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Abstract. Semi-Markov processes are Markovian processes in which the
firing time of the transitions is modelled by probabilistic distributions
over positive reals interpreted as the probability of firing a transition at
a certain moment in time.
In this paper we consider the trace-based semantics of semi-Markov pro-
cesses, and investigate the question of how to compare two semi-Markov
processes with respect to their time-dependent behaviour. To this end,
we introduce the relation of being “faster than” between processes and
study its algorithmic complexity. Through a connection to probabilistic
automata we obtain hardness results showing in particular that this re-
lation is undecidable. However, we present an additive approximation al-
gorithm for a time-bounded variant of the faster-than problem over semi-
Markov processes with slow residence-time functions, and a coNP algo-
rithm for the exact faster-than problem over unambiguous semi-Markov
processes.

1 Introduction

Semi-Markov processes are Markovian stochastic systems that model the firing
time of transitions as probabilistic distribution over positive reals; thus, one
can encode the probability of firing a certain transition within a certain time
interval. For example, continuous-time Markov processes are particular case of
semi-Markov processes where the timing distributions are always exponential.

Semi-Markov processes have been used extensively to model real-time sys-
tems such as power plants [15] and power supply units [16]. For such real-
time systems, non-functional requirements are becoming increasingly important.
Many of these requirements, such as response time and throughput, depend heav-
ily on the timing behaviour of the system in question. It is therefore natural to
understand and be able to compare the timing behaviour of different systems.

Moller and Tofts [12] proposed the notion of a faster-than relation for systems
with discrete-time in the context of process algebras. Their goal was to be able
to compare processes that are functionally behaviourally equivalent, except that
one process may execute actions faster than the other. This line of study was
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continued by Lüttgen and Vogler [11], who moreover considered upper bounds
on time, in order to allow for reasoning about worst-case timing behaviours. For
timed automata, Guha et al. [9] introduced a bisimulation-like faster-than rela-
tion and studied its compositional properties. For continuous-time probabilistic
systems, Baier et al. [3] considered a simulation relation where the timing dis-
tribution on each state is required to stochastically dominate the other. They
introduced both a weak and a strong version of their simulation relation, and
gave a logical characterization of these in terms of the logic CSL.

In the literature, less attention has been drawn to trace-based notions of
faster-than relations although trace equivalence and inclusion are important con-
cepts when considering linear-time properties such as liveness or safety [2]. In
this paper we propose a simple and intuitive notion of trace inclusion for semi-
Markov processes, which we call faster-than relation, that compares the relative
speed of processes with respect to the execution of arbitrary sequences of actions.

Differently from trace inclusion, our relation does not make a step-wise com-
parison of the timing delays for each individual action in a sequence, but over the
overall execution time of the sequence. As an example, consider the semi-Markov
process in Fig. 1. The states s and s′, although performing the same sequences
of actions, are not related by trace inclusion because the first two actions in
any sequence are individually executed at opposite order of speeds (here gov-
erned by exponential-time distributions). Instead, according to our relation, s
is faster-than s′ (but not vice versa) because it executes single-action sequences
at a faster rate than s′, and action sequences of length greater than one at the
same speed —this is due to the fact that the execution time of each action is
governed by random variables that are independent of each other and the sum
of independent random variables is commutative.

Fig. 1. A semi-Markov process where s is faster than s′. The states of the process
are annotated with their timing distributions and each action-labelled transition is
decorated with its probability to be executed.

In this paper we investigate the algorithmic complexity of various problems
regarding the faster-than relation, emphasising their connection with classical al-
gorithmic problems over Rabin’s probabilistic automata. In particular, we prove
that the faster-than problem over generic semi-Markov processes is undecidable
and that it is Positivity-hard when restricted to processes with only one action
label. The reduction from the Positivity problem is important because it relates
the faster-than problem to the Skolem problem, an important problem in num-
ber theory, whose decidability status has been an open problem for at least 80
years [13, 1].



We show that undecidability for the faster-than problem can not be tackled
even by approximation techniques: via the same connection with probabilistic
automata we are able to prove that the faster-than problem can not be ap-
proximated up to a multiplicative constant. However, as a positive result, we
show that a time-bounded variant of the faster-than problem, which compares
processes up to a given finite time bound, although still undecidable, admits ap-
proximated solutions up to an additive constant over semi-Markov processes with
slow residence-time distributions. These include the important cases of uniform
and exponential distributions.

