝑀 [𝑡] ∈ 𝑀 for the constant value of

this map. (If𝑀 is empty, of course, this definition won’t make sense.

But in that case Tmust have no constant symbols, and so there can’t

be any terms without variables). Define a map 𝜙 : Free
T (∅) → 𝑀

by sending each class [𝑡] into𝑀 [𝑡]. Since𝑀 satisfies T, if [𝑡] = [𝑡 ′],
then 𝑑𝑀 (𝑀 [𝑡], 𝑀 [𝑡 ′]) = 0, so they are equal. Hence this is well-

defined. Analogously, if 𝑑 (𝑡, 𝑡 ′) = 𝜖 , then 𝑑𝑀 (𝑀 [𝑡], 𝑀 [𝑡 ′]) ≤ 𝜖 ,

so this is a nonexpansive map. It’s clearly a homomorphism. On

the other hand, clearly the value of any homomorphism on closed

terms is determined — it must go to the interpretation of that term.

So this is unique. □

Definition 4.2. Let 𝐴 be any metric space. Then Ω𝐴 is the sig-

nature with one nullary operation [𝑎] for each point in 𝐴, and

T(𝐴) is the theory over this signature generated by the sequents

⊢ [𝑎] =𝑑 (𝑎,𝑎′ ) [𝑎′] for each 𝑎, 𝑎′ ∈ 𝐴.

Recall that, given a functor 𝐹 : C → D and an object 𝐴 ∈ D,

the comma category C𝐴/ has objects pairs (𝑋 ∈ C, 𝑓 : 𝐴 → 𝐹𝐶),
and morphisms from (𝑋, 𝑓 ) → (𝑌,𝑔) given by 𝜙 : 𝑋 → 𝑌 ∈ C so

that 𝑔𝐹 (𝜙) = 𝑓 (i.e so that the obvious triangle in D commutes).

Proposition 4.3. As categories over EMet, Mod(T(𝐴)) = Met/𝐴 .

Proof. To give a space𝑀 the structure of a model of T(𝐴) is to
choose for each𝑎 ∈ 𝐴 a point𝑀 [𝑎] ∈ 𝑀 , satisfying𝑑 (𝑀 [𝑎], 𝑀 [𝑎′]) ≤
𝑑𝐴 (𝑎, 𝑎′). This is equivalent to a map 𝐴 → 𝑀 which is nonexpan-

sive. A homomorphism is a nonexpansive map 𝑓 : 𝑀 → 𝑁 so that
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𝑓 (𝑀 [𝑎]) = 𝑁 [𝑎]. This is just the definition of a map in the slice

category. □

Definition 4.4. Let T,T′ be two theories. Then T⊔T′ is the theory
with signature ΩT⊔ΩT′ , and generated by the union of the sequents
in T and T′.

Proposition 4.5.

Mod(T ⊔ T′) � Mod(T) ×Met Mod(T′) .
In other words, to give a space the structure of a model of T ⊔ T′ is
simply to give it independently the structure of a model of each theory,
and a homomorphism is just a function which is a homomorphism
for each theory separately.

Proof. This is essentially true by definition, since (by construc-

tion) the operations of T and T′ don’t overlap within T ⊔ T′, and it

suffices to satisfy the axioms of each theory independently (since

the disjoint union theory is just generated by these). □

Applying the preceding proposition to the characterization of

Mod(T(𝐴)), we obtain the following:

Corollary 4.6. Mod(T ⊔ T(𝐴)) � Mod(T)/𝐴 .

Since a left adjoint exists if and only if each comma category has

an initial object (and is then given by these initial objects, see eg [9,

Theorem IV.1.1]), we obtain:

Corollary 4.7. Mod(T) → Met admits a left adjoint, which we
denote Free

T (𝐴). Concretely, Free
T (𝐴) is given by terms 𝑡 using the

operations of T and a further constant symbol for each element of 𝐴,
quotiented by provable equality, with 𝑑 (𝑡, 𝑡 ′) being the smallest 𝜖 so
that 𝑡 =𝜖 𝑡 ′ is provable using T and the further axioms ⊢ [𝑎] =𝑑 (𝑎,𝑎′ )
[𝑎′] for every pair of elements in 𝐴.

We now turn to the proof of monadicity — this is really the key

ingredient in the comparison with Lawvere theories. Of course, the

existence of the left adjoint Free
T
(along with the proof that the

associated monad has countable arity, see below) already gives us a

Lawvere theory — the question is whether its models are the same

as the models of T.

Proposition 4.8. The adjunction Mod(T) → Met is monadic.

Proof. We will apply Beck’s monadicity theorem (see eg [9,

Theorem 7.1]. We must prove that the forgetful functor has a left

adjoint, that both categories are finitely complete, and that the

forgetful functor creates coequalizers for those pairs which have

split coequalizers inMet.
The first condition we already proved, it’s easy to see that the

forgetful functor creates limits, taking care of the completeness.

