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Abstract. Our paper proposes a technique for performing logical analysis over the calculi for com-
munication and mobility, i.e., Ambient Calculus type of calculi. We show how this analysis can be
used in the case of biological models in order to obtain significant information for biologists.

The technique is based on set theoretical models we developed for ambient processes by using the
power of Hypersets Theory. These models are further used as possible worlds in a Kripke structure
organized for a propositional branching temporal logic.

Providing the temporal logical structure for the accessibility relation between ambient processes,
we open the perspective of reusing model checking algorithms developed for temporal logics in
analyzing any phenomena that can be described by these calculi.
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1. Introduction

Ambient Calculus [11] is a useful tool to construct mathematical models for complex systems because of
its facilities in expressing hierarchies of locations and their mobility. It was developed first as a natural
extension, with locations, of �-Calculus [22, 24], in order to provide models for phenomena concerning
communication and mobility. Later, it was adapted to model biological systems [28, 9], as an algebraical
alternative to the Membrane Computing approach [25].
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Even if such a calculus is able to simulate the behavior of some biological systems, for giving to
biologists a real useful tool, we need to do more. It could be useful to develop some techniques for
making predictions over the systems, such that the results of some expensive biological experiments
to be predicted by some computable formal analysis of the mathematical models. Properties such as
the protein will split, or there is a possible future where the complexAB precedes the proteinA are not
expressible inside Ambient Calculus. Only a logic built on top of it can describe such phenomena.

In order to answer such requirements Ambient Logic [12, 13] and Spatial Logics [10] were devel-
oped. These logics can describe properties of mobile computations as well as the hierarchy of locations
and modifications of this hierarchy in time. The main idea of these is to treat processes as spatio-temporal
entities, thus two types of modalities have been used – one for assertions about space and the other for
assertions about time.

This paper, resuming our results presented in [19, 20], proposes a propositional branching temporal
logic, ����, constructed on top of Ambient Calculus, as a more convenient alternative to Spatial Logics.
Temporal logics have emerged, lately, in many domains as a good compromise between expressiveness
and abstraction. Many of them support useful computational applications as model checking. For the
particular cases of ��� or ����, these techniques were developed up to the construction of some tools
able to perform such analysis (see, e.g., SMV [4], NuSMV [2], HyTech [1], VIS [5]). The main feature
of our logic is that the final state of any computation can be reconstructed by just having information
about the initial state and the history of the computation. The spatial structure of a state is fully described
by a set of atomical propositions, while the possible states are described using, in addition, a temporal
modality. In this respect our approach is different from those used in Ambient Logic, or Spatial Logics,
giving us the advantages of simplicity and expressivity that a CTL* logic has with respect to the cited
modal logics. Moreover, seems unproblematic to extend the same sort of logic for other calculi in this
paradigm, e.g., BioAmbients Calculus [28], or Brane Calculi [9].

Being the peculiarities of the calculi of communication, it was more profitable for us to develop the
logic not directly for Ambient Calculus, but for a set theoretical model of it. This model goes further
with Peter Aczel’s idea of developing a model for Milner’s calculus of communication systems CCS
[21]. Aczel’s try was finalized with the development of Hypersets Theory [6], and we found it useful to
use these hypersets to model communication systems with locations, as Ambient Calculus.

The rest of the paper is organized as follows. We introduce first the Ambient Calculus and we
discuss some special features of it. In the third section we present a couple of simple case studies coming
from biology. They are used to comment on the advantages of applying temporal logics to the Ambient
Calculus specification of phenomena related to life sciences. Section four introduces the theoretical
underpinning of our logic: labelled syntax trees which are the graph presentation of the set theoretical
model for the ambients. In Section 5 we define a branching temporal logic for Ambient Calculus, and
show how to run simple reachability properties on our case studies. The final section concludes the
presentation with some general remarks and a sketch of the future research directions we intend to take.

