
Parametric Verification of Weighted Systems
Peter Christoffersen, Mikkel Hansen, Anders Mariegaard, Julian
Trier Ringsmose, Kim Guldstrand Larsen, and Radu Mardare

Aalborg University
Selma Lagerlöfs Vej 300, Denmark
{pchri10, mhan10, amarie10, jrings10} @student.aau.dk
{kgl, mardare} @cs.aau.dk

Abstract
This paper addresses the problem of parametric model checking for weighted transition systems.
We consider transition systems labelled with linear equations over a set of parameters and we
use them to provide semantics for a parametric version of weighted CTL where the until and
next operators are themselves indexed with linear equations. The parameters change the model-
checking problem into a problem of computing a linear system of inequalities that characterizes
the parameters that guarantee the satisfiability. To address this problem, we use parametric
dependency graphs (PDGs) and we propose a global update function that yields an assignment
to each node in a PDG. For an iterative application of the function, we prove that a fixed point
assignment to PDG nodes exists and the set of assignments constitutes a well-quasi ordering,
thus ensuring that the fixed point assignment can be found after finitely many iterations. To
demonstrate the utility of our technique, we have implemented a prototype tool that computes
the constraints on parameters for model checking problems.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases parametric weighted transition systems, parametric weighted CTL, para-
metric model checking, well-quasi ordering, tool

Digital Object Identifier 10.4230/OASIcs.xxx.yyy.p

1 Introduction

Specification and modelling formalisms that address non-functional properties of embedded
and distributed systems have been intensively studied in the last decades. In particular the
modelling formalism of timed automata [3] has established itself as a very useful formalism
for expressing and analysing timing constraints of systems with respect to timed logics
such as TCTL [2] and MTL [20]. This has naturally sparked interest for formal verification
of functionality, and model checking techniques have often been used. However, timing
constraints are not the only non-functional properties of interest in applications. Often
modelling resources that can be consumed and must be monitored during the evolution
of a system, such as energy, is an important issue in applications. This initially led to
weighted extensions of timed automata [7, 5] and more recently to energy automata [9]. Such
formalisms are typically abstracted as weighted transition systems, which are transition
systems having the transition labelled by real numbers (or vectors of reals) that represent
the resource consumption; and weighted versions of temporal logics are used to encode and
verify logical properties.

In this paper we consider a parametric extension of the concept of weighted transition
system by allowing the transition labels to be not only numbers, but also linear equations over
a given set of parameters. Similarly, a parametric version of weighted CTL is defined, where

© P. Christoffersen, M. Hansen, A. Mariegaard, J.T. Ringsmose, K.G. Larsen and R. Mardare;
licensed under Creative Commons License CC-BY

Conference/workshop/symposium title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 Parametric Verification of Weighted Systems

the temporal operators are themselves indexed with linear equations representing upper
bounds for the computation traces. In this context, we address the problem of parametric
model checking: given a parametric model and a parametric logical property, compute a
linear system of inequalities that describe the possible values of the parameters that will
guarantee that the model satisfies the property.

As an example, consider a robotic vacuum cleaner. We want to know whether, in a given
situation, our robot can reach and clean a dirty room within some time frame. While we
know how many rooms there are, we do not have full knowledge of the time spent by the
robot from room to room and neither do we know how long time a room takes to clean. The
knowledge of the problem can be represented graphically as depicted in Figure 1, where
the parameters p, q represent our lack of knowledge. We want to check whether the robot
can finish the job under some linear constraints over the parameters. This is the kind of
problems we aim to address and solve in this paper.

The main contribution of this work, is the definition of a global function which iteratively
computes a fixed point on the so-called parametric dependency graphs (PDGs). The PDGs in
this paper are structures that handle parametric quantitative properties in a manner inspired
by the Symbolic Dependency Graphs proposed in [19]. We use PDGs to represent problems
by stating the dependencies between a given problem and its sub-problems along with their
parametric quantitative constraints on the solution to the problem. We use Tarski’s Fixed
Point Theorem [24] to show that a fixed point exists. In this regard, we also prove that it
can be reached in a finite number of steps using Dickson’s Lemma [13] for well-quasi orders.
Using these results, we show how to build PDGs for encoding of model checking, where
parameters exist on both model and formula. Parametric model checking then entails finding
constraints on parameter interpretation that makes a property satisfied. In some cases the
constraints may be either trivially satisfied or not satisfiable, making it possible to give an
yes/no answer. However, in the general case the answer is the set of parameter constraints
obtained as a system of linear inequalities. Our technique can be further used to solve related
issues such as bisimulation checking for parametric models ([10]).

