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Abstract. We propose a new class of logics for specifying and model-
checking properties of distributed systems - Dynamic Epistemic Spatial
Logics. They have been designed as extensions of Hennessy-Milner logic
with spatial operators (inspired by Cardelli-Gordon-Caires spatial logic)
and epistemic operators (inspired by dynamic-epistemic logics). Our log-
ics focus on observers, agents placed in different locations of the system
having access to some subsystems. Treating them as epistemic agents, we
develop completely axiomatized and decidable logics that express the in-
formation flow between them in a dynamic and distributed environment.
The knowledge of an epistemic agent, is understood as the information,
locally available to our observer, about the overall-global system.

1 Introduction

The development of computer networks came with new paradigms of compu-
tation. The concept of monolithic computational systems (one-agent system)
was replaced by the concurrent distributed computing systems (multi-agent sys-
tems), representing programs or processors running in parallel and organized
in networks of subsystems. They interact, collaborate, communicate and inter-
rupt each other. Underlying this new paradigm is the assumption that each such
part has its own identity, as a subsystem. We shall associate to a subsystem
an agent.

The agents are needed for discriminating between the events of the systems
behavior. If we wish to identify a particular event, we have little choice but to
identify the agents involved. Hence the agents might be understood as (associ-
ated with) separate and independently observable units of behavior and com-
putation. They evolve in a given environment, following some primitive rules,
their evolution influencing the structure of the whole (multi-agent) system. The
main feature of the agents is their ability to communicate, that is to exchange
information inside their environment.

Such a multi-agent system reflects interactive, concurrent and distributed be-
haviors and computations of agents, thus is extremely complex. The success in
dealing with this complexity depends on the mathematical model we choose to
abstract the system. Further we focus on two major paradigms.
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1.1 The Agent Is Nothing More But Its Behavior

Process Algebra [1] abstracts the agents of the system on the level of their be-
havior and using some algebraic calculi and operational semantics describes the
evolution of the whole system. Further, as the behavior of a concurrent system
is a succession of affine states in (possibly branching) time, it was considered the
possibility of applying modal (especially temporal) logics for specifying proper-
ties of the processes that modelled distributed systems.

In studying security problems, for example, we may want to be able to specify
systems composed by agents that deal with fresh or secret resources. We may
want to express properties such as “the agent has the key”, “eventually the agent
crosses the firewall” or “there is always at most one agent here able to decrypt
the message”.

Hennessy-Milner logic [2] is one of the first modal logics that proposes some
dynamic operators, indexed by CCS actions, 〈α〉φ to capture the weakest precon-
dition of a program w.r.t. a given post-specification φ. The idea was further de-
veloped in combination with temporal operators [3] and applied to other process
calculi [4,5,6]. All these logics are characterized by their extensional nature -
they distinguish processes up to their behavior.

The specific applications of mobile computing call for an increased degree of
expressiveness for specifying and reasoning about locations, resources, indepen-
dence, distribution, connectivity or freshness. Thus, Spatial logics [7,8] propose,
in addition to the modal-temporal operators, some modal-spatial operators such
as the parallel operator φ|ψ (meaning that the current system can be split into a
parallel composition of two subsystems, one satisfying φ and the other satisfying
ψ), and its adjoint - the guarantee operator φ�ψ, or ambient-location operators1

such as n[φ] (meaning that the current system can be described as a box n[P ]
containing a subsystem P that satisfies φ), etc. A formula in a spatial logic de-
scribes a property of a particular part of the system at a particular time. These
spatial modalities have an intensional flavor, the properties they express being
invariant only for simple spatial rearrangements of the system.

Still most of the spatial logics face with decidability problems: it was proved
that the basic spatial operators, in combination with temporal operators, gen-
erate undecidable logics [11,12,13] even against a finite piece of CCS[14].

An Agent Is Defined by Its “Knowledge”

The other paradigm of modelling multi-agent systems is inspired by epistemic
logics: reasoning about systems in terms of knowledge of the agents [15]. The
knowledge of an agent is understood as the sum of actions the agent (subsystem)
may take as a function of its local state in a given environment. Thus the agent
“knows” its protocol in a given system, its knowledge consists in the information
related to evolution of this subsystem in an unknown environment.

1 These operators are characteristic for Ambient Logic [8], a special spatial logic de-
veloped for Ambient Calculus [9,10].
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Epistemic logics [15] formalize, in a direct manner, notions of knowledge,
possessed by an agent, or a group of agents, using modalities like KAφ (A knows
φ), or Ckφ (all the agents knows φ, i.e. φ is a common knowledge). These logics
supports Kripke-model based semantics, each basic modality being associated
with a binary accessibility relation in these models. Thus for each epistemic agent
A we devise an accessibility relation A−→ , called indistinguishability relation for
A, expressing the agent’s uncertainty about the current state. The states s′ such
that s

A−→ s′ are the epistemic alternatives of s to agent A: if the current state of
the whole system is s, A thinks that any of the alternatives s′ may be the current
state (as it does not have enough information to distinguish them). These logics
have been extensively studied and applied to model complex communication-
based multi-agent systems.

