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Abstract

Automated verification of stochastic models has been proved to be an effective tech-
nique for the analysis of a large class of stochastically behaving systems. In this
paper we show how stochastic model-checking can be effectively applied to the anal-
ysis of biological systems. We consider a few models of biological systems taken from
the literature, and we consider both their encodings as ordinary differential equa-
tions and Markovian models. We show that stochastic model-checking verification
of biological systems can complement both deterministic and stochastic simulation
techniques when dealing with dynamical properties of oscillators. We demonstrate
how stochastic model-checking can provide exact quantitative characterization of
properties of systems exhibiting oscillatory behavior, providing insights that can-
not be obtained with differential equations models and that would require a large
number of runs with stochastic simulation approaches.
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Markov models, Stochastic model checking, Simulation

1 Introduction

The quantitative analysis of the dynamics of biological systems is a fundamen-
tal task in systems biology, a new research field that focuses on the systematic
study of complex interactions using an integrative approach rather than a
reductive one [14]. Even simple biochemical networks of interacting proteins
can show surprisingly complex behavior, a behavior that cannot be understood
looking at the evolution of the single components but that instead requires a
systemic analysis approach.

Traditionally, the study of time-dependent dynamics of biological systems
has been addressed with deterministic approaches, based on ordinary differ-
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ential equation (ODE, hereafter) models. ODEs provide quite an adequate
abstraction for capturing the interactions and transformation of biochemical
species, and come with a consolidated set of computational tools for model
definition and solution [12]. More recently, stemming from the foundational
work of Gillespie [10], a discrete approach to the modeling of biochemical sys-
tems has been gaining consensus, especially to model systems in which the
continuous approximation does not seem to be justified, for instance when
only a few molecules exist for some species.

The relationships between the continuous deterministic and the discrete
stochastic representation of a given system are quite interesting and still sub-
ject of research. When the number of molecules that constitute a molecular
network is low, the stochastic modeling may represent a more suitable tool to
represent and analyze the dynamics of the system. On the other hand, as the
number of molecules grows, abstracting discrete number of molecules into con-
tinuous concentration levels and representing evolution of dynamics through a
system of coupled ODEs provides very accurate representations and also has
the advantage of not suffering from the state-space explosion problem that
plagues stochastic modeling tools. Moreover, stochastic models are mostly
solved via simulation, which may require performing a substantial number of
simulation runs to compute statistically relevant results.

When dealing with biological systems that exhibit complex patterns of
behavior, it may be difficult to check whether the dynamics of the system sat-
isfies some interesting properties. One of such properties, quite often vaguely
defined, is the oscillatory behavior that characterizes a variety of biological
systems [4].Whereas it is comparatively easy to hypothesize the presence of
oscillations through visual inspection of simulated time courses, another mat-
ter is to precisely verify whether the oscillations will continue forever or rather
will definitely stop, either by being progressively damped down or abruptly
interrupted. In this respect, the abstraction adopted by ODE models has
some advantages, because the deterministic approach ensures that any peri-
odic evolution will indefinitely repeat. However, as we will see in this paper,
such properties may appear to hold only because of the continuous approxima-
tion. On the other hand, results obtained from discrete stochastic models can
still provide clues about the existence of oscillatory behaviors, but the noise
introduced by stochastic fluctuations may make them appear less pronounced.
Furthermore, when oscillations do exist but their phase, period and amplitude
is also varying stochastically, a multi-run analysis of simulation traces over the
time domain does not help in characterizing the long-range behavior of the
system.