Finally, we present a coNP algorithm for solving the faster-than problem
exactly over unambiguous semi-Markov processes, where a process is unambigu-
ous if every transition to a next state is unambiguously determined by the label
that it outputs.

2 Definitions

For a finite set S we let D(S) denote the set of (sub)distributions over S, i.e.
functions δ : S → [0, 1] such that

∑
s∈S δ(s) ≤ 1. The subset of total distributions

is D=1(S).
We let IN denote the natural numbers and IR≥0 denote the non-negative

real numbers. We equip IR≥0 with the Borel σ-algebra B, so that (IR≥0,B)
is a measurable space. Let D(IR≥0) denote the set of (sub)distributions over
(IR≥0,B), i.e. measures µ : B → [0, 1] such that µ(IR≥0) ≤ 1. Throughout the
paper we will write µ(t) for µ([0, t]).

To avoid confusion we will refer to µ in D(IR≥0) as timing distributions, and
to δ in D(S) as distributions.

Definition 1 (Semi-Markov process). A semi-Markov process, usually writ-
ten M, is given by:

– S is a (finite) set of states,
– Out is a (finite) set of output labels,
– ∆ : S → D(S × Out) is a transition function,
– ρ : S → D(IR≥0) is a residence-time function.

The operational behaviour of a semi-Markov process can be described as
follows. In a given state s ∈ S, the process fires a transition within time t with
probability ρ(s)(t), leading to the state s′ ∈ S while outputting the label a ∈ Out

with probability ∆(s)(s′, a).
We aim at defining IPM(s, w, t), the probability that from the state s, the

output of the semi-Markov process M within time t starts with the word w. It
is important to note here that time is accumulated: we sum together the time
spent in all states along the way, and ask that this total time is less than the
specified bound t. A full and formal definition of the probability can be done
through the usual cylinder construction. However, we will spare the reader this
well-known construction and give seemingly ad-hoc definitions in this conference
version.



In order to account for the accumulated time in the probability, we need the
notion of convolution. The convolution of two timing distributions µ and ν is
µ ∗ ν defined by

(µ ∗ ν)(E) =

∫ ∞
0

ν(E − x)µ(dx)

for any Borel set E. Convolution is both associative and commutative. Let X
and Y be two independent random variables with timing distributions µ and ν,
i.e. IP(X ∈ E) = µ(E) and IP(Y ∈ E) = ν(E), then

IP(X + Y ∈ E) = (µ ∗ ν)(E) .

Definition 2 (Probability). Consider a semi-Markov process M. We define
the timing distribution IPM(s, w) inductively: IPM(s, ε) = 1l for the empty word
ε, where 1l is the function such that 1l(t) = 1 for all t in IR≥0, and for a word w
in Out∗, a letter a in Out and a state s,

IPM(s, aw) =
∑
s′∈S

∆(s)(s′, a) · (ρ(s) ∗ IPM(s′, w)) .

We will then write IPM(s, w, t) to mean IPM(s, w)(t).

Timed Comparisons

We introduce the following relation which will be the focus of our paper.

Definition 3 (Faster-than relation). Consider a semi-Markov process M
and two states s and s′. We say that s is faster than s′, denoted s � s′, if for
all w, for all t,

IPM(s, w, t) ≥ IPM(s′, w, t) .

The algorithmic problem we consider in this paper is the faster-than problem:
given a semi-Markov process and two states s and s′, determine whether s � s′.

Algorithmic Considerations

The definition we use for semi-Markov processes is very general, because we allow
for any residence-time function. The aim of the paper is to give generic algorith-
mic results which apply to effective classes of timing distributions, a notion we
define now. Recall that a residence-time function associates with each state a
timing distribution. We first give some examples of classical timing distributions.

– The prime example is exponential distributions, defined by the timing dis-
tribution µ(t) = 1− e−λt for some parameter λ > 0 usually called the rate.

– Another interesting example is piecewise polynomial distributions. Consider
finitely many polynomials P1, . . . , Pn and a finite set of pairwise disjoint
intervals I1 ∪ I2 ∪ · · · ∪ In covering [0,∞) such that for every k, Pk is non-
negative over Ik and

∑
k

∫
Ik
Pk = 1. This induces the timing distribution

µ(t) =
∑
k

∫
Ik∩[0,t]

Pk(t) .