2. Overview on Ambient Calculus

First, we briefly recall the Ambient Calculus [11] starting with the syntax of ambient processes.
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�����::= processes � ::= capabilities

��	�� restriction 	 name

� void 
	 � can enter into M

� �� composition ��
 � can exit out of M

�� replication ���	 � can open M

� �� � ambient ��� � path

��� capability action � null

�	��� input action

��� output action

We accept, in addition to the previous definition, that ambient programs can include unspecified
processes denoted by capital letters P, Q and R, hereafter named atomical processes1. Let �� be the
class of atomical processes and �� the class of ambients.

A structural congruence is defined over processes by:

�� � � � ��� � � ����� ����

�� � � �� � � � �	� � � �� �	��� � �	���

	� � � ��� � �� � � � �
� � � ���


� � � �� ��	�� � ��	�� ��� ���� ���� ���� ���

�� � � �� � �� � ��� ��� ��	������ � ������	��

�� � � ���� ��� �
� ��	�� � �


� � � �� 	�� � � 	��� ��� ��	�� �� � � ���	���	 �� �	�� �

�� ��	����� �� � ����	�� �� 	 �� � ��� � �� � �

�� ��� ��� ��� ��� ��� �� ����� � � ������

��� �� � � ��� � �� � ���

��� ��� ���� �� � � ��� ��� ����� � ����� ��� �� if � �� �	�� �

In addition, we identify processes up to renaming of bound names:

�	� ��	�� � ����� �	� �� if � �� �	�� �

Finally, the operational semantics of the ambient calculus is defined by the rules:

	�
	 ��� ��������� ��	�� ������ � � �� ��	�� � ��	��

��	���
 ��� ������� 	�� �������� � � �� � �� � ���

���	 	�� �	���� � �� � � �� 	�� �� 	���

�	��� ���� � �		��
 � � � �� � � ��� � �� � � � � ��

1This is a necessary requirement in developing complex analysis, as model checking, for Ambient Calculus because we have to
recognize and distinguish over time, unspecified processes inside the target process. For instance, � is an unspecified process
in ���� ��� �
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2.1. Handling the new names

Consider the next process:

������	 ������������	�	�����
 	�
	 ���
	 	�������	 ������	 ����� ��	�������	 	�
���

Here, ��	� means that the name 	 inside the scope of ��	� is different from all the other names in the
program. In the example, we want to be sure that ��
 	 and 
	 	, which are capabilities prefixing the
process �, will never act over 	��� but only over the ambient that was chosen to name the firewall. Vice
versa, ���	 	, the capability of 
, will never act over the firewall ambient, but only over 	���.

The intuition is that the name of the ambient chosen to name the firewall should be one that has not
been used before. A possible solution could be just to choose a new name � � � and to replace 	with it in
all its occurrences inside the scope of ��	�. This solution is locally good, but it will not prevent the name
� from ever being used in other processes that we could combine with ours, so that a name conflict would
arise. In other words, the renaming solution is not a compositional one. We guarantee compositionality
by a trick that resembles de Bruijn indexes for name-free �-calculus: we accept ordered pairs of natural
numbers as possible names of ambients and we use them to completely remove any ��	� occurrence
from processes. So, we replace the ��� new name ��	� in a process with2 the pair ��� ��. This approach
allows us to combine our process with others for which we already constructed the labelled syntax trees.
In this way all the names in the second process will receive names as ��� �� meaning that is the ��� new
name of the second process, and so on, the ��� new name of the ��� process will receive the name ��� ��.

This construction is supported by the assumption that inside an ambient process can only occur a
finite number of new name operators and that we will combine only a finite number of processes.