So let’s look at the last condition. Let (𝑙, 𝑟 ) : 𝑅 → 𝑀 be a pair of

homomorphisms in Mod(T) A split coequalizer of the underlying

metric spaces of this diagram is a diagram like this:

𝑅 𝑀 𝑄
𝑙

𝑟

𝑡

𝑒

𝑠

So that 𝑒𝑠 = 1𝑄 , 𝑠𝑒 = 𝑟𝑡, 𝑙𝑡 = 1𝑀 . Note that in this case,

𝑑𝑄 (𝑞, 𝑞′) = 𝑑𝑄 (𝑒𝑠 (𝑞), 𝑒𝑠 (𝑞′)) ≤ 𝑑𝑀 (𝑠 (𝑞), 𝑠 (𝑞′)) ≤ 𝑑𝑄 (𝑞, 𝑞′),

so 𝑑𝑄 (𝑞, 𝑞′) = 𝑑𝑀 (𝑠 (𝑞), 𝑠 (𝑞′)), and 𝑒 is surjective with 𝑒 (𝑚) =

𝑒 (𝑚′) if and only if 𝑟𝑡 (𝑚) = 𝑟𝑡 (𝑚′).
This implies that 𝑄 as a set is the coequalizer of 𝑙, 𝑟 : 𝑅 → 𝑀 ,

and for each point𝑚 ∈ 𝑀 , we can pick out the pair 𝑡 (𝑚) ∈ 𝑅 which

identifies𝑚 and 𝑠 (𝑒 (𝑚)).
We must show that we can equip 𝑄 with the structure of an T-

model, so that 𝑒 becomes a homomorphism and so that 𝑄 acquires

the universal property of coequalizing (𝑙, 𝑟 ).
First, let’s define 𝑄 [𝑓 ] for each operation symbol 𝑓 ∈ T. Since 𝑠

is distance nonexpanding, we can certainly define 𝑄 [𝑓 ] (𝑞1, . . . ) to
be 𝑒 (𝑀 [𝑓 ] (𝑠 (𝑞1), . . . )).

Now, suppose Γ ⊢ 𝑡 =𝜖 𝑠 is an equation in T. Fix a variable

assignment 𝛼 : 𝑋 → 𝑄 satisfying Γ. Then postcomposing with 𝑠

gives an assignment in𝑀 which also satisfies Γ (since this is non-

expansive). It’s apparent by structural induction on 𝑡 that 𝑄 [𝑡] (𝛼),
the value of 𝑡 under 𝛼 , equals 𝑒 (𝑀 [𝑡] (𝑠𝛼). Since𝑀 is a model and 𝑒

is nonexpansive, the equation also holds for 𝑄 . Hence 𝑄 is a model.

Now, if (𝑚1, . . . ) is an element of𝑀𝑁
(where 𝑁 is the arity of 𝑓 ),

(𝑡 (𝑚1), 𝑡 (𝑚2), . . . ) gives an element of𝑅𝑁 , so that𝑅 [𝑓 ] (𝑡 (𝑚1), . . . )
must identify 𝑀 [𝑓 ] (𝑚1, . . . ) and 𝑀 [𝑓 ] (𝑠𝑒 (𝑚1), . . . ). This means

𝑄 [𝑓 ] (𝑒 (𝑚1), . . . ) = 𝑒 (𝑀 [𝑓 ] (𝑠𝑒 (𝑚1), . . . )) = 𝑒 (𝑀 [𝑓 ] (𝑚1, . . . )) (since
𝑒 equalizes 𝑙 and 𝑟 ), so that 𝑒 is a homomorphism for theT-structures
on𝑀 and 𝑄 .

Now suppose given a homomorphism 𝜙 : 𝑀 → 𝐴 which equal-

izes 𝑙 and 𝑟 , for some other model 𝐴. We may attempt to define

𝑄 → 𝐴 as the composite 𝑄
𝑠→ 𝑀 → 𝐴. This will be nonexpansive,

and it’s straightforward to see that it’ll be a homomorphism. On

the other hand, if
ˆ𝜙 : 𝑄 → 𝐴 is any homomorphism so that

ˆ𝜙𝑒 = 𝜙 ,

we have
ˆ𝜙 = ˆ𝜙𝑒𝑟 = 𝜙𝑟 , so this is in fact the unique such morphism.

This concludes the proof of monadicity. □

Proposition 4.9. The functor Free
T

: Met → Met is countable-
arity, i.e it commutes with countably filtered colimits.

Proof. Let (𝑋𝑖 )𝑖∈𝐼 be a diagram inMet over a countably filtered
index category 𝐼 . We must prove