– A special case of the previous example is given by piecewise affine distribu-
tions, where the polynomials are affine functions.

– Another important special case of piecewise polynomial distributions are
the uniform distributions with parameters 0 ≤ a < b defining the timing
distribution

µ(t) =


1 if t < a,
t−a
b−a if t ∈ [a, b)

0 if x ≥ b .

– The simplest example is given by Dirac distributions defined for the param-
eter a by µ(E) = 1 if a is in E, and 0 otherwise.

The following definition captures these examples, and more. For a class C of
timing distributions, we let Convex(C) be the smallest class of timing distribu-
tions containing C and closed under convex combinations, and similarly Conv(C)
adding closure under convolutions.

Lemma 1. Let C be a class of timing distributions. Consider a semi-Markov
process M whose residence-time function uses timing distributions from C, a
state s and a word w, then IPM(s, w) ∈ Conv(C).

Lemma 1 is established by a straightforward induction on the word w using
the definition of IPM(s, w).

In the rest of the paper we will consider only distributions that are suitable
for algorithmic manipulation. Clearly, we must be able to give them as input to
a computational device, so we assume they can be described by finitely many
rational parameters. Moreover, we require that testing inequalities between them
is decidable, since this is essential for determining the faster-than relation. The
next definition formalises this intuition.

Definition 4 (Effective timing distributions). A class C of timing distri-
butions is effective if, for any ε ≥ 0, b ∈ IR≥0 ∪ {∞}, and µ1, µ2 ∈ Conv(C), it
is decidable whether µ1(t) ≥ µ2(t)− ε, for all t ≤ b.

Proposition 1. The following classes of timing distributions are effective:

– exponential distributions,
– piecewise polynomial distributions,
– piecewise affine distributions,
– uniform distributions,
– Dirac distributions.

We do not provide in the conference version a full proof of Proposition 1, as
it is mostly folklore but rather tedious. In particular, for exponential and piece-
wise polynomial distributions one relies on decidability results for the existential
theory of the reals [4, 17], implying that the most demanding operations above
can be performed in polynomial space.



An effective class C of timing distributions induces the set of semi-Markov
processes whose residence-time functions use timing distributions from C. Fur-
thermore, a given semi-Markov process has only finitely many states, and hence
can only use finitely many timing distributions. For our decidability results we
will therefore focus on finite classes of timing distributions. This paper gives
algorithmic results for generic effective classes of timing distributions. In our
complexity analyses, we will always assume that the operations on the timing
distributions have a unit cost.

3 Hardness Results

We start the technical part of this article by hardness results inherited from
Markov processes. A Markov process is a semi-Markov process without the
residence-time function, and for a Markov process M = (S, Out, ∆), we define
the probability IPM(s, aw) =

∑
s′∈S ∆(s)(s′, a) · IPM(s′)(w) and IPM(s, ε) = 1

for the empty word. The faster-than relation for Markov processes is then s � s′
if for all w we have IPM(s, w) ≥ IPM(s′, w).

We show that the faster-than problem for Markov processes, and hence also
for semi-Markov processes, is undecidable in general, can not be multiplicatively
approximated, and relates to an open problem in number theory even in a re-
stricted case. These limitations shape and motivate our positive results, which
will be the topic of the remaining sections.

We first explain how hardness results for Markov processes directly imply
hardness results for semi-Markov processes. The following lemma formalises the
two ways semi-Markov processes subsume Markov processes.

Lemma 2. Consider a semi-Markov processM = (S, Out, ∆, ρ) and its induced
Markov process M′ = (S, Out, ∆).

– If ρ is constant, i.e. for all s, s′ we have ρ(s) = ρ(s′), then for all w, for all
t, we have IPM(s, w, t) = IPM′(s, w) · (ρ(s) ∗ · · · ∗ ρ(s)︸ ︷︷ ︸

|w| times

)(t).

– If for all s, ρ(s) is the Dirac distribution for 0, then for all w, for all t, we
have IPM(s, w, t) = IPM′(s, w).

In particular in both cases, the following holds: for s, s′ two states, we have s � s′
in M if, and only if, s � s′ in M′.

We will use Lemma 2 to draw corollaries about semi-Markov processes from
hardness results of Markov processes.