According with the above, our example becomes:

������	 ������������� �������
 ��� ���
	 ���
	 ��� ���������	 ������	 ����� �
�	�������	 	�
���

The analysis of the reductions of our process shows that the expected result is still possible without using
the new name operator. Indeed:

������	 ������������� �������
 ��� ���
	 ���
	 ��� ���������	 ������	 ����� ��	�������	 	�
���
�� ������	 �����������
	 ��� ���������� ������	 ������	 ����� ��	�������	 	�
���

�� ����������
	 ��� ��������� ������	 ������	 ����� ��	�������	 	�
���
�� ��� �����������������	 ������	 ����� ��	�������	 	�
���

�� ��� ������ ��	�������	 	�
���
�� ��� ������ ����
���

Hereafter we will treat ��� �� as being an ambient name, whenever it appears in our processes. This
means that the set � contains, as a subset, a subset of � � �. This modification does not affect the four
rules of structural congruence ((Struct Res Res), (Struct Res Par), (Struct Res Amb) and (Struct Zero
Res), see [11]). Only it modifies the intentional interpretation of ��	�. It will not mean this name is new
inside the scope of our quantifier, but replace this name in all its occurrences inside the scope of our
quantifier by an unused pair of natural numbers.

In this way we reduce all the syntax trees of ambient calculus to syntax trees without new name
operators.
2We will replace in the ambient calculus process, all the occurrences of � inside the scope of ����, being ambients or capabili-
ties, with ��� ��
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3. Using Ambient Calculus to model biological phenomena

In the cited literature, many examples of biological phenomena described using Ambient Calculus type
of calculi can be found . In this section we will present two such examples, described in [20], that we
found relevant for the advantages of a logical analysis.

In the first example we will describe a part of the scene of the interaction between a Virus and a
Macrophage. The Macrophage, by its structure, is able to recognize a Virus by its characteristics. Once
it is recognized, the Virus is engulfed by Macrophage and is destroyed. We find it appropriate to describe
the Macrophage as an ambient named ��� that contains a process �
�� 
 able to destroy the virus; the
virus is an ambient ! that contains inside a process "	���
. The Macrophage recognizes the virus by
the name ! and by its structure (i.e., Macrophage knows the names �� �� that define the structure of the
virus). Using this information, Macrophage manages to put in parallel the processes "	���
 and �
�� 

and in this way annihilates the action of the virus. We can describe this action in Ambient Calculus in a
way similar with the description of the action of a firewall [19]:

������#���
���
� ��������
 ����
	 !�
	 ����������	 !����	 ����
�� 
�

$ 
�� 
���
� !����	 �����"	���
��

$ 
�� �������#��� �
!����	 �����"	���
�����������
 ����
	 !�
	 ����������	 !����	 ����
�� 
�
�� !����	 �����"	���
�����
	 !�
	 ��������������	 !����	 ����
�� 
�
�� !����	 �����"	���
����
	 ���������������	 !����	 ����
�� 
�

�� !����"	���
��
	 ��������������	 !����	 ����
�� 
�
�� ����!����"	���
������	 !����	 ����
�� 
�

�� �������"	���
�����	 ����
�� 
�
�� ����"	���
��
�� 
�

For this situation, we are interested in the success of our system, in all possible time paths, to achieve the
state where the processes "	���
 and �
�� 
 are in parallel inside the ambient ��� (that represent the
Macrophage), such that the virus is annihilated. If our system succeeds to do this, we can say that is an
appropriate model for the biological phenomenon, otherwise we have to reconsider our approach. Such
properties, we will argue further, can be naturally expressed using a temporal logic.

Consider now the second example, the model of the trimetric GTP binding proteins (G-proteins) that
plays an important role in the signal transduction pathway for numerous hormones and neurotransmitters
[3, 7]. It consists of five processes: a regulatory molecule �� , a receptor �, and three domains that are
bound together composing the protein %� & and '. Data sent by �� to � determine a communication
between the receptor � and the protein that causes the breakage of the boundary of %� & and '. We can
express this in Ambient Calculus by the following specification:

��
���
� ���	 	��� , �

���
� 	��(�� ����,

���
�
	
���
� �(�� ��%�&�'�, where (�� is a name that appear in % only, bounded by the input prefix

�� ������
�
	 � ���	 	��� � 	��(�� ���� � �(�� ��%�&�'� �
�� � � � �(�� � � �(�� ��%�&�'� �

�� ����%�&�'��(���(�� � �
�� ����%��(���(�� ��&�'
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where we denoted the process obtained by substituting (�� with (�� inside % by �%��(���(�� �.
In this example we accepted recursive definitions in Ambient Calculus. This pushed us outside the

classical syntax of this calculus. Still the model and the logic we will introduce further can handle with
such an extension. Anyway, if we really want to describe the model strictly in the classical syntax, we
could differentiate the recursion variables by using some indexes.