colim𝑖 Free
T (𝑋𝑖 ) → Free

T (colim𝑖 𝑋𝑖 )
is an isomorphism. Let 𝑓 : 𝐴 = (𝐴,𝑑) be an operation symbol in

T. Note that countable powers commute with countably filtered

colimits inMet (this is essentially what it means that the countable

metric spaces are the countably small objects inMet), so

(colim𝑖 Free
T (𝑋𝑖 ))𝐴 � colim𝑖 Free

T (𝑋𝑖 )𝐴

Hence we can equip the colimit with the structure of a model of

the signature of T, by defining the interpretation of 𝑓 to be the map

(colim𝑖 Free
T (𝑋𝑖 ))𝐴 � colim𝑖 Free

T (𝑋𝑖 )𝐴 → colim𝑖 Free
T (𝑋𝑖 ),

where the last map just applies 𝑓 in each part of the colimit. This

amounts to, given a sequence 𝑡𝑎 , finding 𝑋𝑖 so that they’re all

present in Free
T (𝑋𝑖 ) (and at the right distance) and just taking

𝑓 ((𝑡𝑎)).
Given an equation Γ ⊢ 𝑡 =𝜖 𝑠 in T, let 𝛼 : 𝑋 → colim𝑖 Free

T (𝑋𝑖 )
be some assignment validating Γ. Then there’s some 𝑖 so that this

factors as a map 𝑋 → Free
T (𝑋𝑖 ) which also validates Γ. Up to

equivalence, the intepretation of 𝑡 and 𝑠 under this assignment

in the colimit is just their interpretation under this assignment

in Free
T (𝑋𝑖 ). Since this free model satisfies the equation (being a
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model), and the inclusion of this in the colimit is nonexpansive, the

colimit also satisfies the equation. Hence it’s a model of T.

The maps 𝑋𝑖 → Free
T (𝑋𝑖 ) induce a map

colim𝑖 𝑋𝑖 → colim𝑖 Free
T (𝑋𝑖 ),

which since the latter is a model induces a map

𝜙 : Free
T (colim𝑖 𝑋𝑖 ) → colim𝑖 Free

T (𝑋𝑖 )

By initiality, the composite

Free
T (colim𝑖 𝑋𝑖 ) → colim𝑖 Free

T (𝑋𝑖 ) → Free
T (colim𝑖 𝑋𝑖 )

is the identity. This proves 𝜙 is an isometry. To see it’s surjec-

tive, consider some element in colim𝑖 Free
T (𝑋𝑖 ). It’s represented

by some 𝑡 ∈ Free
T (𝑋𝑖 ) for some 𝑖 , i.e some term using the opera-

tions of T and constant symbols from 𝑋𝑖 . Let 𝑡
′
be a term obtained

from 𝑡 by replacing each [𝑥] with [𝑥], where 𝑥 ∈ colim𝑖 𝑋𝑖 is the

equivalence class of 𝑥 . Then up to the equivalence relation in the

colimit, 𝜙 (𝑡 ′) = 𝑡 .

This finishes the proof □

Corollary 4.10. For any equational theory T, there is a Met-
Lawvere theory with an equivalent category of models.

5 EQUATIONAL THEORIES FROM LAWVERE
THEORIES

Definition 5.1. Let T be an Met Lawvere theory. Fix a choice of

distinct variables 𝑥1, . . . . Given a metric cardinal 𝐶 , we let Γ(𝐶) be
the context {𝑥𝑖 =𝑑𝐶 (𝑖, 𝑗 ) 𝑥 𝑗 | 𝑖, 𝑗 ∈ 𝐶}. Then we can define a theory

T(T ), as follows:
(1) The signature Ω𝑇 has a symbol [𝑓 ] : 𝐶 for every countable

metric cardinal 𝐶 and every 𝑓 ∈ T (𝑥𝐶 , 𝑥).
(2) Given 𝑓 , 𝑓 ′ ∈ T (𝑥𝐶 , 𝑥), there is an axiom

Γ(𝐶) ⊢ [𝑓 ] (𝑥1, . . . ) =𝑑𝑇 (𝐶 ) (𝑓 ,𝑓 ′ ) [𝑓 ′] (𝑥1, . . . ),

where 𝑥1, . . . 𝑥

(3) For 𝑖 ∈ 𝐶 , let 𝜋𝑖 : 𝑥𝐶 → 𝑥 be the projection to the 𝑖th

component. Then we have an axiom

Γ(𝐶) ⊢ [𝜋𝑖 ] (𝑥1, . . . ) =0 𝑥𝑖

(4) Given 𝑓 : 𝑥𝐶 → 𝑥 and a tuple (𝑔1, . . . ) ∈ T (𝑥𝐷 , 𝑥)𝐶 , we
can compose these using the isomorphism T (𝑥𝐷 , 𝑥)𝐶 =

T (𝑥𝐷 , 𝑥𝐶 ). Denote this composition as 𝑓 ◦ (𝑔1, . . . ). Then
we have an axiom

Γ(𝐷) ⊢ [𝑓 ] ( [𝑔1] (𝑥1, . . . ), [𝑔2] (𝑥1, . . . ), . . . ) = [𝑓 ◦(𝑔1, . . . )] (𝑥1, . . . )

Proposition 5.2. Mod(T(T )) � Mod(T ) as categories overMet.
In particular, a strong monad onMet comes from a metric equational
theory if and only if it is of countable arity.