In this paper we consider two examples of models of biochemical systems
taken from the literature, which we use as case studies to demonstrate the ad-



vantages of a formal approach to the definition and verification of properties
of biological systems, including oscillatory behaviors. The major contribution
of this paper is the definition of an approach to the formal specification of
properties, based on Probabilistic Computation Tree Logic (PCTL, hereafter)
[11] and Continuous Stochastic Logic (CSL) [1]. PCT/CSL formulas can be
used to precisely define properties of system dynamics, such as convergence
of a variable to a fixed value, bound oscillation around a fixed value, perpet-
ual alternation of growth and decrease phases, relationships among multiple
variables. Such formulas define a query-language in which a user can encode
a property of the systems he intends to verify. Probabilistic model checkers
that accept PCTL formulas defined over the variables of a discrete stochastic
model can then be used to verify whether the property holds of the system. In
this paper, we show how the PRISM [15] model checker can be used for this
purpose. We apply our formal approach to the example models to show how
system properties can be characterized and to demonstrate the insights that
can be obtained into system dynamics with the verification with PRISM. We
show the obvious advantages provided by the exact quantitative solutions re-
turned by a model-checking tool. In contrast, simulation of stochastic models
can only provide statistically approximate solutions. Our proposed approach
applies to general models of biological systems, its current limitation being the
fact that only models having a bounded state space are amenable to analysis.

The rest of this paper is organized as follows: in Section 2 we introduce the
basics about biochemical oscillators illustrating a specific system which will
be used as the running example throughout the remainder of the paper. In
Section 3 we investigate the use of temporal logic as a means to encode relevant
features of oscillating systems. In Section 4 we briefly describe probabilistic
model checking. In Section 5 we analyse the structural properties of the
Markovian model of the our running example, the verification of which by
means of the PRISM model checker is illustrated in Section 6. We summarise
our contribution in the final section of the paper.

2 Biochemical oscillations

A biochemical system consists of a number of correlated (type of) entities,
referred to as reactants, and a number of, time consuming, interactions, re-
ferred to as reactions. Each reactant belongs to a given species. Reactions
are descriptions of the system’s dynamics and they indicate how the produc-
tion/consumption of reactants is regulated by other reactants. A biochemical
system is fully characterised by: a description of the system’s reactions (in-
cluding the timing information of each reaction, referred to as reaction rate),
and the initial amount of reactants of each species. In this work we are inter-
ested in analysing a specific behaviour of certain biochemical systems, namely



oscillation. Informally we say that a biochemical system exhibits an oscillat-
ing behaviour when the system’s reactions result in a (periodic) fluctuation
of the level of the reactants, around a given value. To this aim, we consider
a specific example taken from the literature, known as the 3-way oscillator,
which we use as the running example of the paper.

2.1 The 3-way oscillator: transient oscillation

We consider a simple system of three biochemical reactions involving three
species of molecules, namely: A, B and C. The reactions are positive feedback
arranged in a loop fashion and their chemical equation form is:

A+B
rA−→ B+B B+C

rB−→ C+C C+A
rC−→ A+A (2.1)

where rA, rB and rC are the kinetic constants of the reactions. The meaning
of reactions (2.1) is intuitive. For example, the first equation indicates that
a molecule of A and a molecule of B are consumed in order to produce two
molecules of B and that happens at a constant rate rA

2 . Such system has
been introduced in [3] and it has been referred to as the 3-way oscillator for
it can be shown that the level of molecules of each species oscillates in time.
Let a0, b0 and c0 be the initial number of molecules of the three species. The
system enjoys the following properties: first the total number of molecules in
the system INV = a0 + b0 +c0 is invariant, as the are not synthesis nor degra-
dation reactions, and because of the stoichiometry of the reactions. Second
the system remains alive meaning that the system reactions are all possible, as
long as all reactants are present: as soon as one species get extinct the system
irreversibly enter a terminating path at the end of which INV molecules have
been cumulated into either one of the remaining species. For this reason we
refer to the oscillation of the 3-way oscillator as transient (i.e. it damps off
in finite time). We will see how the oscillation of the 3-way oscillator can be
turned into a permanent one (i.e. one that never stops). Based on our running
example we now briefly describe the two standard modeling approaches used
in system biology.