With respect to the above example we are interested in expressing properties like for all possible
future paths, sometime in the future, we will have the interaction that will generate the split of the
protein. One might also want to express that the protein will not be split before the interaction between
� and �� will be performed (a property will not be satisfied until another one will be). Both properties
above are examples of ‘temporal’ properties.

4. The labelled syntax trees

In order to define the temporal logic, we reorganize the spatio-temporal information contained by an
ambient process. This will be done by defining a special labelling function for the syntax trees of Ambient
Calculus.

A syntax tree � � ������ for a process is a graph with � � ��������	 � ��� ���������
��	 where

� is a set that contain all the unspecified process nodes (the atomical processes collected in the subset
�� ) and the ambient nodes (collected in the subset ��);

��� is the set of capability nodes (we include here the input nodes and the nodes of variables over
capabilities as well); and

��	 is the set of syntactical operator nodes (this set contains the parallel operators � and the prefix
operators, 
). We identify the subset ��	� � 	
� � ��	 � 
� �� � 
 � ��	 of the prefix nodes
that are immediately followed, in the syntax tree, by the parallel operator because they play an
important role in the spatial structure of the ambient process3.

We consider also the possibility of having circular branches in our trees, when recursive definitions are
involved. All the further discussion is including these cases as well.

The intuition behind the construction of a labelled syntax tree is to associate to each node of the
syntax tree some labels by two functions: 
) that gives to each node an identity, and  � that registers the
spatial position of the node.

The identity function 
) associates a label (urelement or �):

1. to each unspecified process and to each ambient; this label will identify the node and will help us
further to distinguish between processes that have the same name,

2. to each capability, the identity of the process in front of which this capability is placed,

3. �, to each syntactical node.

3These point operators are those that connect a capability with a process formed by a parallel composition of other processes
bounded together by brackets, hereafter complex processes, as in ���� �	�
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The spatial function  � associates:

1. to each ambient the set of the identities of its children4, while to unspecified processes associates
the 
)-label,

2. to each capability, a natural number that counts the position of this capability in the chain of
capabilities (if any) belonging to the same process,

3. to each syntactical node the spatial function associates 0, except for the nodes in ��	� to which
the function  � will associate the set of identities of the processes connected by the main parallel
operator in the compound process that this point is prefixing; for example, in the situation ���� ���,
 ��
� � 	
)�� �� 
)���
.

In what follows, we choose to work in Zermelo-Fraenkel system of Set Theory ZFA with the Anti-
Foundation Axiom (AFA), as being a fertile field that offers many tools for analyzing structures, as argued
in [8]. This approach allows us to describe the spatial structure of ambient processes as equations in set
theory, each such equation being then used as atomical proposition in our logic. In this way we will not
use a modality in describing the hierarchy of locations, as Spatial Logics does, but only in describing the
evolution of the hierarchy in time. Hereafter, we assume a class � of urelements, set-theoretical entities
which are not sets (they do not have elements) but can be elements of sets. The urelements together with
the empty set � will generate all the sets we will work with (sometimes sets of sets).

Definition 4.1. A set � is transitive if all the elements of a set *, which is an element of �, also belong
to �: �* � � if � � * then � � �.
The transitive closure of �, denoted by ����� is the smallest transitive set including �. The existence of
����� could be justified as follows: ����� � �	������ � �� ���
.

Definition 4.2. The support of a set �, denoted by  ������ is �������. The elements of  ������ are
the urelements that are somehow involved in �.

Definition 4.3. If � � � then $ ���
���
� 	* � * is a set and  ����*� � �
. $ ��� is the class of all sets in

which the only urelements that are somehow involved are the urelements of �.