By mixing dynamic [16] and epistemic [15] formalisms have been developed
Dynamic Epistemic Logics [17,18,19]. These logics combine a rich expressivity
with low complexity ensuring decidability and complete axiomatizations.

Our Approach

The two paradigms of modelling concurrent distributed systems presented be-
fore were developed in parallel, but to our knowledge, there has been no unified
paradigm. We propose such a paradigm in this paper, used for constructing a
new logic for concurrency completely axiomatized and decidable that combines
the features of spatial logics with the epistemic logics thus obtaining a special
type of dynamic epistemic logic equipped with spatial operators. We call it Dy-
namic Epistemic Spatial Logic. While the dynamic and spatial features allow
to express complex spatial/temporal properties, the epistemic operators denote
the knowledge state of the agents. Thus we can express, for a security protocol,
that Alice knows the key k, but she also knows that Bob knows that she knows
this key. The hierarchic epistemic statements are relevant for expressing and
validating complex security protocols [20,17].

Formally, we extend Hennessy-Milner logic with the parallel operator and epis-
temic operators. In our logics the epistemic agents are named by the processes
they are related with. Thus KP φ means the agent related with P knows φ and
it holds iff φ is satisfied by any process having P as subprocess. The intuition is
that the agent related with P can see only P . So, it cannot differentiate between
the global states P , P |Q or P |R of the whole system, as in all these states it
sees only P . Thus its knowledge rests on the properties φ that are satisfied by
each of these states (processes).

We prove that Dynamic Epistemic Spatial Logic is decidable and we develop
sound-complete Hilbert-style axiomatic systems, against process semantics based
on a fragment of CCS [14], for two differently expressive such logics.

Concluding, the novelty of our logic with respect to the classical spatial logics
is the use of the epistemic operators for expressing global properties while ensur-
ing decidability. The epistemic operators allow to refer directly to agents of our
system by mean of their knowledge. By combining the partial knowledge of the
agents we can specify complex properties of distributed multi-agent systems.
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Outline of the Paper

The paper is organized as follows. In section 2 we introduce and study a small
finite fragment of CCS on which we will focus for the rest of the paper2. Some
new concepts will be introduced and used further, such as structural bisimu-
lation and pruning processes and sets of processes. Starting with section 3 we
define our logics. Two such systems will be introduced LDS and its extension
LDES . For both we will prove the bounded finite model property and develop
sound complete Hilbert-style axiomatic systems against the chosen semantics.
Eventually we end the paper with some concluding remarks.

For the proofs of the theorems presented in this paper, and for additional
results the reader is referred to [21] for Dynamic Epistemic Spatial Logic and
to [22] for Dynamic Spatial Logic. Some extensions of these logics have been
presented in [23]

2 Processes and Contexts

In this section, focusing on the fragment of CCS introduced in definition 1, we
develop some concepts on which we will base the further constructs.

Definition 1 (Processes). Consider the fragment of CCS generated by the
next syntax, where A is a denumerable set of actions and α ∈ A:

P ::= 0 | α.P | P |P

Hereafter this calculus3 is the object of our paper. We will use α, β to range over
A and we will denote by P the class of processes. As standard, we consider defined
over P a structural congruence, Table 1, and a labelled transition system, Table 2.

Table 1. The axioms the structural congruence

P |0 ≡ P P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R

Table 2. The transition system

α.P
α−→ P

P ≡ Q P
α−→ P ′

Q
α−→ P ′

P
α−→ P ′

P |Q α−→ P ′|Q

Assumption [Representativeness modulo structural congruence]: As
the structural congruence is the ultimate level of expressivity we want for our
logic, hereafter we will speak about processes up to structural congruence.
2 This calculus provides a semantics against which the classical spatial logic is unde-

cidable [11].
3 We can, additionally, consider an involution on A that associate to each action α ∈ A

an action α ∈ A, as usual in CCS, and also consider the silent action τ . But all these
represent just syntactic sugar, irrelevant from the point of view of the logic we
discuss.
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Definition 2. We call a process P guarded iff P ≡ α.Q for α ∈ A. We introduce
the notation P k def

= P |...|P
︸ ︷︷ ︸

k

, and convey to denote P 0 ≡ 0.

We extend the operators from processes to sets of processes.