2.2 Continuous Deterministic Modeling of Biological Systems

A deterministic model of a system is one in which the parameters and vari-
ables are not subject to random fluctuations, so that the system is, at any
time, entirely defined by the initial conditions chosen. Biological systems
have been extensively modeled with systems of coupled ODEs at various ab-
stractions levels, ranging from molecular interactions [18] up to predator-preys

2 Similar considerations hold for the other reactions.



population evolution [20]. Variables representing biochemical entities of a de-
terministic model are continuous and their value X(t) at time t represents
the amount of the biochemical entities they represent, i.e. the state of the
system at that time. The state X(t0) of the system at time t0 defines the
initial condition. Changes of the system state along time are described by a
set of differential equations, in the form X ′(t) = F (X(t)) with F : Rn → Rn,
n being the number of variables in the model. The system of ODEs can be
solved either analytically or via simulation (numerical integration) to deter-
mine the state of the system at any time t ≥ t0, and to determine possible
stationary solutions. A continuous deterministic model of the 3-way oscillator
can be straightforwardly derived from the chemical equations (2.1). It has 3
real-valued variables a, b and c, where x∈{a, b, c} represents concentration of
species X ∈{A,B,C}. The changes in the amount of species is described by
the following system of ODEs:

ȧ = −rAab+ rCac

ḃ = rAba− rBbc

ċ = −rCac+ rBbc

(2.2)

where ẋ= dx
dt

denotes the first derivative (with respect to time) of x∈{a, b, c}.
Notice that the rate constants in (2.2) are multiplied by the concentrations

of reactants to account for the concurrent execution of multiple instances of
the same reaction according to the mass-action law. Given the concentrations
of the 3 biochemical species at time t = t0, it is possible to solve the system of
ODEs above to obtain the state of the system at time t ≥ t0. Many tools exist
that can perform this task, some of which are also able to automatically obtain
the system of ODEs from the system’s chemical equations form. Figure 1(a),
Figure 1(b) show solutions 3 of the system (2.2) plotted onto the phase-space
and phase-plane respectively. Those plots display that the concentrations of
the three species follow indeed a very regular oscillating behaviour evidenced
by the solution trajectories forming a neat triangular orbit around the initial
concentration point.

We observe that, although a useful method to gain insights about a sys-
tem behaviour, continuous deterministic modeling has some downsides. For
example, as we will see, oscillation for the system (2.1) is transient but such
a fundamental characteristic cannot be evinced through ODEs analysis. Fur-
thermore, the system of ODEs (2.2) allows for some trivial fixed points, such
as a0 = b0 = c0 (given that ka = kb = kc). The solution of (2.2) for an initial
condition corresponding to any such fixed point will indicate that the system
does not evolve at all, whereas, in reality, the system will certainly evolve for
any initial condition such that a0>0, and b0>0 and c0>0.

3 Such solutions are calculated with the following rates values: ka = kb = kc = 1



(a) on the phase-space a× b× c (b) on the phase-plane a× b

Fig. 1. ODEs solutions of the 3-way oscillator with (a0, b0, c0)=(100, 200, 10)

Fig. 2. A simulation trace of the 3-way oscillator with initial configuration
a0 =b0 =c0 =333

2.3 Discrete Stochastic Modeling of Biological Systems

As the number of entities in biological systems is finite and discrete, it is pos-
sible describing biological systems as a collection of discrete state variables,
whose value over time change as a consequence of interactions that stochasti-
cally happen in the system. It has been proved by Gillespie in [10] that, under
homogeneity conditions, the time to the occurrence of the next reaction in a
biochemical system can be very well approximated through a negative expo-
nential probability distribution. This result provides the theoretical ground
for representing and analyzing the dynamics of biochemical systems through
continuous-time Markov chain (CTMC)[19] models. Gillespie’s result has lead
to the implementation of many software tools for the stochastic simulation of
biological systems (see for example [17,5,7]). Such tools take as input a de-
scription of modeled system and through application of the Gillespie algorithm
they calculate an approximated time course of the system’s reactants. Fig-
ure 2 shows a plot of the output of a single simulation trace for the 3-way
oscillator model (with initial condition a0 = b0 = c0 = 333) obtained through