Definition 4.4. Let �� � ������ be the syntax tree associated with the ambient process � . We call
the structure graph associated with � , the graph obtained by restricting the edge relation of the syntax
tree to � � ��	�, i.e., the graph �� � �� � ��	���� � defined by: for 	�� � � � ��	�, 	 �� � iff
(	��

� � and does not exist � � � � ��	� such that 	��
� ���

� �).

Intuitively, the structure graph of a process is obtained by restricting the edge relation of its syntax
tree to �.

Definition 4.5. A decoration of a graph ( � �(��	� is an injective function � � (� $ ��� � � such
that for all � � ( we have:
4We use the terms parent and child about processes, meaning the immediate parent and immediate child in Ambient Calculus
processes.



278 R. Mardare and C. Priami / Logical Analysis of Biological Systems


 if does not exist * � ( such that ��	 *, then ���� � �,


 if �* � ( such that ��	 *, then ���� � 	��*�� for all * such that ��	 *
.

We now introduce a set of auxiliary functions that are the block definitions for 
) and  �.

Definition 4.6. Let the next functions be defined on the subsets of nodes of the syntax tree ����� as
follows:


 Let  �� � ����	� � $ ����� be a decoration of the structure graph associated with our syntax
tree.


 Let 
)� � � � � be an injective function such that 
)��� � �  ���� � for all � � �� . Consider

+�
���
� 
)���� � � �, +�

���
� 
)����� � �.


 Let  ��
� � ��	� � � $ ��� � � defined by (� is the class of natural numbers)

 ��
�� � �

�
 ��� � iff  � ��	��

� iff  � ��	 � ��	��

Consider ,
���
�  ��
����	

�� � $ ���.


 Let 
)�
� � ��	� $ ��� � � defined by


)�
�� � � ��


 Let  ��
� � ���� � such that

 ��
���� �

�
� iff � � 
 � � or 	� 
 � � with 	 � ��

� � � iff 
� � 
� � � and 
� � �� � ��� with  ��
���
�� � ��


 Let 
)�
� � ���� $ ��� � � defined for � � ��� such that 
� � � by


)�
���� �

���
��


)��	� iff 
� � 	 with 	 � ��


)�
���
�� iff 
� � 
� with 
� � ���

 ��
��
�� iff 
� � ��	��

Summarizing, we can define the identity function 
) � � � ��� � ��	� � � $ ��� and the spatial
function  � � � � ��� � ��	� � � $ ��� � � by:


)� � �

���
��


)�� � iff  � ��


)�
�� � iff  � ����


)�
�� � iff  � ��	�

 �� � �

���
��

 ��� � iff  � ��

 ��
�� � iff  � ����

 ��
�� � iff  � ��	�
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Observe that while the range of 
) is � � $ ���, the range of  � is � � $ ��� � � (we consider here
natural numbers as cardinals5 so that no structure anomaly emerges as long as � � � � $ ���).

We identify the sets +� of urelements chosen for ambients, +� of urelements chosen for atomical
processes, and the set of sets of urelements , that contain all the addresses of the elements in ��	�.

We now define labelled syntax tree for a given syntax tree of an ambient process.

Definition 4.7. Let �� � ����� be the syntax tree of the ambient process � . We call the labelled
syntax tree of it the triplet ��� � ����� -�, where - is the function defined on the nodes of the syntax
tree, by

-� � � �
)� ��  �� �� for all  � �.

Remark 4.1. It is obvious the central position of the function 
) in the previous definitions. For a
particular ambient process, once we defined the function 
), all the construction, up to the labelled syntax
tree, can be done inductively on the structure of the ambient process. Because of this, our construction
of the labelled syntax tree is unique up to the choice of urelements (i.e., of +� and +�).

Definition 4.8. For a given labelled syntax tree �� � ����� -� we define the functions:


 �� � � � ��	� � +� � +� �, by:

��� � �

�

)� � if  � ��

 �� � if  � ��	��

This function associates to each node of the structure graph the set-theoretical identity defined by
the labelled syntax tree.


