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I. Introduction

The Stone representation [7] theorem is one of the recog-
nized landmarks of mathematics. The Stone representation
theorem [7] states that every (abstract) boolean algebra is iso-
morphic to a boolean algebra of sets; in modern terminology
one has an equivalence of categories between the category of
boolean algebras and the (opposite of) the category of compact
Hausdorff zero-dimensional spaces, or Stone spaces.

In this paper we develop exactly such a duality for continuous-
time continuous-space transitions systems where transitions
are governed by an exponentially-distributed waiting time,
essentially a continuous-time Markov chain (CTMC) with a
continuous space. The logical characterization of bisimulation
for such systems was proved a few years ago [3] using
much the same techniques as were used for labelled Markov
processes [5]. Recent work by the first two authors and
Cardelli [1], [2] have established completeness theorems and
finite model theorems for similar logics. Thus it seemed
ripe to capture these logics algebraically and explore duality
theory.

One of the critiques of logics and equivalences being used for
the treatment of probabilistic systems is that boolean logic is
not robust with respect to small perturbations of the real-valued
system parameters. Accordingly, a theory of metrics [4] was
developed and metric reasoning principles were advocated. In
conjunction with our exploration of duality theory therefore we
investigated the role of metrics and discovered a striking metric
analogue of the duality theory. This paper describes both
these theories. One can view the latter as the analogue of a
completeness theorem for metric reasoning principles.

One of the points of departure of the present work from earlier
work is the use of hemimetrics: analogues of pseudometrics
that are not symmetric. This fits in well with the order structure
of the boolean algebra. Nearly 25 years ago, Mike Smyth [6]
advocated the use of such structure to combine metric and
domain theory ideas. The interplay between the hemimetric
and the boolean algebra is somewhat delicate and had to be
carefully examined for the duality to emerge. It is a pleasant
feature that exactly these axioms relating the hemimetric and
the boolean algebra are satisfied in our examples without any
artificial fiddling.

We summarize the key results of the present work:

• a description of a new class of algebras that captures, in
algebraic form, the probabilistic modal logics used for
continuous Markov processes,

• a duality between these algebras and continuous Markov
processes

• a (hemi)metrized version of the algebras and of the
Markov processes and

• a metric analogue of the duality.

II. Definitions

Let M be a set and d : M × M → R.
Definition 1. We say that d is a hemimetric on M if for
arbitrary x, y ∈ M,

(1): d(x, x) = 0
(2): d(x, y) ≤ d(x, z) + d(z, y)

We say that (M, d) is a hemimetric space.

Note that a hemimetric is not necessarily symmetric nor does
d(x, y) = 0 imply that x = y. A symmetric hemimetric is called
a pseudometric.
Definition 2. For a hemimetric d on M we define the Haus-
dorff hemimetric dH on the class of subsets of X by

dH(X,Y) = sup
x∈X

inf
y∈Y

d(x, y).

We also define the dual of the Hausdorff hemimetric dH on
the class of subsets of X by

dH(X,Y) = sup
y∈Y

inf
x∈X

d(x, y).

Definition 3 (Continuous Markov processes). Given a mea-
surable space (M,Σ), a continuous Markov process (CMK) is
a tuple M = (M,Σ, θ), where θ ∈ ~M → ∆(M,Σ)�. M is the
support set of M denoted by supp(M). If m ∈ M, (M,m) is
a continuous Markov process (CMP).
Definition 4 (Aumann algebra). An Aumann algebra (AA)
over the set B , ∅ is a structure A = (B,>,⊥,∼
,t,u, {Fr,Gr}r∈Q+ ,v) where B = (B,>,⊥,∼,t,u,v) is a
meet-continuous boolean Algebra, for each r ∈ Q+, Fr,Gr :
B→ B are monadic operations and the elements of B satisfy
the axioms in Table I, for arbitrary a, b ∈ B and r, s ∈ Q+.
Definition 5 (Metrized Aumann algebra). A metrized Au-
mann algebra is a tuple (A, δ), where A = (B,>,⊥,∼
,t,u, {Fr,Gr}r∈Q+ ,v) is an Aumann algebra and δ : B × B→
[0, 1] is a hemimetric on B satisfying, for arbitrary a, b ∈ B,



(AA1): > v F0a
(AA2): Fr+sa v∼ Gra, for s > 0
(AA3): ∼ Fra v Gra
(AA4): (∼ Fr(a u b)) u (∼ Fs(au ∼ b)) v∼ Fr+sa
(AA5): (∼ Gr(a u b)) u (∼ Gs(au ∼ b)) v∼ Gr+sa
(AA6): If a v b then Fra v Frb
(AA7):

∧
{Frb | r < s} = Fsb

(AA8):
∧
{Grb | r > s} = Gsb

(AA9):
∧
{Frb | r > s} = ⊥

TABLE I
Aumann algebra

and arbitrary filtered set A ⊆ B for which there exists
∧

A′inB,
the axioms in Table II.

(H0): if δ(a, b) = 0, then a v b
(H1): δ(a, b) = δ(a u (∼ b), b)
(H2): δ(b,

∧
A) = inf

a∈A
δ(b, a)

(H3): δ(
∧

A, b) = sup
a∈A

δ(a, b)

TABLE II
Hemimetric axioms for metrized AA

III. Results

We have a duality theorem between CMPs and Aumann
Algebras.
Theorem 6 (Representation Theorem). (i) Any CMP M =

(M,Σ, θ) is bisimilar to M(L(M)) and the bisimulation rela-
tion is given by the mapping α defined, for arbitrary m ∈ M,
by

m 7→ α(m) = {φ ∈ L(M) | M,m |= φ}.

(ii) Any Aumann algebraA = (B,>,⊥,∼,t,u, {Fr,Gr}r∈Q+ ,v)
is isomorphic to L(M(A)) and the isomorphism is given by
the mapping β defined, for arbitrary a ∈ B, by

a 7→ β(a) =∧
({φ ∈ L(M(A)) | ∀u ∈ U(B) s. t. ↑ (a) ⊆ u,M(A), u |= φ}).

This extends to a duality between the hemi-metric spaces in
the following sense.
Theorem 7 (The metric duality theorem). (i) Given a
metrized CMP (M, d) with M = (M,Σ, θ), M is bisimilar
to M(A(L(M))) by the map α defined in the Representation
Theorem and, in addition, for arbitrary m, n ∈ M,

d(m, n) = (dH)H(α(m), α(n)).

(ii) Given a metrized AA (A, δ) with A = (B,>,⊥,∼
,t,u, {Fr,Gr}r∈Q+ ,v),A is isomorphic toA(L(M(A))) by the
map β defined in the Representation Theorem and, in addition,
for arbitrary a, b ∈ B

δ(a, b) = (δH)H(β(a), β(b)).
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