the Cyto-Sim [17] simulation tool. By observing the simulation trace in Fig-
ure 2 we can evince the following: first, the molecules of the 3 species A, B
and C do follow an oscillating course; secondly, the amplitude of oscillation
is not constant; thirdly, species B is the oscillation damper (i.e. oscillation
ends with 999 molecules of B and none of both A and C). Such observations,
however, are true only for that (very) specific simulation run. Other simula-
tion runs may (and will) provide us with different insights. Therefore, if we
want to use simulation for devising meaningful information about the general
behaviour of a system we need to calculate statistics over a large number of
simulation runs.

Alternative approaches to the simulation of discrete stochastic models, are
given by Markovian analysis techniques [19] and/or probabilistic/stochastic
model checking [11],[1]. In the following section we introduce the basics about
temporal logic and model-checking and we will show how relevant properties
of systems of biochemical reactions can be stated as (probabilistic) temporal
logic queries which can be automatically verified against a discrete stochastic
model. First, though, we introduce a permanent oscillation variant of our
running example.

2.4 The 3-way oscillator with doping: permanent oscillation

In [3] Cardelli shows that in order to make the oscillation of the simple 3-
way oscillator, perpetual, it suffices to add a doping reaction for each of the
3 species A, B and C, where a doping reaction is one that is able to produce
a molecule of a species X ∈{A,B,C} from a molecule of a doping substance
DX and one of another species. Practically speaking the chemical equations
form of the 3-way oscillator with doping is:

A+B
rA−→ B +B B + C

rB−→ C + C C + A
rC−→ A+ A

DA + C
rC−→ A DB + A

rA−→ B DC +B
rB−→ C

(2.3)

where DA, DB and DC are the doping substances for A, B and C respectively.
The role of the doping reactions (the bottom three reactions in (2.3)) is to
avoid that the system blocks once a species get extinct: the presence of at least
one molecule of each doping species is enough to guarantee that a species will
not get extinct (a species may have zero molecules at some point in time,
but it is guaranteed that from there new molecules of the species will be
generated through doping). As a result it can be shown that oscillation, for
the “doped” version of the 3-way oscillator, is never ending. We will use this
model to illustrate, in a comparative fashion, how model checking techniques
can be used for the analysis of both non-perpetual and perpetual oscillating
behaviours.



3 On the logical characterisation of oscillation

We consider temporal logic to express oscillation related queries. Given a
model’s variable v we describe as oscillation (with respect to v) those evolu-
tions for which v fluctuates around a value v=k. In logical terms (permanent)
oscillation of a system may be expressed through the following temporal prop-
erty: “always in the future, the variable v departs from and reaches the value
v = k infinitely often”. We consider branching-time temporal logic CTL [8]
and its probabilistic extensions PCTL [11] and CSL [1] as formal means to
expressing oscillation related properties. In the following we briefly introduce
CTL and PCTL/CSL: for a detailed treatment the reader is referred to the
literature [8,11,1].

In CTL, formulae are built upon a set of atomic propositions (AP ) and
are evaluated against Kripke structure models. Two basic temporal operators
are used in combination with propositional logic’s conjuntion (∧), disjuntion
(∨) and negation (¬): a next-state operator (X), for referring to properties
of successor states (i.e. X (a) is true in s, denoted s |= X (a), if a is true
in some successor of s), and an until operator (U) for referring to properties
which hold in future states (i.e. (ψ Uφ) is true in s if and only if from s it is
possible to reach a future state s′ |= φ through a sequence of states satisfying
ψ). Eventually in the future (F (a) ≡ (true U a)) and always in the future
(G ≡ ¬F (¬a)) are special cases of until formulae. CTL temporal operators
are path quantified, either existentially (EX, EU) or universally (AX, AU).
Existentially quantified formulae must be satisfied by at least a path starting
from the current state, as opposed to universally quantified formulae, which
must be satisfied by every path starting from the current state. Permanent
oscillation (with respect to a variable v) can be characterised in CTL by the
following formula:

φCTL ≡ AG(((v=k)→ EF (v 6=k)) ∧ ((v 6=k)→ EF (v=k))) (3.1)

which states that, at any point in the future, if the system’s evolution reaches
a state such that v=k then it has to be possible to reach a future state such
that v 6=k and vice versa.