Definition 3. For any sets of processes M, N ⊂ P and any α ∈ A we define:
α.M

def
= {α.P | P ∈ M} M |N def

= {P |Q | P ∈ M, Q ∈ N}
As we speak about processes up to structural congruence, the parallel operator on
sets of processes will be commutative, associative and will have {0} as null.

Now we define the contexts. The intuition is that a context M is a (possibly
infinite) set of processes that contains, in a maximal manner, any process repre-
senting a possible state of our system or of a subsystem of our system. Hence if a
process belongs to a context then any process obtained by pruning its syntactic
tree should belong to the context, as it might represent a possible state of a. For
the same reason, the context should be also closed to transitions. π(P ) denotes
the set of all processes obtained by pruning the syntactic tree of P .

Definition 4 (Pruning the syntactic tree). For P ∈ P define4 π(P ) ⊂ P:

1. π(0)
def
= {0} 2. π(α.P )

def
= {0} ∪ α.π(P ) 3. π(P |Q)

def
= π(P )|π(Q)

We extend the definition of π to sets of processes M⊂ P by π(M)
def
=

⋃

P∈M π(P ).

Definition 5 (Context). A context is a nonempty set M ⊆ P such that:
1. if P ∈ M and P −→ P ′ then P ′ ∈ M 2. if P ∈ M then π(P ) ⊂ M

2.1 Size of a Process

Further we define the size of a process, following a similar idea developed in [24]
for sizes of trees. The intuition is that the process has a height given by the
vertical size of its syntactic tree, and a width equal to the maximum number of
bisimilar subprocesses that can be found in a node of the syntactic tree.

Definition 6 (Size of a process). We define, inductively, the size (h, w) (h
stays for height and w for width) of a process P , denoted by �P �:

1. �0�
def
= (0, 0) 2. �P �

def
= (h, w) iff

− P=(α1.Q1)k1 |(α2.Q2)k2 |...|(αj .Qj)kj ,�Qi�=(hi, wi), i ∈ 1..j
− h = 1 + max(h1, ..., hk), w = max(k1, ..., kj , w1, ..., wj)

We convey to write (h1, w1) ≤ (h2, w2) for h1 ≤ h2 and w1 ≤ w2 and (h1, w1) <
(h2, w2) for h1 < h2 and w1 < w2.

Definition 7 (Size of a set of processes). Let M ⊂ P. We write �M� =
(h, w) iff (h, w) = max{�P � | P ∈ M}5.
4 We consider also π(P ) defined up to structural congruence.
5 Observe that not all the sets of processes have a size, as for an infinite one it might

be not possible to have the maximum required.
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Example 1. We show the size for some processes:
1. �0� = (0, 0) 4. �α.0|α.0� = (1, 2)
2. �α.0� = (1, 1) 5. �α.α.0� = �α.β.0� = (2, 1)
3. �α.0|β.0� = (1, 1) 6. �α.(β.0|β.0)� = (2, 2)

2.2 Substitutions

For the future constructs is also useful to introduce the substitutions of actions
in a process.

Definition 8 (The set of actions of a process). We define Act(P ) ⊂ A by:

1.Act(0)
def
= ∅ 2.Act(α.P )

def
= {α}∪Act(P ) 3.Act(P |Q)

def
= Act(P )∪Act(Q)

For a set M ⊂ P of processes we define Act(M)
def
=

⋃

P∈M Act(P ).

Definition 9 (Action substitution). We call action substitution any func-
tion σ : A −→ A. We syntactically extend it, from actions to processes, by:
1. σ(0)

def
= 0 2. σ(P |Q)

def
= σ(P )|σ(Q) 3. σ(α.P )

def
= σ(α).σ(P )

For M ⊂ P let σ(M)
def
= {σ(P ) | P ∈ M}. We also use notation Mσ, P σ for

σ(M) and σ(P ). The set of actions of σ, act(σ), is defined as

act(σ)
def
= {α, β ∈ A | α �= β, σ(α) = β}

2.3 Structural Bisimulation

The structural bisimulation is a congruence on processes (then extended to con-
texts) defined as an approximation of the structural congruence bound by two
sizes: the height (the depth of the syntactic tree) and the weight (the maximum
number of bisimilar subprocesses that can be found in a node of the syntactic
tree) of a process. A conceptually similar congruence was proposed in [24] for
analyzing trees of location for the static ambient calculus.

The structural bisimulation analyzes the behavior of a process focusing on a
boundary (h, w) of its syntactic tree. The intuition is that P ≈w

h Q (P and Q
are structurally bisimilar on size (h, w)) iff when we consider for both processes
their syntactic trees up to the depth h only (we prune them on the height h)
and we ignore the presence of more than w parallel bisimilar subprocesses in any
node of the syntactic trees (we prune the trees on weight w), we obtain identical
syntactic trees.