The hardness results of this section will be based on a connection to proba-
bilistic automata. A probabilistic automaton is given by

A = (Q,A, q0, ∆ : Q×A→ D=1(Q), F ) ,

where Q is the state space, A is the alphabet, q0 is an initial state, ∆ is the
transition function, and F is a set of final or accepting states. Any probabilistic



automatonA induces the probability IPA(w) that a run over w ∈ A∗ is accepting,
i.e. starts in q0 and ends in F . The key property of probabilistic automata that we
will exploit is the undecidability of the universality problem, which was proved
in [14], see also [8]. The universality problem is as follows: given a probabilistic
automaton A, determine whether for all words w in A+ we have IPA(w) ≥ 1

2 .
We describe a construction which given a probabilistic automaton A, con-

structs the derived Markov process M(A). The set of states of M(A) is Q ×
{`, r} ∪ {>}, where > is a new state. Let s = (q0, `) and s′ = (q0, r), where q0 is
the initial state of A. The set of output labels is A, and the transition function
∆′ is defined as follows:

∆′(p, `)((q, `), a) =
1

2|A|
∆(p, a)(q) ∆′(p, `)(>, a) =

1

2|A|
if p ∈ F

∆′(p, r)((q, r), a) =
1

2|A|
∆(p, a)(q) ∆′(p, r)(>, a) =

1

4|A|
.

We can then verify the following equalities:

IPM(A)(s, wa) =
1

(2|A|)|w|+1
(1 + IPA(w))

and

IPM(A)(s
′, wa) =

1

(2|A|)|w|+1

(
1 +

1

2

)
.

Theorem 1. The faster-than problem is undecidable for Markov processes.

Proof. Given a probabilistic automaton A, we construct the derived Markov
process M(A). Thanks to the equalities above, A is universal if, and only if,
s � s′. ut

We discuss three approaches to recover decidability.
A first approach is to look for structural restrictions on the underlying graph.

However, the undecidability result above for probabilistic automata is quite ro-
bust in this aspect, as it already applies when the underlying graph is acyclic,
meaning that the only loops are self-loops. In spite of this, we present in Sect. 5
an algorithm to solve the faster-than problem for unambiguous semi-Markov
processes.

A second approach is to restrict the observations. The undecidability result
above holds already when there are two different output letters, hence a natu-
ral question is to look at what happens when we only have one output letter.
Interestingly, specialising the construction above yields a reduction from the
Positivity problem. This problem appears in various contexts, prominently in
number theory, and its decidability status has been an open problem for at least
30 years [13]. Formally, the Positivity problem reads: given a linear recurrence
sequence, are all terms of the sequence non-negative? It has been shown that
the universality problem for probabilistic automata with one letter alphabet is
equivalent to the Positivity problem [1]. Thus, using again the derived Markov
process M(A) for a probabilistic automaton A with only one label, we obtain
the following result.



Theorem 2. The faster-than problem is Positivity-hard over Markov processes
with one output label.

A third approach is approximations. However, we can exploit further the con-
nection we made with probabilistic automata, obtaining an impossibility result
for multiplicative approximation. We rely on the following celebrated theorem for
probabilistic automata due to Condon and Lipton [5]. The following formulation
of their theorem is described in detail in [6].

Theorem 3 ([5]). Let 0 < α < β < 1 be two constants. There is no algorithm
which, given a probabilistic automaton A,

– if for all w we have IPA(w) ≥ β, returns YES,

– if there exists w such that IPA(w) ≤ α, returns NO.

Theorem 4. Let 0 < ε < 1
3 be a constant. There is no algorithm which, given

a Markov process M and two states s, s′,

– if for all w we have IPM(s, w) ≥ IPM(s′, w), returns YES,

– if there exists w such that IPM(s, w) ≤ IPM(s′, w) · (1− ε), returns NO.

Proof. Assume towards a contradiction that there exists an algorithm as de-
scribed in the theorem. We then construct an algorithm satisfying the specifica-
tions of Theorem 3.

Let α = 1
2 −

3ε
2 and β = 1

2 , and let A be a probabilistic automaton. We now
run the algorithm on the derived Markov process M(A).

– If for all w we have IPM(A)(s, w) ≥ IPM(A)(s
′, w), then the algorithm returns

YES. Indeed, this is equivalent to IPA(w) ≥ β.

– If there exists w such that IPM(A)(s, w) ≤ IPM(A)(s
′, w) · (1 − ε), then the

algorithm returns NO. Indeed, this is equivalent to IPA(w) ≤ α.