The probabilistic CTL [11] (PCTL) and the Continuous Stochastic Logic [1]
(CSL) are logic to state properties of, respectively, discrete time and contin-
uous time Markov chains models. PCTL and CSL formulae are of the same
form as in CTL except that path operators are continuously quantified, rather
than existentially or universally. Hence, for example, the formula PEp(ψ U φ)
is satisfied in a state s of a Markov chain model if the measure of probability
of those paths satisfying (ψ U φ) is bounded by p (with E∈ {≤, <,>,≥} and
p ∈ [0, 1]). Relying on basics propositional equivalence the CTL expression
of oscillation (3.1) can be reformulated in PCTL/CSL terms resulting in the



(a) permanent, regular oscilla-
tion

(b) irregular transient oscillation(c) irregular transient oscillation

Fig. 3. Examples of regular vs irregular oscillation

following probabilistic formula:

φPCTL ≡ P≤0[> U ((((v=k)∧P≤0(> U (v 6=k))))∨(((v 6=k)∧P≤0(> U (v=k)))))]
(3.2)

which states that “evolutions for which once a state v= k is reached then it
cannot be left” have a null probability. Other important aspects of oscillation
can be coded in temporal logic, noise filtering and periodicity or, more gen-
erally, regularity being two such examples. Fluctuations whose amplitude is
below a certain (well defined) threshold classify as noise, and should not be
detected as oscillations. If n is the noise threshold for a given system then
existence of noise filtered oscillations permanence can be encoded in CTL as 4 :

φCTL ≡ AG(((v=k)→ EF ((v>k+n)∨(v<k−n))∧((v>k+n)∨(v<k−n)→ EF (v=k)))
(3.3)

Oscillation regularity aspects, on the other hand, regard the periodicity as
well as the amplitude of fluctuations around k. Plots in Figure 3 are examples
of different cases of oscillation. Figure 3(a) shows the most regular type of os-
cillation, one whose amplitude and periodicity are both always constant. Two
examples of irregular oscillations are depicted in Figure 3(b) and Figure 3(c).
Encoding of oscillation regularity aspects in temporal logic terms, is not a
trivial task.

4 Probabilistic Model Checking

Probabilistic model checking is a formal technique for the verification of sys-
tems that can be modelled in terms of stochastic processes. It extends clas-
sical model checking [6], to the probabilistic framework. The basic idea be-
hind (probabilistic) model checking is as follows: an algorithm is developed

4 PCTL version of (3.3) is straightforward



which takes as input a (stochastic) model M of the considered system (of-
ten expressed through some formal modelling language, such as, for example,
stochastic process algebras or stochastic Petri Nets [16]) and a property φ
expressed as a (probabilistic) temporal logic formula. The algorithm then
automatically check φ against M , and provides a positive output, if M sat-
isfies φ (denoted M |= φ) or a negative one if that is not the case (denoted
M 6|= φ). The verification of φ against M is achieved through an exhaustive
exploration of M , hence the output of model checking is exact, as opposed to
the output of (stochastic) simulation which is inherently approximated. The
main difference between classical and probabilistic model checking is in the
nature of the model they are referred to, and, as a consequence, in the type
of verification they allow for. In classical model checking, a model is given by
a labelled transition system, a graph which captures the system’s evolutions
without expressing any timing information. With probabilistic model check-
ing models are Markov processes (i.e. labelled transition systems enriched
with stochastic information), thus inherently contain timing and probabilistic
information. As a consequence classical model checking is suitable for qualita-
tive verification of a system’s model, such as, for example “does the oscillation
of a system eventually stop?”. On the other hand probabilistic model checking
allows for quantitative verification of a model: properties such as “what is the
probability that the oscillation will stop within time T?” can be stated and
verified through probabilistic model checking. Finally the expressiveness of
probabilistic model checking analysis is further enhanced by the possibility of
reward based verification. A Markov chain model may be enriched with mean-
ingful state rewards and/or transition rewards, and reward-based properties,
such as, for example, “what is the expected amplitude of oscillation within time
T?”, may then be verified against it. Before proceeding with the probabilistic
model checking verification of the 3-way oscillator model (Sec. 6), we first set
the basics about reasoning on oscillations with temporal logic.