Proof. Let𝑀 be a model of T . Then we can equip𝑀 (𝑥) with
the structure of a model of T(T ) as follows: For each operation

𝑓 ∈ T (𝑥𝐶 , 𝑥), we define 𝑀 (𝑥) [𝑓 ] : 𝑀 (𝑥)𝐶 → 𝑀 (𝑥) simply as

𝑀 (𝑓 ), using the canonical isomorphism 𝑀 (𝑥)𝐶 � 𝑀 (𝑥𝐶 ). Since
𝑀 is assumed to be an enriched functor, the map T (𝑥𝐶 , 𝑥) →
Met(𝑀 (𝑥)𝐶 , 𝑀 (𝑥)) is nonexpansive, and hence this structure sat-

isfies the axioms from part 2. of the definition. Since𝑀 preserves

powers, it carries the projections to the projections, so it satisfies

part 3. And since 𝑀 is functorial, it preserves the composition,

which means it satisfies part 4.

Hence this is a model of T(T ). If 𝜙 : 𝑀 → 𝑁 is a natural trans-

formation, the induced map 𝜙𝑥𝐶 : 𝑀 (𝑥)𝐶 → 𝑁 (𝑥)𝐶 is given by

the 𝐶-fold power of 𝜙𝑥 . Since 𝜙 is natural, this implies that 𝜙𝑥
is a T(T )-homomorphism, so this construction defines a functor,

which we want to show is an isomorphism. Since Mod(T ) is equiv-
alently the Eilenbeg-Moore category of the associated monad, the

forgetful functor Mod(T ) → Met is an isometry on morphisms.

This implies that the functor Mod(T ) → Mod(T) we’ve just con-
structed is an isometry on morphisms as well, so we have to show

that it’s full and essentially surjective. For fullness, it’s clear that

being a homomorphism between 𝑀 (𝑥) and 𝑁 (𝑥) requires com-

muting with all the operations in T , which is just what it means

to be a natural transformation. For essential surjectivity, let𝑀 be

some model of T(T ). Define 𝑀 (𝑥𝐶 ) = 𝑀𝐶
, and given a family

(𝑓𝑎 ∈ T (𝑥𝐶 , 𝑥))𝑎∈𝐴 representing a morphism 𝑓 : 𝑥𝐶 → 𝑥𝐴 , let

𝑀 (𝑓 ) (𝑚1, . . . ) = (𝑀 [𝑓𝑎] (𝑚1, . . . ))𝑎∈𝐴 . By axiom 2., if these opera-

tions satisfy the distance bounds 𝑑 (𝑓𝑎, 𝑓𝑎′ ) ≤ 𝑑 (𝑎, 𝑎′), then so will

the resulting map𝑀 (𝑥)𝐶 → 𝑀 (𝑥)𝐴 , and by axiom 3. and 4., this is

functorial and preserves powers, so it defines a model. Clearly this

model goes to𝑀 . □

6 COMPLETENESS
In this section, we will prove the following completeness theorem

for our theory.

Theorem 6.1. Let T be a theory, and let Γ ⊢ 𝜙 be a sequent.
Suppose every model of T satisfies this sequent. Then Γ ⊢T 𝜙 .

We will need the following characterization of T ⊔ T(𝐴) for 𝐴 a

countable metric space:

Lemma 6.2. Let 𝐴 be any metric space. Consider a sequent Γ ⊢ 𝜙
in the signature of T ⊔ T(𝐴). We form the sequent Γ𝐴 ⊢ 𝜙𝐴 in the
signature of T by the following procedure:

(1) If necessary, relabel out some of the variables so that there is
an infinite set of unused variables.

(2) Observe that only countably many of the constant symbols
[𝑎], 𝑎 ∈ 𝐴 can occur in 𝜙 . For each of these, choose a distinct
variable 𝑥𝑎 not used in the sequent. Let 𝜙𝐴 be 𝜙 with each
occurrence of [𝑎] replaced by 𝑥𝑎 .

(3) Let Γ𝐴 be Γ ∪ {𝑥𝑎 =𝑑𝐴 (𝑎,𝑎′ ) 𝑥𝑎′ | 𝑎, 𝑎′ ∈ 𝐴,𝑑 (𝑎, 𝑎′) < ∞}.
Note that some arbitrary choices are involved in defining Γ𝐴 and 𝜙𝐴 .
Regardless of the choices, Γ𝐴 ⊢T 𝜙𝐴 if and only if Γ ⊢T⊔T(𝐴) 𝜙 .

Proof. First note that because of Subst, the arbitrary choices

don’t affect the provability of Γ𝐴 ⊢ 𝜙𝐴 . By using Subst and Assum,

it’s easy to see the forwards direction:

Γ𝐴 ⊢T 𝜙𝐴 ⇒ Γ ⊢T⊔T(𝐴) 𝜙
On the other hand, consider the set of sequents in the signature of

T ⊔ T(𝐴) so that the left-hand side holds. Clearly this set contains

bothT andT(𝐴), so it suffices to show it’s stable under the inference

rules.

(1) Var and Assum are immediate, since 𝑥𝐴 = 𝑥 .

(2) To see it’s stable underApp, suppose first that 𝑓 is an opera-
tion in T. Note that T satisfiesApp, so given the assumption

9
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that Γ𝐴 ⊢T 𝑡𝐴
𝑖

ok and so on, we find that Γ𝐴 ⊢T 𝑓 (𝑡𝐴
𝑖
) ok.