Definition 10 (Structural bisimulation). For P, Q ∈ P we define P ≈w
h Q

by:
P ≈w

0 Q always
P ≈w

h+1 Q iff for any i ∈ 1..w and any α ∈ A we have
• if P ≡ α.P1|...|α.Pi|P ′ then Q ≡ α.Q1|...|α.Qi|Q′ with Pj ≈w

h Qj, for
j = 1..i

• if Q ≡ α.Q1|...|α.Qi|Q′ then P ≡ α.P1|...|α.Pi|P ′ with Qj ≈w
h Pj, for

j = 1..i
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Theorem 1 (Congruence). ≈w
h is a congruence on processes.

We extend the definitions of structural bisimulation from processes to contexts.

Definition 11 (Structural bisimulation over contexts). Let M, N be two
contexts. We write M ≈w

h N iff
1. for any P ∈ M there is a Q ∈ N with P ≈w

h Q
2. for any Q ∈ N there is a P ∈ M with P ≈w

h Q
We convey to write (M, P ) ≈w

h (N , Q) for the case when P ∈ M, Q ∈ N ,
P ≈w

h Q and M ≈w
h N .

Example 2. Consider the processes R ≡ α.(β.0|β.0|β.0)|α.β.0 and
S ≡ α.(β.0|β.0)|α.β.α.0. We can verify the requirements of the definition 10 and
decide that R ≈2

2 S. But R �≈2
3 S because on the depth 2 R has an action α

(in figure 1 marked with a dashed arrow) while S does not have it (because the
height of S is only 2). Also R �≈3

2 S because R contains only 2 (bisimilar) copies
of β.0 while S contains 3 (the extra one is marked with a dashed arrow). Hence,
for any weight bigger than 2 this feature will show the two processes as different.
But if we remain on depth 1 we have R ≈3

1 S, as on this deep the two processes
have the same number of bisimilar subprocesses, i.e. any of them can perform α
in two ways giving, further, processes in the relation ≈3

0. Indeed R ≡ αR′|αR′′,
where R′ ≡ β.0|β.0|β.0 and R′′ ≡ β.0 and S ≡ α.S′|α.S′′, where S′ ≡ β.0|β.0
and S′′ ≡ β.α.0. By definition, R′ ≈3

0 S′ and R′′ ≈3
0 S′′.

S ≡ R ≡
α.(β.0|β.0|β.0)|α.β.0

�� ��������������������

β.0|β.0|β.0

���������������

�� ��������� β.0

��
0 0 0 0

α.(β.0|β.0)|α.β.α.0

�� ��������������

β.0|β.0

��������������

��

β.α.0

��
0 0 α.0

���
�
�

0

Fig. 1. Syntactic trees

2.4 Pruning Processes and Contexts

We introduce an effective method to construct, given a process P , a minimal
process Q that has an established size (h, w) and is structurally bisimilar to P
on this size. Because the construction is based on pruning the syntactic tree of
P on a given size, we call this method bound pruning, and we refer to Q as the
pruned of P on the size (h, w).

Theorem 2 (Bound pruning theorem). For any process P ∈ P and any
(h, w) exists a process Q ∈ P with P ≈w

h Q and �Q� ≤ (h, w).
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Proof. We describe the construction6 of Q by induction on h.
For h = 0: we just take Q ≡ 0, because P ≈w

0 Q and �0� = (0, 0).
For h + 1: suppose that P ≡ α1.P1|...|αn.Pn.

Let P ′
i be the result of pruning Pi by (h, w) (we use the inductive step of con-

struction) and P ′ ≡ α1.P
′
1|...|αn.P ′

n. As for any i = 1..n we have Pi ≈w
h P ′

i (by
the inductive hypothesis), we obtain, using theorem 1, that αi.Pi ≈w

h+1 αi.P
′
i

and further P ≈w
h+1 P ′.

Consider the canonical representation of P ′ ≡ (β1.Q1)k1 |...|(βm.Qm)km .
Let li = min(ki, w) for i = 1..m. Then we define Q ≡ (β1.Q1)l1 |...|(βm.Qm)lm .
Obviously Q ≈w

h+1 P ′ and as P ≈w
h+1 P ′, we obtain P ≈w

h+1 Q. By construction,
�Q� ≤ (h + 1, w).

Definition 12 (Bound pruning processes). For a process P and for a tuple
(h, w) we denote by P(h,w) the process obtained by pruning P to the size (h, w)
by the method described in the proof of theorem 2.

Example 3. Consider the process P ≡ α.( β.(γ.0|γ.0|γ.0) | β.γ.0 ) | α.β.γ.0
Observe that �P � = (3, 3), hence P(3,3) ≡ P . For constructing P(3,2) we have to
prune the syntactic tree of P such that to not exist, in any node, more than two
bisimilar branches. Hence P(3,2) = α.( β.(γ.0|γ.0) | β.γ.0) | α.β.γ.0

If we want to prune P on the size (3, 1), we have to prune its syntactic tree such
that, in any node, there are no bisimilar branches. The result is P(3,1) = α.β.γ.0.