5 Markov Chain model of the 3-way oscillator

Based on the chemical equations (2.1) a CTMC model of the 3-way oscillator
can be obtained straightforwardly. Figure 4 illustrates the state-space of the
CTMC model of the 3-way oscillator corresponding to the initial conditions:
a0 = b0 = c0 = 3. Each state in Figure 4 is given as a triple of integers (a, b, c)
representing the corresponding number of molecules of each species in the
state, whereas the labels on each arc represent the transitions rate 5 . We
observe that the CTMC in Figure 4 enjoys a specific structure: each path
along the perimeter of a given triangle corresponds to oscillations of constant

5 Note that each transition rate is marking dependent, i.e. its value depends on the distri-
bution of molecules on that state.



Fig. 4. State space of the 3 species oscillator with initial state a0 = b0 = c0 = 3

amplitude 6 . We refer to the set of states on the perimeter of such a “triangle”
as level k states , formally: Lk = {(a, b, c)∈S : min(a, b, c) = k} ⊂ S and to
the set of states contained in the level k triangle as L≥k = {(a, b, c) ∈ S :
min(a, b, c) ≥ k} ⊆ S. Counting the number of states in L≥k is necessary
in order to perform significant reward based analysis of the 3-way oscillator
CTMC model (see Section 6). The total number of states in the CTMC is
proportional to the system invariant (INV =a0 + b0 + c0) and is given in the
the following proposition. Furthermore an iterative rule for computing the
number of states in L≥k is also defined.

Proposition 5.1 Let M = (S,Q, s0) be the CTMC model of the three species
oscillator with state-space S and initial state s0 = (a0, b0, c0) = (n, n, n) and
INV = a0 + b0 + c0.

• the number of states in S is given by:

|S| = (INV + 2) · (INV + 1)

2
(5.1)

6 Note that states in each such “k-triangular” path are such that the minimum between A,
B and C is equal to k.



INV |S|

10 66
20 231
50 1326
100 5151
200 20301
500 125751
1000 501501
2000 2003001
5000 12507501
10000 50015001

(a) total number of states

k ≤ n |L≥k|

10 1
9 10
8 28
7 55
6 91
5 136
4 190
3 253
2 325
1 406

(b) number of k-
level states for 1 ≤
k ≤ 10

Fig. 5. Total number of states and k-level states in the 3-way oscillator CTMC

.

• the number of states contained in the level-k triangle can be iteratively cal-
culated as follows:

|L≥(k−1)| = |L≥(k)|+ 9 · k ∀k : 1 ≤ k ≤ n (5.2)

and the number of state on level-k triangle’s perimeter is given by |Lk| =
9(n− k). Note that, trivially, |L≥n|=1.

Through (5.1) we can straightforwardly assess the state-space explosion as
a function of the model initial state (i.e. as a function of INV ). On the
other hand (5.2) will be used to normalise the reward models described in the
next section (Section 6) and which allow us to quantify the likelihood of the
system to oscillate within level k as a function of the number of states in the
model. Tables in Figure 5(a) and Figure 5(b) shows sample values obtained
by application of (5.2) and (5.1).

6 Property specification and verification with PRISM

In this section we present results of probabilistic model checking verification
of the PRISM model of the 3-way oscillator both in its standard and “doped”
version. For the sake of space we omit the PRISM code, the interested reader
can find it in [2].