Hence we constructed an algorithm satisfying the specifications of Theorem 3, a
contradiction. ut

From these hardness results for Markov processes together with Lemma 2,
we get the following hardness results for semi-Markov processes.

Corollary 1. The following holds for semi-Markov processes for any class of
timing distributions.

– The faster-than problem is undecidable.

– The faster-than problem with only one output label is Positivity-hard.

– The faster-than problem can not be multiplicatively approximated.



4 Time-Bounded Additive Approximation

Instead of considering multiplicative approximation, we can also consider addi-
tive approximation, meaning that we want to decide whether for all w and t we
have IPM(s, w, t) ≥ IPM(s′, w, t) − ε for some constant ε > 0. In this section,
we present an algorithm to solve the problem of approximating additively the
faster-than relation with two assumptions:

– time-bounded : we only look at the behaviours up to a given bound b in IR≥0,
– slow residence-time functions: each transition takes some time to fire.

As we will show, the combination of these two assumptions imply that the rele-
vant words have bounded length. This is in contrast to the impossibility of ap-
proximating the faster-than relation multiplicatively that we showed in Sect. 3.
More precisely, we consider the time-bounded variant of the faster-than problem:
given a time bound b in IR≥0, a semi-Markov process, and two states s and s′,
determine whether for all t ≤ b and w it holds that IPM(s, w, t) ≥ IPM(s′, w, t).

We first observe that this restriction of the faster-than problem does not
make any of the problems in Sect. 3 easier for semi-Markov processes. Indeed, if
the residence-time functions are all Dirac distributions on 0, then all transitions
are fired instantaneously, and the time-bounded restriction is immaterial. Thus
we focus on distributions that do not fire instantaneously, as made precise by
the following definition.

Definition 5 (Slow distributions). We say that a class C of timing distribu-
tions is slow if for all finite subset C0 of C, there exists a computable function
ε : IN× IR≥0 → [0, 1] such that for all n, t, and µ1, . . . , µn ∈ Convex(C0) we have
(µ1 ∗ · · · ∗ µn)(t) ≤ ε(n, t) and limn→∞ ε(n, t) = 0.

Given a slow and effective class C of timing distributions, we can do additive
approximation of the time-bounded faster-than problem in the following way.
We introduce the following notation. Fix a semi-Markov process M. Let CM =
Convex({ρ(s) | s ∈ S}), and n in IN. We define the timing distribution FM,n by
FM,n(t) = 1 if n = 0 and otherwise

FM,n(t) = sup {(µ1 ∗ · · · ∗ µn)(t) | µ1, . . . , µn ∈ CM} .

Lemma 3. For all s and all w, we have IPM(s, w) ≤ FM,|w|.

Proof. We proceed by induction on the length of w. It is clear for |w| = 0.

IPM(s, aw) =
∑
s′∈S

∆(s)(s′, a) · ρ(s) ∗ IPM(s′, w)

≤
∑
s′∈S

∆(s)(s′, a) · ρ(s)︸ ︷︷ ︸
∈CM

∗FM,|w|

≤ FM,|w|+1 .

This concludes. ut



Theorem 5. There exists an additive approximation algorithm for the time-
bounded faster-than problem over semi-Markov processes for all slow and effective
classes of timing distributions.

In other words, for a constant ε > 0, there exists an algorithm which, given
a semi-Markov process M, two states s, s′, and a bound b in IR≥0, determines
whether

∀w,∀t ≤ b, IPM(s, w, t) ≥ IPM(s′, w, t)− ε .

Proof. Let CM = Convex({ρ(s) | s ∈ S}), since S is finite there exists a com-
putable function ε : IN× IR≥0 → [0, 1] such that for all n, t, and µ1, . . . , µn ∈ CM
we have (µ1 ∗ · · · ∗ µn)(t) ≤ ε(n, t) and limn→∞ ε(n, t) = 0. Given ε > 0, there
exists N such that ε(N, b) < ε. Let n ≥ N . By assumption

(µ1 ∗ · · · ∗ µn)(b) ≤ ε(n, b) ≤ ε(N, b) < ε

for all µ1, . . . , µn ∈ CM. Taking the supremum over µ1, . . . , µn, we then get
FM,n(b) < ε, and by Lemma 3, this means that for all w of length at least N ,
we have IPM(s′, w, b) < ε. Hence it holds trivially that for all t ≤ b and w of
length at least N , we have IPM(s, w, t) ≥ IPM(s′, w, t)− ε.