For pruning P on the size (2, 2), we have to prune all the nodes on depth 2 and
in the new tree we have to let, in any node, a maximum of two bisimilar branches.
As a result of these modifications, we obtain P(2,2) = α.(β.0|β.0) | α.β.0. Going
further we obtain the smaller processes P(0,0) = 0, P(1,1) = α.0, P(1,2) = α.0|α.0,
P(2,1) = α.β.0.

Further we define the bound pruning of a context M as the context generated
by the set of pruned processes of M.

Definition 13 (Bound pruning contexts). We say that the set M ⊂ P is a
system of generators for the context M if M is the smallest context that contains
M . We denote this by M = M. For any context M and any (h, w) we define

M(h,w)
def
= {P(h,w) | P ∈ M}.

Theorem 3. For any context M, any P ∈ M, and any size (h, w) we have
(M, P ) ≈h

w (M(h,w), P(h,w)).

Definition 14. Let A ⊂ A. Consider the sets:

PA
(h,w)

def
= {P ∈ P | Act(P ) ⊆ A, �P � ≤ (h, w)}

MA
(h,w)

def= {M ⊂ P | Act(M) ⊆ A, �M� ≤ (h, w)}

6 This construction is not necessarily unique.
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Theorem 4. If A ⊂ A is a finite set of actions, then the following hold:

1. PA
(h,w) is finite 2. any M ∈ MA

(h,w) is a finite context 3. MA
(h,w) is finite.

Theorem 5 (Bound pruning theorem). Let M be a context. Then for any
(h, w) there is a context N ∈ M

Act(M)
(h,w) such that M ≈w

h N . Moreover, N =
M(h,w) has this property.

3 Logics for Specifying Distributed Systems

In this section we introduce Dynamic Spatial Logic, LDS , as an extension of
Hennessy-Milner logic with the parallel operator and Dynamic Epistemic Spa-
tial Logic, LDES , which extends LDS with the epistemic operators. The intuition
is to define the knowledge of the process P in the context M as the common
properties of the processes in M that contain P as subprocess. Hence the knowl-
edge implies a kind of universal quantifier over M.

The satisfiability relations will evaluate a formula to a process in a context.
For our logics, we propose Hilbert-style axiomatic systems proved to be sound

and complete with respect to process semantics. LDS and LDES satisfy the bond
finite model property against the process semantics that entails the decidability
for satisfiability, validity and model checking for both logics.

3.1 Syntax

Definition 15 (Languages). We define the language of Dynamic Spatial Logic,
FDS, and the language of Dynamic Epistemic Spatial Logic, FDES, for α ∈ A:

φ := 0 | � | ¬φ | φ ∧ φ | φ|φ | 〈α〉φ (FDS)
φ := 0 | � | ¬φ | φ ∧ φ | φ|φ | 〈α〉φ | KQφ (FDES)

Definition 16 (Derived operators). In addition we have derived operators:

1. ⊥ def
= ¬� 4. [α]φ

def
= ¬(〈α〉(¬φ)) 6. 〈!α〉ψ def

= (〈α〉ψ) ∧ 1

2. φ ∨ ψ
def
= ¬((¬φ) ∧ (¬ψ)) 5. 1

def
= ¬((¬0) | (¬0)) 7.

∼
KQφ

def
= ¬KQ¬φ

3. φ → ψ
def
= (¬φ) ∨ ψ

We could also introduce, for each action α, a derived operator7 〈α, α〉 to express
communication by α, supposing that we have defined an involution co : A −→ A

which associates to each action α its co-action α:

〈α, α〉φ def
=

∨

φ↔φ1|φ2

〈α〉φ1|〈α〉φ2

7 The disjunction is considered up to logically-equivalent decompositions φ ↔ φ1|φ2

that ensures the use of a finitary formula.
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3.2 Process Semantics

A formula of FDS , or of FDES , will be evaluated to processes in a given context,
by mean of a satisfaction relation M, P |= φ.