6.1 Verification of the 3-way oscillator, with and without doping

The following queries, first described informally in natural language, then en-
coded as PRISM formulae, have been considered for verification.



(a) The 3-way oscillator without doping has a non-
null probability of never returning into state a = j

(b) Probability of oscillation to terminate in A

Fig. 6. Probability of permanent oscillation and probability of oscillations to ter-
minate in a given state

(a) Probability of oscillation to terminate in
species A within time T

(b) Probability of oscillation to terminate within
time T

Fig. 7. Probability of oscillation to terminate within a time bound T

A. What is the probability that the oscillation will never terminate ?

P=?[> U((((a 6=j)|P≥1(> U(a 6=j)))&((a=j)|P≥1(> U(a=j))))] (6.1)

Results of verification of (6.1) (referred to the initial state a0 = b0 = c0 = 5),
are shown in Figure 6(a). They confirm that oscillation is permanent for the
3-way oscillator with doping whereas it is not for the standard version of it:
the probability of ever returning into state a = j is less than 1 ∀j ∈ [0, INV ]
(note that for a = 5 such probability is equal to 1 simply because of the ini-
tial state a0 = 5). It should be noted that (6.1) provides a formal means to
automated verification of oscillation termination, something which cannot be
achieved through simulation.

B. What is the probability that oscillation terminates in species X∈{A,B,C}?

P=?[> U(a = INV )] (6.2)

Results for (6.2) are depicted in Figure 6(b). Specifically the probability that



(a) Steady-state probability of A as a function of
doping DA

(b) Steady-state probability of B as a function of
doping DA

Fig. 8. Oscillator with doping: steady-state probability of A and B as a function of
doping DA

Fig. 9. Probability of oscillation of amplitude k

oscillation ends in A is plotted against the initial number of A molecules (a0),
and for different (equal) initial number of B and C molecules (b0 =c0). Plots
in Figure 6(b) reveal a maximum corresponding to a0 = 2, which indicates a
particular probabilistic tendency of the 3-way oscillator, that is: the smaller
the initial value of species X, the higher the probability that oscillation ter-
minates in X.

C.1 What is the probability that oscillation terminates in species X within
time T?

P=?[> U≤T (a = INV )] (6.3)

C.2 What is the probability that the oscillation eventually terminates within
time T?

P =?[> U≤T ((a = INV ) ∨ (b = INV ) ∨ (c = INV ))]) (6.4)

Results of verification of (6.3) and (6.4) are shown in Figure 7(a) and Fig-
ure 7(b) respectively. They show a rather counter intuitive peculiarity of the
oscillator which is: the higher is the initial population, the faster the oscilla-



Fig. 10. Expected level-k within T with reward 1
|Lk| given to each level-k state and

initial state a0 =33, b0 =33, c0 =33

tor will reach its absorbing state. Note that because these experiments are
referred to uniform initial population (i.e. a0 = b0 = c0), then the limit prob-
ability in Figure 7(a) is 1/3. Finally, plots in Figure 7(a) and Figure 7(b)
provide a quantification of the time to absorbtion: oscillation stops certainly
within time T = 2.

D What is the probability of an oscillation of amplitude k?

P =?[((a = k) ∧ (b > k))U((a = k) ∧ (b = k) ∧ (c = (3 · a0 − 2 · k))) (6.5)

An oscillation of amplitude k corresponds to the path on the perimeter of the
level-k triangle (see Figure 4). Each side of the level-k triangle can be char-
acterised by a CSL formula. For example (6.5) identifies the “height” of the
triangle. Through verification of (6.5) (and similar formulae for the remaining
two sides of the triangle), we can get a quantification of the likelihood of an
oscillation of amplitude k. Figure 9 shows results of verification of (6.5) for
different initial amount of molecules. The U-shaped plots in Figure 9 indicate
that (very) small and (very) large amplitude oscillations are more likely than
those whose amplitude is in between.