 Let � � +� � +� �, � � � $ ��� be the function defined by

���� �  ����������.

It associates to each ambient and compound process the set of addresses of its children.


 � � +� � +� �, � � ��, where � is the set of names of ambients of Ambient Calculus, and �
is the set of atomical processes. For each � � +� �+� � �, ���� is the name of the process with
which � is associated by 
)6, and ���� � ��� �� if � � ,. By the function � each urelement (or
set of urelements) used as identity will receive the name of the ambient or atomical process that it
is pointing to (the sets receive the name ��� ��).

5Informally, we treat 0 as �, 1 as ���, 2 as ��� ����, 3 as ��� ���� ��� ����� and so on.
6Informally we could say that, on 
� � 
� , we have � � ����, but this is not exact for the reason that �� is an injective
function while � is not. Because if we have two processes named � , then, for both, the value by � will be � , but, by ����, they
point to different nodes in the syntax tree.
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 . � +� �+��, � ���� for each � � +� �+��,, . ��� � ���� ��� ������ where �� � ��� such
that �
 � �� 
)���� � ��  ����� � 
 and does not exist ���� � ��� such that 
)������ � � and
 ������� � � � �. In the case that, for � we cannot find any such ��, we define . ��� � ��� �� ����,
� being the null capability. We adopt the following enrichment of the relation of equality on
capability chains ��
� defined by the next rules 7:

– ���� ��� ��� ������ � ���� ��
� ���� ��� ������,

– ��� ��� ���� ��� ��
� ���� ��� ���� ��� �� ��
� ���� ���� ��� �� ����� ������ ��
� ���� ��� ���� ���,

– ��� �� ����� ��
� �.

The function . associates with each of these the list of capabilities that exists in front of the process
they point to.

Definition 4.9. Let � � ����� -� be a labelled syntax tree of the ambient process � . We will call the
canonical labelled syntax tree associated with � , denoted by �� � ������� -��, the restriction of the
labelled syntax tree to the set �� � 		� 	 � �� ��	� �� � �	) . �	� �� ��� �����
, where � is the null
process and � is the null capability.

Further we will analyze only canonical labelled trees (by extension canonical processes), these being
those which evolve during the ambient calculus computations, therefore they are those which really
matter for our purpose. Always, we consider ambient processes enclosed in a master ambient which
stays for the environment. Being the reduction rule � � �� 	�� �� 	���, there is no danger in doing
this.

Other aspects concerning the definition of the labelled syntax tree for situations that involves the new
name operator, the replication operator, or recursive processes can be found in [18]. Also we introduce
an algebra of labelled trees in order to analyze their composition.

In [18] we proved that the function that associates to each ambient process the set �+� � +�� ,� �� �� . �
is generating a sound model for Ambient Calculus. Moreover, the tuple � � �+��,�+� � �� satisfies the
requirements of the definition of a flat system of equations which can describe a hyperset uniquely up to
bisimulation relation, see [8]. For this reason we can interpret the tuple �+� � +�� ,� �� �� . � � �� � �� . �
as a labelled flat system of equations. This is the set theoretical model for communication and mobility
calculi. Such a result is important from a few points of view. First we are confident in the possibility to
extend this model to all Milner’s bigraphs [23] that are seen now as the only model of communication
systems. Second, replacing the structure of membership relation � in the definition of the flat system of
equations with a relation defined by a fuzzy set structure we hope to provide a model for any calculus of
communication involving stochastic information, such as [26, 27].

5. The Logic

The logic we construct is a branching propositional temporal logic8, ����. The requirements for such
a construction [14] are to organize a structure � � ����������, where �� is the initial state of our

7These rules are allowed by the syntax of Ambient Calculus together with the rules of structural congruence over processes.
8We choose 
��� because is more expressive then CTL, but a CTL is possible as well
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model, � is the class of all possible states in our model, � is the accessibility relation between states,
� � � � �, and � � � � ���� is a function which associates to each state � � � a set of atomical
propositions ���� � ���� – the set of the atomical propositions true in the state � (� will be the class
of atomical propositions and � the power-set operator).