Thus the algorithm checks whether for all words of length less than N , for
all t ≤ b, we have IPM(s, w, t) ≥ IPM(s′, w, t) − ε, which is decidable thanks to
the effectiveness of C. ut

Next we show that there are interesting classes of timing distributions that
are indeed slow. For this we introduce a class of timing distributions that are not
just slow, but furthermore are guaranteed to converge to zero rapidly. We say
that a timing distribution µ is very slow if there exists a computable function

ε : IR≥0 → [0, 1] such that limt→0
ε(t)
t = 0 and for all t, we have µ(t) ≤ ε(t). In

order to show that very slow timing distributions are slow, we need the following
lemma.

Lemma 4. Let µ1, . . . , µn be timing distributions. Then

(µ1 ∗ µ2 ∗ · · · ∗ µn)(t) ≤
n∑
i=1

µi

(
t

n

)
.

Proof. We proceed by induction on n. The case of n = 1 is trivial. Recall that
for any non-negative function f and measure µ we have∫

E

f(x)µ(dx) ≤ µ(E) · (sup
E
f(x)) . (1)



Let µ = µ1 ∗ · · · ∗ µn.

(µ1 ∗ · · · ∗ µn+1)(t)

=

∫ t

0

µ(t− x)µn+1(dx)

=

∫ nt
n+1

0

µ(t− x)µn+1(dx) +

∫ t

nt
n+1

µ(t− x)µn+1(dx)

=

∫ nt
n+1

0

µ(t− x)µn+1(dx) +

∫ t
n+1

0

µ

(
t

n+ 1
− u
)
µn+1(du)

≤ µ
(

nt

n+ 1

)
+ µn+1

(
t− nt

n+ 1

)
≤

n∑
i=1

µi

(
n

n+ 1

t

n

)
+ µn+1

(
t

n+ 1

)
=

n+1∑
i=1

µi

(
t

n+ 1

)
.

The third equality is the change of variable u = x − nt
n+1 . The first inequality

uses for each summand the inequality (1). The second inequality is by induction
hypothesis. ut

We can now prove the following theorem.

Theorem 6. The following classes of timing distributions are slow:

– very slow distributions,
– uniform distributions, and
– exponential distributions.

Proof. Let C be a class of very slow timing distributions, and C0 = {µ1, . . . , µn}
a finite subset of C. Since every timing distribution in C is very slow, for every
i ∈ {1, . . . , n} there exists a function εi such that µi(t) ≤ εi(t) for all t. Let
ε(n, t) = n · max

{
εi
(
t
n

)
| i ∈ {1, . . . , n}

}
. Note that limn→∞ ε(n, t) = 0. Let

ν1, . . . , νn in Convex(C0), we have (ν1 ∗ · · · ∗ νn)(t) ≤
∑n
i=1 νi

(
t
n

)
thanks to

Lemma 4. This implies that (ν1 ∗ · · · ∗ νn)(t) ≤ ε(n, t), which concludes.
For exponential distributions, we proceed as follows. Let C0 be a finite class

of exponential distributions. Let λ > 0 be the rate of the slowest exponential
distributions appearing in C0, and let µ(t) = 1 − e−λt. Then for any µ1, . . . , µn
in Convex(C0) we have

(µ1 ∗ · · · ∗ µn)(t) ≤ (µ ∗ · · · ∗ µ︸ ︷︷ ︸
n times

)(t).

The distribution µ ∗ · · · ∗ µ is called the Gamma (or more precisely, Erlang)
distribution, and there is a computable closed form for it. In particular, if we let

ε(n, t) = (µ ∗ · · · ∗ µ︸ ︷︷ ︸
n times

)(t),



we have limn→∞ ε(n, b) = 0, so exponential distributions are slow.
Uniform distributions can be handled using a similar way as for exponential

distributions. Let C0 be a finite class of uniform distributions with parameters
ai and bi for i ∈ {1, . . . , n}. Let a be the smallest ai and b the smallest bi, and
let µ be the uniform distribution with parameters a and b. Then it follows that

(µ1 ∗ · · · ∗ µn)(t) ≤ (µ ∗ · · · ∗ µ︸ ︷︷ ︸
n times

)(t) = ε(n, t).