But clearly 𝑓 (𝑡𝐴
𝑖
) = 𝑓 (𝑡𝑖 )𝐴 , so this is just what we wanted.

On the other hand, if 𝑓 = [𝑎] is a nullary symbol, this is

automatically true.

An analogous argument proves Refl, Symm,Triang,Arch,

and NExp.
(3) For Subst, we must be a bit more careful.

Let 𝑥𝑖 , 𝛿𝑖 𝑗 , 𝑢𝑖 , 𝑠, 𝑡, Γ be as in the assumptions of the inference

rule, where the terms are terms over T ⊔ T(𝐴). We assume

we’ve further chosen our 𝑥𝑎 among variables not occuring

in these terms. We are assuming that Γ𝐴 ⊢ 𝑢𝐴
𝑖
=𝛿𝑖 𝑗 𝑢

𝐴
𝑗
and

{𝑥𝑖 =𝛿𝑖 𝑗 𝑥 𝑗 | 𝑖, 𝑗}𝐴 ⊢ 𝑠𝐴 =𝜖 𝑡
𝐴
.

Now, {𝑥𝑖 =𝛿𝑖 𝑗 𝑥 𝑗 }𝐴 = {𝑥𝑖 =𝛿𝑖 𝑗 𝑥 𝑗 } ∪ {𝑥𝑎 =𝑑 (𝑎,𝑎′ ) 𝑥𝑎′ }.
Note that Γ𝐴 ⊢ 𝑥𝑎 =𝑑 (𝑎,𝑎′ ) 𝑥𝑎′ for all 𝑎, 𝑎

′
. So by expanding

to the set of variables containing both the 𝑥𝑖 and the 𝑥𝑎 ,

and taking 𝑢𝑎 = 𝑥𝑎 , we can apply Subst for T to prove that

Γ𝐴 ⊢ 𝑠𝐴 [𝑢𝐴
𝑖
/𝑥𝑖 ] =𝜖 𝑡𝐴 [𝑢𝐴

𝑖
/𝑥𝑖 ]. Now we just observe that

𝑠𝐴 [𝑢𝐴
𝑖
/𝑥𝑖 ] = 𝑠 [𝑢𝑖/𝑥𝑖 ]𝐴 and we’re done.

□

Proof of the theorem. Consider the tautological variable as-

signment, given by the identity function 𝑋 → 𝑋Γ . By composing

with the unit, we get a variable assignment 𝑋 → 𝑋Γ → Free
T (𝑋Γ).

Note that by construction this satisfies the hypotheses of Γ. Hence
by assumption, it must satisfy 𝜙 . But this means that ⊢T⊔T(𝑋Γ )
𝜙 [[𝑥]/𝑥], which by the lemma means that Γ(𝑋Γ) ⊢T 𝜙 , which

clearly implies Γ ⊢T 𝜙 . □

7 CAUCHY COMPLETION
Many important metric spaces are given as completions of more

simply defined subspaces. Thus for example the reals are the com-

pletion of the rationals, the 𝐿𝑝 (𝑋, 𝜇) spaces are the completion of

the continuous functions on 𝑋 (in the 𝐿𝑝 -metric), and so on.

As we discussed in the introduction, [11], the space of probability

measures on 𝑋 is constructed as the completion of Free
T (𝑋 ) for a

certain theory T, and the space of closed subsets is the completion

of the free semilattice on 𝑋 (assuming 𝑋 is compact).

Completion already interacts well with quantitative equational

theories, because the operation of completion preserves (finite)

products. This means that if T is a theory (with finitary operations)

and𝑀 is a model, the completion𝑀 has a canonical model structure

making 𝑀 → 𝑀 a homomorphism, and this is universal among

homomorphisms from 𝑀 to complete models. So Free
T (𝑋 ) has a

good universal property.

However, with our expanded theory, we can do even better. The

monad (−) : Met → Met which carries a metric space to its com-

pletion is of countable arity, and so it is represented by a metric

equational theory. There are obviously many distinct axiomatiza-

tions of this monad — we give one example here:

Definition 7.1. Let 𝑁 be the natural numbers equipped with the

metric 𝑑 (𝑛,𝑚) = 1

2
min(𝑛,𝑚) for 𝑛 ≠ 𝑚, 0 if they’re equal. Let Tcomp

be a theory with one operation lim of arity 𝑁 , and the axioms

{𝑥𝑛 =𝑑 (𝑛,𝑚) 𝑥𝑚 | 𝑛,𝑚 ∈ 𝑁 } ⊢ lim(𝑥1, . . . ) =1/2
𝑛 𝑥𝑛 .

Proposition 7.2. Models of Tcomp are precisely complete metric
spaces, 𝑀 [lim] : 𝑀𝑁 → 𝑀 always carries a sequence to a limit

of that sequence, and every nonexpansive map between models is a
homomorphism. In particular, Mod(Tcomp) is equivalent to the full
subcategory of complete metric spaces, and the free model on 𝑋 is the
completion.