We propose to use the ordered sets � � �+�� +� � ,� �� �� . � as states in our logic. The choice of
the initial state should depend on the purpose of our analysis. If we are interested in the future of an
ambient calculus process � by itself, then its ordered set will be the initial state. But if � will interact
with another process �, or will become a child of an ambient, or both like in ��� ���, then, even if we
have a particular interest in � , the initial state should be the ordered set of ��� ���. For this purpose we
defined computation operations over these ordered sets to be able, starting from the sets constructed for
some initial processes, to obtain the sets for other processes constructed on top of these (for more see
[18]).

The construction of � should be done in such a way to contain all the possible future states of the
initial state. For this reason we take

� � 	�� � �+ �
�� +

�
� � ,

�� ��� ��� .�� � +
�
� � +�

�� +
�
� � +�

� � �	) ,� � ,�
,

where �� � �+�
�� +

�
� � ,�� ��� ��� .�� is the initial state. The intuition is that no matter how the process

will evolve, it is not possible to appear in it new elements than those that already exist in the initial state9.
Our main idea is to define the atomic propositions such that they express the basic equations that

define the spatial relations between parts of our process. So, we could define the set of atomical propo-
sitions as:

� � 	������ � +� � +� �, �	) � � +� �,
.

In our logic we want ���� to be just an atomical proposition and �, � just letters. The cardinality of � is
���)�+� �+��,�����)�+��,� which depends (polynomially) on the number of atomical processes
and ambients in the ambient calculus process ��.

Further, the interpretation function � � �� ���� is defined by:

���� � 	���� � � � �
 or �� � �

.

As it concerns the accessibility relation � � ���, following the previous intuition we could define
it for two states �� and ��, constructed for the processes �� and ��, by ���� ��� � � iff �� � �� (i.e.,
�� can be reached from �� in one step of ambient calculus reduction).

5.1. Syntax

Further, we could introduce the syntax of the CTL* logic [14]. We inductively define a class of state
formulae (which will be true or false of states) and a class of path formulae10 (true or false on paths),
starting from �. We accept as basic operators the logical operators � and �, the temporal operators /
(next time) and � (until) and the path quantifier 0 (for some futures). We will derive from them all the

9We include here also the situations where some ambients were dissolved by consuming, for example, open capability; we
consider, in this case, that these ambients still exist in our process but they have an “empty position”.
10A fullpath is an infinite sequence ��� ��� ��� of states such that ���� ����� � � for all �. We use the convention that if
� � ���� ��� ���� denotes a fullpath, then �� denotes the suffix path ���� ����� ����� ����.
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usual propositional logic operators, the temporal operators ( (always) and . (sometimes) and the path
quantifier 1 (for all futures).

Syntactical rules:

1. Each atomical proposition %��& � 1� is a state formula.

2. If �� 2 are state formulae then so are � � 2, ��.

3. If � is a path formula then 0 �, 1 � are state formulae.

1’. Each state formula is a path formula.

2’. If �� 2 are path formulae then so are � � 2, ��.

3’. If �� 2 are path formulae then so are /�, � � 2.

Syntactical conventions:

1. 1� abbreviates �0��.

2. 0.� abbreviates 0�
��� � ��.

3. 1(� abbreviates �0.��.

4. 1.� abbreviates 1�
��� � ��.

5. 0(� abbreviates �1.��.