Definition 17 (Models and satisfaction). A model of LDS or of LDES is a
context M for which we define the satisfaction relation, for P ∈ M, as follows:

M, P |= � always
M, P |= 0 iff P ≡ 0
M, P |= ¬φ iff M, P � φ
M, P |= φ ∧ ψ iff M, P |= φ and M, P |= ψ
M, P |= φ|ψ iff P ≡ Q|R and M, Q |= φ, M, R |= ψ

M, P |= 〈α〉φ iff there exists a transition P
α−→ P ′ and M, P ′ |= φ

M, P |= KQφ iff P ≡ Q|R and ∀Q|R′ ∈ M we have M, Q|R′ |= φ

Then the semantics of the derived operators will be:

M, P |= [α]φ iff for any P ′ ∈ M such that P
α−→ P ′ (if any), M, P ′ |= φ

M, P |= 1 iff P ≡ 0 or P ≡ α.Q (P is null or guarded)
M, P |= 〈!α〉φ iff P ≡ α.Q and M, Q |= φ

M, P |=
∼
KQφ iff either P �≡ Q|R, or it exists Q|S ∈ M such that M, Q|S |= φ

Remark the interesting semantics of the operators K0 and
∼
K0 that allow to

encode, in syntax, the validity and the satisfiability w.r.t. a context:

M, P |= K0φ iff for any Q ∈ M we have M, Q |= φ

M, P |=
∼
K0φ iff it exists a process Q ∈ M such that M, Q |= φ

3.3 Characteristic Formulas

In this subsection we use the peculiarities of the dynamic and epistemic opera-
tors to define characteristic formulas for processes and for finite contexts. Such
formulas will be useful in providing appropriate axiomatic systems for our logics
and, eventually, for proving the completeness.

Definition 18 (Characteristic formulas for processes). In FDS we define
a class of formulas (cP )P∈P, indexed by (≡-equivalence classes of) processes, by:

1. c0
def
= 0 2. cP |Q

def
= cP |cQ 3. cα.P

def
= 〈!α〉cP

Theorem 6. M, P |= cQ iff P ≡ Q.

As FDES is an extension of FDS , (cP )P∈P characterize processes also in FDES .
Specific for FDES only is the possibility to exploit the semantics of the operators

K0 and
∼
K0, as they can describe validity and satisfiability w.r.t a model, in

defining characteristic formulas for finite contexts.
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Definition 19 (Characteristic formulas for contexts). In FDES, if M is
a finite context, we can define its characteristic formula by:

cM = K0(
∨

Q∈M
cQ) ∧ (

∧

Q∈M

∼
K0cQ)

Suppose that N , P |= cM. Then the first conjunct K0(
∨

Q∈M cQ) tells us that
∨

Q∈M cQ is a validity in N , hence each element of N is an element of M, N ⊆
M. The second conjunct tells us that for each Q ∈ M, N , P |=

∼
K0cQ. By the

semantics of
∼
K0 this means that it exists a process P ′ ∈ N such that N , P ′ |= cQ,

i.e. P ′ ≡ Q. As the processes are identified up to structural congruence, M ⊆ N .
Hence M = N .

Theorem 7. If M is a finite context and P ∈ M then M, P |= cN iff N = M.

3.4 Bound Finite Model Property and Decidability

Now we prove the finite model property for Dynamic Epistemic Spatial Logic
that will entail the decidability against the process semantics. As a consequence,
we obtain decidability for Dynamic Spatial Logic (being less expressive). Antic-
ipating, we define a size for formulas φ; then we prove that if M, P |= φ then
substituting, by σ, all the actions in M (and implicitly in P ) that are not in
the syntax of φ (as indexes of dynamic or epistemic operators) by a fixed action
with the same property, and then pruning Mσ and P σ to the size of φ we will
obtain a couple (N , Q) such that N , Q |= φ. The fixed action of substitution
can be chosen as the successor8 of the maximum action of φ, which is unique.
Hence N ∈ MA

(h,w) where (h, w) is the size of φ and A is the set of actions
of φ augmented with the successor of its maximum, thus A is finite. But then
theorem 4 ensures that the set of pairs (N , Q), with this property, is finite.

Definition 20 (Size of a formula). We define the sizes of a formula, �φ�
(height and width), inductively on FDES, by:

1.�0� = ���
def
= (0, 0) 2.�¬φ�

def
= �φ�

and supposing that �φ� = (h, w), �ψ� = (h′, w′) and �R� = (hR, wR), further:

3.�φ|ψ�
def
= (max(h, h′), w + w′) 4.�φ ∧ ψ�

def
= (max(h, h′), max(w, w′))

5.�〈α〉φ�
def
= (1+h, 1+w) 6.�KRφ�

def
= (1+max(h, hR), 1+max(w, wR))

The next theorem states that φ is “sensitive” via satisfaction only up to size �φ�.
In other words, the relation M, P |= φ is conserved by substituting the couple
(M, P ) with any other couple (N, P ) structurally bisimilar to it at the size �φ�.

Theorem 8. If �φ� = (h, w), M, P |= φ and (M, P ) ≈w
h (N , Q) then N , Q |= φ.