Proof. Let 𝑋 be a complete metric space. Given a sequence

(𝑥1, . . . 𝑥𝑛) ∈ 𝑋𝑁 , note that 𝑑 (𝑥𝑛, 𝑥𝑚) ≤ 1/2
𝑛
if𝑚 > 𝑛, so this is

a Cauchy sequence. By continuity of the metric, 𝑑 (𝑥𝑛, lim𝑖 𝑥𝑖 ) =

lim𝑖 𝑑 (𝑥𝑛, 𝑥𝑖 ), which is less than or equal 1/2
𝑛
from a certain point,

so 𝑑 (𝑥𝑛, lim𝑖 𝑥𝑖 ) ≤ 1/2
𝑛
. Thus defining 𝑋 [lim] (𝑥1, . . . ) = lim𝑖 𝑥𝑖

makes 𝑋 a model. On the other hand, any number 𝑙 satisfying

𝑑 (𝑙, 𝑥𝑛) ≤ 1/2
𝑛
for all 𝑛 must clearly be the limit, so this is the only

way to make 𝑋 a model. Since nonexpansive maps are continuous,

any nonexpansive map 𝑋 → 𝑌 between complete metric spaces is

a homomorphism between their associated models.

On the other hand, let𝑀 be a model of Tcomp
. Let 𝑎1, . . . 𝑎𝑛 be

a Cauchy sequence. Then we can find 𝑛1 so that 𝑑 (𝑎𝑛1
, 𝑎𝑚) ≤ 1/2

for all 𝑚 > 𝑛1, 𝑛2 > 𝑛1 so that 𝑑 (𝑎𝑛2
, 𝑎𝑚) ≤ 1/2

2
for 𝑚 > 𝑛2,

and so on, since it is a Cauchy sequence. Now the subsequence

𝑎𝑛1
, 𝑎𝑛2

, . . . is an element of𝑀𝑁
. Clearly𝑀 [lim] (𝑎𝑛1

, . . . ) is a limit

of this subsequence, hence a limit of the original sequence (since it is

Cauchy). Hence any model of Tcomp
is complete. By the preceding,

it 𝑀 [lim] must be given by taking limits, and any nonexpansive

map between models must be a homomorphism.

This concludes the proof. □

Corollary 7.3. Let T be any theory. Then Mod(T ⊔ Tcomp) is
equivalent to the full subcategory of Mod(T) spanned by the complete
models.

Thus for example, by taking the disjoint union of Tcomp
with the

theory of 𝑝-interpolative barycentric algebras from [11, section 10],

we get a theory whose free model on a separable metric space 𝑋 is

the space of Borel probability measures on 𝑋 in the 𝑝-Wasserstein

metric.

8 QUANTITATIVE EQUATIONAL THEORIES
AS METRIC EQUATIONAL THEORIES

Given a signature where all the arities are discrete, every sequent

⊢ 𝑡 ok is trivially provable by repeated application of App and Var.
In this case, a metric equational theory over this signature is simply

a quantitative equational theory, the notion of model is the same,

etc.

It is interesting to ask which monads 𝑇 : Met → Met are axiom-

atizable by quantitative equational theories. Using our equivalence

between metric equational theories and Lawvere theories overMet,
we can answer this question.

Proposition 8.1. A countable-arity monad 𝑇 is axiomatizable
by a quantitative equational theory T, if and only if 𝑇 preserves
surjections (i.e.𝑇 (𝑓 ) : 𝑇𝑋 → 𝑇𝑌 is a surjection whenever 𝑓 : 𝑋 → 𝑌

is a surjection.

Proof. First, let T be any quantitative equational theory, viewed
as a metric equational theory. That is, it is anMETwhose operations

all have discrete arities. Clearly, for any metric space 𝐴, also T(𝐴)
and hence T ⊔ T(𝐴) have this property. Then ⊢T⊔T(𝐴) 𝑡 ok for any
term 𝑡 . Let 𝑓 : 𝐴 → 𝐵 be a surjection of metric spaces. The induced

map Free
T (𝐴) → Free

T (𝐵) is given by replacing each constant
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symbol [𝑎] in a term 𝑡 in the theory T ⊔ T(𝐴) with [𝑓 (𝑎)]. Since 𝑓
is surjective, given a term 𝑡 in T⊔T(𝐵), we can always find 𝑡 ′ which
would be mapped to it by this procedure. And since all terms are

well-formed in T⊔ T(𝐴), this 𝑡 ′ represents an element of Free
T (𝐴)

which is therefore in the preimage of 𝑡 . So the map Free
T (𝑓 ) is

surjective.

Conversely, suppose 𝑇 is of countable arity and preserves sur-

jections. Given a metric space 𝐴, let 𝐴𝑑 be the underlying set of 𝐴

equipped with the discrete metric 𝑑 (𝑎, 𝑏) = ∞. Note that there is a

surjection (in fact a bijection) 𝐴𝑑 → 𝐴.

𝑇 can be axiomatized by T(T (𝑇 )), but this contains a number

of operation symbols of non-discrete arity. For each operation 𝑓 :

𝑥𝐴 → 𝑥 where𝐴 is not discrete, we can choose a factorization over

𝑥𝐴 → 𝑥𝐴
𝑑
, because the precomposition map T (𝑇 ) (𝑥𝐴𝑑

, 𝑥) →
T (𝑥𝐴, 𝑥) is isomorphic to 𝑇 (𝐴𝑑 ) → 𝑇 (𝐴) and hence surjective.