5.2. Semantics

Now we define �� inductively. We write �� �� �� � to mean that the state formula � is true at state ��
in the model �, and �� � �� � to mean that the path formula � is true for the fullpath � in the structure
�. The rules are:

�� �� �� � iff � � ������ where � � �

�� �� �� � � 2 iff �� �� �� � and �� �� �� 2

�� �� �� �� iff it is not the case that �� �� �� �

�� �� �� 0� iff � fullpath � � ���� ��� ���� in � with �� � �� �

�� �� �� 1� iff � fullpath � � ���� ��� ���� in � with �� � �� �

�� � �� � iff �� �� �� �

�� � �� � � 2 iff �� � �� � and �� � �� 2

�� � �� �� iff it is not the case that �� � �� �

�� � �� � � 2 iff �

�
�� �� �� 2 and �3

�
3 4 
 implies �� �� �� �

��
�� � �� /� iff �� �� �� �
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Definition 5.1. A state formula � (resp. path formula �) is valid provided that for every structure � and
every state � (resp. fullpath �) in � we have ��  �� � (resp. �� � �� �). A state formula (resp. path
formula) � is satisfiable provided that for some structure � and some states � (resp. fullpath �) in �
we have �� � �� � (resp. �� � �� �).

In [17] we develop the algorithms for computing the accessibility relation and in [20] we implement
them in NuSMV [2] in order to perform model checking.

5.3. The logical analysis of a biological system

Consider the example of the interaction between the Virus and Macrophage discussed before. If the
mathematical model chosen to describe the interaction is appropriate, then our system should have the
property that, independently of the path of time that it will choose, always we will meet, in the future,
the situation ����"	���
��
�� 
�. Our logic allows us to formulate all these as a logical statement. We
have:

��!����	 �����"	���
�����������
 ����
	 !�
	 ����������	 !����	 ����
�� 
�� (5.1)

For 5.1 we choose the urelements: % for �, & for ���, � for �, 5 for �, � for !, 5� for ��, � for "	���

and 2 for �
�� 
 with %� &� �� 5� 5�� �� 2� � � �. So, +� � 	%� &� �� 5� 5�
, +� � 	2� �� �
, , � �; �
is defined by: ��%� � �, ��&� � ���, ���� � �, ��5� � �, ���� � !, ��5�� � ��, ��2� � "	���
,
���� � �
�� 
 and � is defined by:

��%� � 	����� ��&�
 ��

�
���� � ��%�

��&� � ��%�
��

�
���% is true

&��% is true

���� � 	��5��
 �� 	 ��5�� � ���� �� 	 5���� is true

��&� � 	��5�� �
 ��

�
��5� � ��&�

� � ��&�
��

�
5��& is true

���& is true

��5�� � 	2
 �� 	 2 � ��5�� �� 	 2��5� is true

��5� � 	�
 �� 	 � � ��5� �� 	 ���5 is true

The property we are interested in could be expressed as

������#����$ 
�� �� 1. �&��%
�

2��&
�

���&�.

It says that for all time paths exists at least a reachable state for which ��� is a child of the master
ambient � � ��%�, "	���
 � ��2� and �
�� 
 � ���� are children of the Macrophage ambient
��� � ��&�. Further, for checking the truth value of this statement, a model checker could be used.
Proving that our logical formula is true it finally means that our mathematical model for describing our
problem is a correct one. Vice versa, if is not valid, the model checker will give us a counter example
that will show the conflict in our model. For such technics applied, the reader is referred to [20].

6. Conclusions

The logic we constructed on top of Ambient Calculus opens the perspective of using model checking
algorithms (or software) developed for temporal logics in analyzing mobile computations. In this way
we could predict the future of the systems (biological systems) described using the calculus.
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Such verification technique used for biological systems can offer biologists a strong instrument for
analysis. Expensive biological experiments could be replaced with model checking analysis and can be
used very profitably especially in a negative way, for rejecting impossible hypothesis and for orienting
the biologists’ studies toward logical possible situations. In this way, instead of performing many ex-
periments, the biologists will focus only on those that are as pointed as possible by the mathematical
model.

Our ongoing research makes us confident in the possibility to construct such a logic for other calculi
used for describing biological systems, e.g., BioAmbients Calculus [28], or Brane Calculi [9] but also
for stochastic calculi. Moreover, using the set theoretical model we hope to identify the “common math-
ematical reality”, which both the membrane computing and the process algebraical approach refer to as
“the mathematical structure of the biological systems”.
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