Then (µ ∗ · · · ∗ µ) also has a nice closed form [10] and limn→∞ ε(n, b) = 0. ut

5 Unambiguous Semi-Markov Processes

In order to regain decidability of the faster-than relation, we can look at struc-
turally simpler special cases of semi-Markov processes. Here we will focus on
semi-Markov processes such that each output word induces at most one trace of
states. More precisely, we will say that a semi-Markov process is unambiguous
if for every s in S and a in Out, there exists at most one s′ in S such that
∆(s)(s′, a) 6= 0. A related notion of bounded ambiguity has been utilised to
obtain decidability results in the context of probabilistic automata [7]. We in-
troduce the following notation for unambiguous semi-Markov processes: T (s, w)
is the state reached after emitting w from s.

Example 1. Figure 2 gives an example of an unambiguous semi-Markov process.
For each of the three states, there is at most one state that can be reached by
a given output label. However, there need not be a transition for each output
label from every state. In this example, the state s2 has no b-transition, so for
instance T (s1, ab) = s2, but T (s1, abb) is undefined.

Fig. 2. An example of an unambiguous semi-Markov process.

Theorem 7. The faster-than problem is decidable in coNP over unambiguous
semi-Markov processes for all effective classes of timing distributions.

Theorem 7 follows from the next proposition.



Proposition 2. Consider an unambiguous semi-Markov process M and two
states s, s′. Let L(s, s′) be the set of loops reachable from (s, s′):{

(p, p′, v) ∈ S2 × Out≤S
2

∣∣∣∣ ∃w ∈ Out≤S
2

,
T (s, w) = p, T (s′, w) = p′,
T (p, v) = p, T (p′, v) = p′

}
.

We have s � s′ if, and only if

– for all w in Out≤S
2

, we have IPM(s, w) ≥ IPM(s′, w), and
– for all (p, p′, v) in L(s, s′), we have IPM(p, v) ≥ IPM(p′, v).

Before going into the proof, we explain how to use Proposition 2 to construct
an algorithm solving the faster-than problem over unambiguous semi-Markov
processes.

1. The first step is to compute L(s, s′), which can be done in polynomial time
using a simple graph analysis,

2. The second step is to check the two properties, which both can be reduced
to exponentially many queries of the form: µ1 ≥ µ2 for µ1, µ2 in Conv(C).

To obtain a coNP algorithm, in the second step we guess which of the two
properties is not satisfied and a witness of polynomial length, which is either
a word of quadratic length for the first property, or two states and a word of
quadratic length for the second property.

We split the proof of Proposition 2 into two lemmas, each proving one direc-
tion of the proposition. The following lemma gives the first direction.

Lemma 5. If s � s′, then, for all (p, p′, v) ∈ L(s, s′), IPM(p, v) ≥ IPM(p′, v).

Proof. Assume that s is faster than s′ and let (p, p′) be in L(s, s′). There exist
w, v in Out∗ such that T (s, w) = p, T (s′, w) = p′, T (p, v) = p, T (p′, v) = p′. Let
n in IN. Since s is faster than s′, we have IPM(s, wvn) ≥ IPM(s′, wvn). We have

IPM(s, wvn) = IPM(s, w) ∗ IPM(p, v) ∗ · · · ∗ IPM(p, v)︸ ︷︷ ︸
n times

IPM(s′, wvn) = IPM(s′, w) ∗ IPM(p′, v) ∗ · · · ∗ IPM(p′, v)︸ ︷︷ ︸
n times

.

Let Xs,w be the random variable measuring the time elapsed from s emitting w.
Similarly, we define Xp,v, Ys′,w and Yp′,v. We have: for all n in IN, for all t,

IPM(Xs,w + nXp,v ≤ t) ≥ IPM(Ys′,w + nYp′,v ≤ t) ,

Dividing both sides by n yields

IPM

(
Xs,w

n
+Xp,v ≤

t

n

)
≥ IPM

(
Ys′,w
n

+ Yp′,v ≤
t

n

)
.



We make the change of variables x = t
n : for all n in IN, for all x we have

IPM

(
Xs,w

n
+Xp,v ≤ x

)
≥ IPM

(
Ys′,w
n

+ Yp′,v ≤ x
)

.