E (reward based). What is the expected level-k reward cumulated within
time T?

R{level k reward} =?[C≤T ] (6.6)

where “level k reward” is a reward model, that assigns a reward of 1
|Lk|

to

each level-k state, where the normalising constant |Lk| is defined as in Propo-
sition 5.1. Verification of (6.6) leads to plots in Figure 10. Those curves
indicate that, on average, the system spend more time in the orbits closer to
the initial state a0 =b0 =c0.



F (stready-state). What is the probability that the number of molecules of
species X is j on the long-run?

S =?[(a = j)] (6.7)

such formula is referred to “doped” version of the 3-way oscillator only (i.e.
the standard 3-way oscillator does not allow for a steady-state distribution).
Results for (6.7) are depicted in Figure 8(a). Specifically the steady-state
probability for (a = j) is plotted against the amount of A’s doping (DA) for
different (equal) initial number of B’s and C’s doping (i.e. DB = DC = 1).
When the amount of doping is equal for all three species the probability at
steady state decreases linearly when we move from outer orbits towards inner
ones. On the other hand, as we increase the amount of doping of a species (A
in this example) while keeping the doping for the other species constant, then
the more “doped” species becomes less likely to “dominate” the others. Such
rather counter intuitive behaviour may be explained by looking at the nature
of reactions (2.3): in fact the more doping we add, the more likely we are to
synthesis new molecules of A, hence the more likely we are to consume them
in the production of new B. As a result, opposite to what one would expect,
augmenting the doping of species X is actually going to augment (the average
number of molecules of) species X ′, where X ′ is the successor of X, assuming
A < B < C as order.

7 Conclusion

In this paper we have proposed a comparative study of modelling techniques
for the analysis of biochemical systems. We have focused on a specific class
of systems, ones whose behaviour is characterised by existence of oscillations
in the quantities of reactants they consist of. First we have demonstrated
how useful insight about an oscillating system can be gained by application
of standard system biology’s modelling techniques, such as solution of con-
tinuos deterministic (ODEs) model and simulation of a discrete stochastic
model. However we have seen that both such methods lack to fulfil the mod-
eller needs for analysis of the considered system. We have then argued that
formal languages, such as temporal logic, may be applied to encoding rele-
vant characteristic of an oscillator, providing a formalisation of the oscillation
permanence in terms of two popular logic: CTL and PCTL. We have then de-
veloped a Markovian model of both a transient oscillator, known as the 3-way
oscillator as well as of its permanent oscillation variant. We have demon-
strated the effectiveness of automated temporal logic verification, by coding
such models in the probabilistic model checker PRISM. we have been able
to perform a thorough probabilistic analysis of several reachability as well as
reward based logical formulae, which provided us with interesting outcomes



which could not be obtained otherwise. Future developments of this work
include the extension of the proposed methodology to the verification of more
complex biological systems, such as the cell-cycle, a model of which is cur-
rently being developed and analysed.

7.1 Related work

Application of model checking techniques to system biology has been pro-
posed in some other works. In [13], Kwiatkowska et al. developed a non
trivial stochastic model of the complex Fibroblast Growth Factor (FGF) sig-
nalling pathway. They used PRISM to code the FGF pathway and developed
a number of probabilistic properties, some of which reward-based, to verify
relevant properties of the signalling mechanism. In [9] Gilber et al. propose a
general overview about formal modelling techniques suited to the verification
of biological systems. Based on Petri Net model of the ERK signal transduc-
tion pathway, they identify what type of formalisms/verification-technique,
is suitable to what type of analysis the modeller is interested in. Hence
in the discrete-state modelling framework non-probabilistic model checking
(i.e. standard temporal logic) has to be used to perform qualitative analysis,
whereas probabilistic/stochastic is needed for quantitative analysis. Finally in
the continuous-state modelling framework, ODEs solution as well as Linear
Time Logic with constraints (LTLc) are to be used for model analysis.
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