Choose such a factorization
¯𝑓 : 𝑥𝐴

𝑑 → 𝑥 for each 𝑓 . Note that

Γ(𝐴) ⊢T(T (𝑇 ) ) [𝑓 ] (𝑥1, . . . ) = [ ¯𝑓 ] (𝑥1, . . . ).
Let us abbreviateT = T(T (𝑇 )) Now consider a theoryT′ defined

as follows:

(1) The operation symbols are the discrete operations ofT(T (𝑇 )).
(2) Whenever Γ ⊢ 𝑠 =𝜖 𝑡 ∈ T, we let Γ ⊢ 𝑠 =𝜖 𝑡 ∈ T′, where

𝑠, 𝑡 denote the result of replacing each occurrence of an

operation symbol [𝑓 ] in 𝑠 and 𝑡 with [ ¯𝑓 ].
(3) For any term, Γ ⊢ 𝑡 ok is in T′.

This set of sequents is clearly stable under the inference rules (since

T is). The signature of T′ is a subset of the signature of T, so any

term in the former is also a term in the latter. Note that if Γ ⊢T′
𝑠 =𝜖 𝑡 , then there are some terms 𝑠′, 𝑡 ′ in T so that Γ ⊢T 𝑠′ =𝜖 𝑡 ′

and
¯𝑠′ = 𝑠, ¯𝑡 ′ = 𝑡 . But by repeatedly using the equation Γ(𝐴) ⊢

[𝑓 ] (𝑥1, . . . ) = [ ¯𝑓 ] (𝑥1, . . . ), (where 𝐴 is the arity of 𝑓 ), we find that

we must have Γ ⊢ 𝑠′ = 𝑠 and similarly for 𝑡 ′ = 𝑡 , and hence we must

also have Γ ⊢T 𝑠 =𝜖 𝑡 .
Hencewe get a natural forgetful functor𝑈 : Mod(T) → Mod(T′)

over Met. It suffices to show this is an equivalence of categories. It

is clearly faithful, because the composite Mod(T) → Mod(T′) →
Met is faithful. Given two models 𝑀, 𝑁 ∈ Mod(T), and a homo-

morphism 𝜙 : 𝑈𝑀 → 𝑈𝑁 , note that

𝜙 (𝑀 [𝑓 ] (𝑥1, . . . )) = 𝜙 (𝑀 [ ¯𝑓 ] (𝑥1, . . . ))

= 𝑁 [ ¯𝑓 ] (𝜙 (𝑥1), . . . ) = 𝑁 [𝑓 ] (𝜙 (𝑥1), . . . ),
so 𝜙 is already a homomorphism 𝑀 → 𝑁 . Hence the forgetful

functor is full.

Finally, given a model 𝑀′
of T′, defining 𝑀 with the same un-

derlying metric space and𝑀 [𝑓 ] = 𝑀′ [ ¯𝑓 ] gives a model of T with
𝑈𝑀 = 𝑀′

. Hence the functor is an equivalence of categories, fin-

ishing the proof. □

We can also ask which monads correspond to theories with only

finitary operations. Since Met is not locally finitely presentable,

there is no clean correspondence between finitary monads and

finitary Lawvere theories. And for similar reasons, many plausible

characterizations of the monads presented by “finitary METs” fail.

We will give a few counterexamples to demonstrate the problem.

Example 8.2. Let 𝑋𝑖 be the set consisting of two points 𝑎 and 𝑏

at distance 1+ 1/𝑖 , considered as a diagram indexed by the category

(N, ≤) (with identities as the structure morphisms). Then colim𝑖 𝑋𝑖
consists of two points at distance 1.

(1) Consider the theory T1 with one binary operation sym-

bol 𝑓 : ({𝑥,𝑦}, 𝑑 (𝑥,𝑦) = 1). Then Free
T1 (𝑋𝑖 ) � 𝑋𝑖 , but

Free
T1 (colim𝑖 𝑋𝑖 ) has three points, 𝑎, 𝑏 and 𝑓 (𝑎, 𝑏).

(2) Consider the theory T2 with no operations, and one equa-

tion 𝑥 =1 𝑦 ⊢ 𝑥 =0 𝑦. Then Free
T2 (𝑋𝑖 ) � 𝑋𝑖 , but

Free
T2 (colim𝑖 𝑋𝑖 ) = {∗}.

Thus, neither of these theories axiomatize monads which are

finitary, in the sense that they commute with (finitely) filtered

colimits.

The problem in both cases is that quantitative equations -whether

as preconditions for the application of an operation, or precondi-

tions for another equation - are not “finitary”, do not commute with

finitely filtered colimits. An analogous problem prevents them from

being “strongly finitary” in the sense studied in [2].