8 We consider defined, on the class of actions A, a lexicographical order.
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Using this theorem, we conclude that if a process, in a context, satisfies φ then
by pruning the process and the context on the size �φ�, we still have satisfiability
for φ. Indeed the theorems 2 and 3 prove that if �φ� = (h, w) then (M, P ) ≈h

w

(M�φ�, P�φ�). Hence M, P |= φ implies M�φ�, P�φ� |= φ.

Definition 21 (The set of actions of a formula). We define the set of
actions of a formula φ, act(φ) ⊂ A, inductively by:

1.act(0)
def
= ∅ 4.act(¬φ) = act(φ)

2.act(�)
def
= ∅ 5.act(KRφ)

def
= Act(R) ∪ act(φ)

3.act(φ ∧ ψ) = act(φ|ψ)
def
= act(φ) ∪ act(ψ) 6.act(〈α〉φ)

def
= {α} ∪ act(φ)

The next result states that a formula φ does not reflect properties that involve
more then the actions in its syntax. Thus if M, P |= φ then any substitution σ
having the elements of act(φ) as fix points preserves the satisfaction relation.

Theorem 9. If M, P |= φ and act(σ)
⋂

act(φ) = ∅ then Mσ, P σ |= φ.

Suppose that on A we have a lexicographical order �. So, for a finite set A ⊂ A

we can identify a maximal element that is unique. Hence the successor of this
element is unique as well. We convey to denote by A+ the set obtained by adding
to A the successor of its maximal element. Moreover, for a context N � P , for a
size (h, w) and for a finite set of actions A ⊂ A we denote by N A

(h,w) (and by PA
(h,w)

respectively) the context (respectively the process) obtained by substituting all
the actions α ∈ Act(N )\A (α ∈ Act(P )\A respectively) by the successor of the
maximum element of A and then pruning the context (the process) obtained to
size (h, w).

Theorem 10 (Bound finite model property).

If M, P |= φ then ∃N ∈ M
act(φ)+
�φ� and Q ∈ N such that N , Q |= φ.

Moreover N = Mact(φ)
�φ� and Q = P

act(φ)
�φ� fulfill the requirements of the theorem.

Because act(φ) is finite implying act(φ)+ finite, we apply theorem 4 ensuring
that M

act(φ)+
�φ� is finite and any context M ∈ M

act(φ)+
�φ� is finite as well. Thus we

obtain the bound finite model property for our logic. A consequence of theorem
10 is the decidability for satisfiability, validity and model checking against the
process semantics.

Theorem 11 (Decidability of LDES). For LDES validity, satisfiability and
model checking are decidable against the process semantics.

Corollary 1 (Decidability of LDS). For LDS validity, satisfiability and model
checking are decidable against the process semantics.



208 R. Mardare and C. Priami

3.5 Axiomatic Systems

In Table 3 we propose a Hilbert-style axiomatic system for LDS . We assume the
axioms and the rules of propositional logic. In addition we will have a set of
spatial axioms and rules, and a set of dynamic axioms and rules.

Concerning the axioms and rules we make two observations. The disjunction
involved in Axiom S6 is finitary, as we considered the processes up to structural
congruence level. Also the disjunction involved in Rule DR4 has a finite number
of terms, as a consequence of the finite model property.

Table 3. The axiomatic system of LDS

Spatial axioms
S1: � �|⊥ → ⊥
S2: � (φ|ψ)|ρ → φ|(ψ|ρ)
S3: � φ|0 ↔ φ

S4: � φ|(ψ ∨ ρ) → (φ|ψ) ∨ (φ|ρ)
S5: � φ|ψ → ψ|φ
S6: � (cP ∧ φ|ψ) →

�
P≡Q|R(cQ ∧ φ)|(cR ∧ ψ)

Spatial rules
SR1: � φ → ψ then � φ|ρ → ψ|ρ

Dynamic axioms
D7: � 〈α〉φ|ψ → 〈α〉(φ|ψ)
D8: � [α](φ → ψ) → ([α]φ → [a]ψ)
D9: � 0 → [α]⊥

D10: For αi = β, � 〈!α1〉�|...|〈!αn〉� → [β]⊥
D11: � 〈!α〉φ → [α]φ

Dynamic rules
DR2: � φ then � [α]φ
DR4: �

�

P∈P
act(φ)+
�φ�

cP → φ then � φ
DR3: If � φ1 → [α]φ′

1 and � φ2 → [α]φ′
2

then � φ1|φ2 → [α](φ′
1|φ2 ∨ φ1|φ′

2)

The axiomatic system for LDES is just an extension of the axiomatic system
of LDS with the set of epistemic axioms and rules presented in Table 4. Observe
that Rule DR4 has been replaced by Rule DR’4, as this logic is sensitive to
contexts (due to universal quantifier involved by the semantics of the epistemic
operator).