Letting n→∞, we then obtain, for all x

IPM(Xp,v ≤ x) ≥ IPM(Yp′,v ≤ x) ,

which is equivalent to IPM(p, v) ≥ IPM(p′, v). ut

The following lemma gives the converse implication of Proposition 2.

Lemma 6. Assume that

– for all w in Out≤S
2

, we have IPM(s, w) ≥ IPM(s′, w), and
– for all (p, p′, v) in L(s, s′), we have IPM(p, v) ≥ IPM(p′, v).

Then s � s′.

Proof. We prove that for all w, we have IPM(s, w) ≥ IPM(s′, w) by induction on
the length of w.

For w of length at most S2, this is ensured by the first assumption. Let w
be a word longer than S2. There exist two states p, p′ such that p is reached by
s and p′ by s′ after emitting i letters of w and again after emitting j letters of
w, with j at most S2. Let w = w1 v w2 where v starts at position i and ends at
position j. By construction (p, p′, v) is in L(s, s′). We have

IPM(s, w) = IPM(s, w1) ∗ IPM(p, v) ∗ IPM(p, w2)

= IPM(s, w1) ∗ IPM(p, w2) ∗ IPM(p, v)

= IPM(s, w1w2) ∗ IPM(p, v)

≥ IPM(s′, w1w2) ∗ IPM(p′, v)

= IPM(s′, w1) ∗ IPM(p′, w2) ∗ IPM(p′, v)

= IPM(s′, w1) ∗ IPM(p′, v) ∗ IPM(p′, w2)

= IPM(s′, w) .

The equalities use the associativity and commutativity of the convolution. The
inequality IPM(s, w1w2) ≥ IPM(s′, w1w2) holds by induction hypothesis, because
w1w2 is shorter than w. The inequality IPM(p, v) ≥ IPM(p′, v) holds thanks to
the second assumption. ut

6 Conclusion and Open Problems

We studied the model of semi-Markov processes where the timing behaviour can
be described by arbitrary timing distributions. We have introduced a trace-based
relation called the faster-than relation which asks that for any prefix and any
time bound, the probability of outputting a word with that prefix within the time



bound is higher in the faster process than in the slower process. We have shown
through a connection to probabilistic automata that the faster-than relation is
highly undecidable. It is undecidable in general, and remains Positivity-hard
even for one output label. Furthermore, approximating the faster-than relation
up to a multiplicative constant is impossible.

However, we constructed algorithms for special cases of the faster-than prob-
lem. We have shown that if one considers approximating up to an additive con-
stant rather than a multiplicative constant, and if one gives a bound on the time
up to which one is interested in comparing the two processes, then approximation
can be done for timing distributions in which we are sure to spend some amount
of time to take a transition. In addition, we have shown that the faster-than
relation is decidable and in coNP for unambiguous processes, in which there is
a unique successor state for every output label.

In this paper, we have focused on the generative model, where the labels
are treated as outputs. An alternative viewpoint is the reactive model, where
the labels are instead treated as inputs [18]. While all the undecidability and
hardness results we have shown can also easily be shown to hold for the reactive
case, the same is not true for the algorithms we have constructed. It is non-
trivial to extend these algorithms to the reactive case, and the main obstacle in
doing so is that for reactive systems, one has to also handle schedulers, often
uncountably many. It is therefore still an open question whether our decidability
results carry over to reactive systems.

References

1. S. Akshay, Timos Antonopoulos, Joël Ouaknine, and James Worrell. Reachability
problems for Markov chains. Inf. Process. Lett., 115(2):155–158, 2015.

2. Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

3. Christel Baier, Joost-Pieter Katoen, Holger Hermanns, and Verena Wolf. Compar-
ative branching-time semantics for Markov chains. Inf. Comput., 200(2):149–214,
2005.

4. John F. Canny. Some Algebraic and Geometric Computations in PSPACE. In
STOC, pages 460–467. ACM, 1988.

5. Anne Condon and Richard J. Lipton. On the complexity of space bounded inter-
active proofs (extended abstract). In FOCS, 1989.
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11. Gerald Lüttgen and Walter Vogler. A faster-than relation for asynchronous pro-
cesses. In CONCUR, pages 262–276, 2001.

12. Faron Moller and Chris M. N. Tofts. Relating processes with respect to speed. In
CONCUR ’91, 2nd International Conference on Concurrency Theory, Amsterdam,
The Netherlands, August 26-29, 1991, Proceedings, pages 424–438, 1991.
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