This problem seems to depend in an essential way on the dis-
continuity of these conditions. The equation 𝑥 =0 𝑦 appears “sud-

denly” once 𝑥 =1 𝑦. Thus, for example, we can consider the “theory

of contractions”, having one unary symbol 𝑠 and the equations

𝑥 =2𝜖 𝑦 ⊢ 𝑠𝑥 =𝜖 𝑠𝑦 for every 𝜖 . This is finitary in the sense that the

associated monad (which is simply 𝑋 ↦→ 𝑋 × N equipped with the

metric 𝑑 ((𝑥, 𝑛), (𝑦, 𝑛)) = 𝑑 (𝑥,𝑦)2−𝑛, 𝑑 ((𝑥, 𝑛), (𝑦,𝑚) = 0 if 𝑛 ≠ 𝑚)

commutes with filtered colimits.

In [2], recognizing essentially this problem, the notion of strongly
finitary functor Met → Met is studied. These are functors 𝐹 which

equal the enriched left Kan extension of their restriction to the

subcategory of finite and discrete metric spaces. This intuitively

corresponds to allowing only finite and discrete-arity operations,

and allowing only axioms of the form ⊢ 𝑡 =𝜖 𝑠 . When restricted to

ultrametric spaces, this is indeed the case - strongly finitary monads

are exactly those presented by QETs of this form ([2, Theorem 5.8]).

However, this correspondence does not hold, as the following
example shows:

Example 8.3. Let T be the theory with one binary operation 𝑓 ,

two unary operations 𝑔,𝑔′, and the axiom 𝑔 =1 𝑔′. Then Free
T

:

Met → Met is not strongly finitary.

To see this, recall that the left Kan extension under consideration

is given by the coend formula

Lan𝑖:Fin→Met Free
T (𝑋 ) =

∫ 𝐹

𝑋 𝐹 ⊗ Free
T (𝐹 )

This means the question is whether the map∫ 𝐹

𝑋 𝐹 ⊗ Free
T (𝐹 ) → Free

T (𝑋 ),

which carries a pair (𝛼 : 𝐹 → 𝑋, 𝑡 ∈ Free
T (𝐹 )) to Free

T (𝛼) (𝑡), is
an isomorphism for all 𝑋 .

Let 𝑋 = {𝑥1, 𝑥2, 𝑥3} with 𝑑 (𝑥1, 𝑥2) = 1, 𝑑 (−, 𝑥3) = ∞. Consider

the two terms 𝑓 ( [𝑥1], 𝑔( [𝑥3])), 𝑓 ( [𝑥2], 𝑔′ ( [𝑥3])) ∈ Free
T (𝑋 ). Ap-

plying the axioms ⊢ [𝑥1] =1 [𝑥2] and ⊢ 𝑔(𝑦) =1 𝑔
′ (𝑦), and nonex-

pansiveness, clearly these have distance at most 1.

Now consider the points

({𝑎, 𝑏}, 𝛼, [𝑓 ( [𝑎], 𝑔( [𝑏]))]), ({𝑎, 𝑏}, 𝛽, [𝑓 ( [𝑎], 𝑔′ ( [𝑏]))])
11
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in the coend, where 𝛼 (𝑎) = 𝑥1, 𝛼 (𝑏) = 𝑥3, 𝛼
′ (𝑎) = 𝑥2, 𝛼

′ (𝑎) = 𝑥3.

Clearly 𝑑𝑋 {𝑎,𝑏} (𝛼, 𝛽) = 1, and also

𝑑 ( [𝑓 ( [𝑎], 𝑔( [𝑏]))], [𝑓 ( [𝑎], 𝑔′ ( [𝑏]))]) = 1.

Hence the distance of these points in the tensor product is 2. (It is

not too difficult to see that the distance in the coend, which is a

quotient of the coproduct of all these tensor products, is not less

than 2).

9 CONCLUSIONS AND FUTUREWORK
Approximation is fundamental in mathematics and computer sci-

ence and motivates the extension of universal algebra from the

category Set to the categoryMet. There are two current approaches
- Quantitative Equational Theories and Enriched Lawvere Theories

but neither is a complete answer. QETs produce sound and complete

systems for a notion of algebraic structure but that notion is too

weak to cover key examples such as Cauchy Completion. On the

other hand, Enriched Lawvere Theories provide the right theoret-

ical framework but are not accompanied by sound and complete

proofs systems needed to establish distances between terms in spe-

cific theories. This paper offers the best of both worlds by taking the

best of each approach, producing what we call Metric Equational

Theories. The fundamental innovation is the inclusion of metric

arities for operators (motivated from the Enriched Lawvere Theory

framework) within METs.

There are a number of directions of future work and we highlight

some here. Firstly, Enriched Lawvere Theories don’t give sound

and complete proof systems for the the equations of a theory. But

in the case of metric spaces we showed such systems exist. Can we

find conditions under which such systems exist for a broad class

of Enriched Lawvere Theories? Secondly, going beyond equational

theories we might ask what stronger systems look like. For example,

equational theories correspond to finite product theories, but there

is a natural notion of finite limit theory. The question is thus how

do we extend this paper to develop finite limit theories for metric

spaces? Thirdly, and from a different perspective, algebraic theories

underpin effectful programming languages. So how can we use

the work contained in this paper to create effectful programming

language constructs for approximate computation?
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