For the epistemic axioms and rules we point on their similarities with the
classic axioms of knowledge. Thus Axiom E12 is the classical (K)-axiom stat-
ing that our epistemic operator is a normal one, while Axiom E13 is just the
necessity axiom, for the epistemic operator. Also Axiom E14 is well known in
epistemic logics. It states that our epistemic agents satisfy the positive intro-
spection property: if P knows φ then it knows that it knows φ. Axiom E15
states a variant of the negative introspection, saying that if an agent P is active
and if it doesn’t know φ, then it knows that it doesn’t know φ. These axioms
are present in all the epistemic logics [15]. Axiom E16 is also interesting as
it states the equivalence between to be active and to know for our epistemic
agents.
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Table 4. The axiomatic system LS
DES

Dynamic rule
DR’4: �

�

M∈M
act(φ)+
�φ�

cM → φ then � φ

Epistemic axioms

E12: � KQφ ∧ KQ(φ → ψ) → KQψ
E13: � KQφ → φ
E14: � KQφ → KQKQφ
E15: � KQ� → (¬KQφ → KQ¬KQφ)

E16: If P ∈ S then � KP � ↔ cP |�
E17: � KQφ ↔ (KQ� ∧ K0(KQ� → φ))
E18: � K0φ ∧ ψ|ρ → (K0φ ∧ ψ)|(K0φ ∧ ρ)
E19: � K0φ → [α]K0φ
E20: � K0φ → (KQ� → KQK0φ)

Epistemic rules

ER5: � φ then � KQ� → KQφ
ER6: If M � P is a finite context and

� cM ∧ cP → K0φ then � cM → φ

3.6 Soundness and Completeness

The choice of the axioms is motivated by the soundness theorem.

Theorem 12 (Soundness). The systems LDS and LDES are sound w.r.t.
process semantics.

Hence everything expressed by our axioms and rules about the process semantics
is correct and, in conclusion, using our system, we can derive only theorems that
can be meaningfully interpreted in CCS.

Further we state the completeness of LDS and of LDES with respect to process
semantics. The intuition is that, because cP is a characteristic formulas, we
should have an equivalence between M, P |= φ and � cP → φ for LDS , and
between M, P |= φ and � cM ∧ cP → φ for LDES (when M is a finite context).
Using this intuition we proved the completeness theorem. Observe that LDS logic
is not sensitive to contexts, while LDES is, because of the universal quantifier
involved in the semantics of the epistemic operator.

Theorem 13 (Completeness). The LDS and LDES are complete with respect
to process semantics.

The completeness ensures that everything that can be derived in the semantics
can be proved as theorem. In this way we have the possibility to syntactically
verify (prove) properties of distributed systems.

4 Concluding Remarks

In this paper we developed two decidable and complete axiomatized logics for
specifying and model-checking concurrent distributed systems: Dynamic Spa-
tial Logic - LDS and Dynamic Epistemic Spatial Logic - LDES . They extend
Hennessy-Milner logic with the parallel operator and respectively with epistemic
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operators. The lasts operators are meant to express global properties over con-
texts. We propose these operators as alternative to the guarantee operator of
the classical spatial logics, in order to obtaining a logic adequately expressive
and decidable.

LDES is less expressive than the classic spatial logic. Using the guarantee
operator and the characteristic formulas, we can express our epistemic operators
in classic spatial logic, while guarantee operator cannot be expressed by using
our logic: KQφ

def
= cQ|� ∧ (¬(cQ|� → φ) � ⊥).

Validity and satisfiability in a model can be syntactically expressed in LDES .
Combining this feature with the possibility to characterize processes and finite
contexts, we may argue on utility of this logic.

In the context of decidability, our sound and complete Hilbert-style axiomatic
systems provide powerful tools for making predictions on the evolution of the
concurrent distributed systems. Knowing the current state or a sub-state of a
system, we can characterize it syntactically. And because any other state can be
characterized, we can project any prediction-like problem in syntax and verify
its satisfiability. Hence if the system we considered can reach the state we check,
we will obtain that the formula is satisfiable and this method will provide also
a minimal model.

The axioms and rules considered are very similar to the classical axioms and
rules in epistemic logic, and some derivable theorems state meaningful prop-
erties of epistemic agents. All these relates our logic with the classical epis-
temic/doxastic logics and focus the specifications on external observers as epis-
temic agents. This interpretation is consistent with the spirit of process algebras.

Further researches are to be considered such as adding other operators in
logics to fit with more complex process calculi. Challenging will be also the
perspective of considering recursion in semantics.

Acknowledgements. We thank to Alexandru Baltag for contributing with
valuable comments, since the beginning, on the construction of this logic. Thanks
also to Luca Cardelli for comments and related discussions. The name structural
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