In addition to the theoretical work of this paper, we have implemented a prototype
tool (PVTool) that computes the fixed point for verification of parametric properties on
parametric models. The input for the tool is a model that may have parametric weights on
transitions, together with a state and a formula. Outputted is then a derivation of the exact
constraints for interpretations of the parameters in the model and formula for the property
to be satisfied by the model. Finally, we have conducted a series of preliminary performance
experiments using the tool.

charger1

{ready,clean}

room 2 {dirty}

room 1 {dirty}

c1{clean}

room 3 {dirty}

room 4 {dirty}

c2{clean} cn {clean}

room k {dirty}

room l {dirty}

charger2 {done}· · · · · ·

p

2

1

q

p

2

1

q

p

2

1

q

Figure 1 ModelMex for the robotic vacuum cleaner example.

Related Work. In recent years, various extensions to modeling formalisms and logics

Peter Christoffersen et. al. 3

have been developed. In [23], a Parametric Kripke Structure and parametric CTL is presented
along with algorithms computing constraints on parameters that must be satisfied for a
parametric formula to be satisfied in a state. This inspired the authors of this paper to
study the behavior of parametric weighted transition systems in [8] where various notions of
bisimulation on parametric systems are discussed. In the world of automata, [4] proposes
an extension to Timed Automata with parametric guards and invariant called Parametric
Timed Automata. For parameter synthesis [6] uses an inverse method relying on an initial
good parameter valuation for each parameter used to compute a constraint on parameters.
It is then shown that if some parameter valuation satisfies the constraint, the system is
behaviorally equivalent (identical traces) to the system under the initial valuation. This
method is in contrast to traditional methods such as [15] based on Counterexample Guided
Abstraction Refinement (CEGAR, [12]) where the goal is to avoid a set of bad states given
beforehand. Tool support for various formalisms have also been developed. In [16], parameter
synthesis of Linear Hybrid Automata in HyTech is discussed and [18] provides an extension
to UPPAAL (see [21]) capable of generating parameter constraints that are necessary and
sufficient for a reachability or invariant property to hold for Linear Parametric Timed
Automata. Related to our work is also [19] where Dependency Graphs, introduced by Liu
and Smolka (see [22]), are extended to Symbolic Dependency Graphs suitable for model
checking using Weighted CTL and Weighted Kripke Structures. They compute a fixed point
on assignments to nodes, being simply the cost of satisfying a formula in the weighted setting.
We extend this to the parametric setting where we guarantee termination by exploiting that
assignments can be interpreted as a well-quasi ordering. Refer to [14, 1] for a discussion of
well-quasi orders for termination of algorithms operating on infinite structures.

2 Parametric Weighted Models and Logic

We now introduce various concepts used throughout this paper. We let Q denote either
universal- or existential-quantification, i.e. Q ∈ {A,E}. Furthermore, we let min{∅} =∞
and max{∅} = 0 and denote the set of natural numbers, including zero, by N.

A Parametric Weighted Transition System (PTS) is an extension of weighted transition
systems with linear expressions of parameters as labels on the transitions. From here on,
P denotes a fixed finite set of parameters. E is the set of all linear expressions on the form∑
xipi + y where xi, y ∈ N and pi ∈ P for any i ∈ N.
Finally, PTS label states with a set of atomic propositions from the fixed finite set AP.
We now proceed by formally defining a PTS:

I Definition 1. A Parametric Weighted Transition System (PTS)M is a triple

M = (M,→, `), where

M is a finite non-empty set of states.
→ ⊆M × E ×M is the transition relation.
` : M −→ 2AP is a labeling function mapping states in M to a set of atomic propositions

Whenever (m, e,m′) ∈ → we use the shorthand notation m
e−→m′. We will use M to

denote the set of all PTSs.
A run ρ in a PTS M = (M,−→, `) is a possibly infinite sequence ρ = m0e1m1e2m2...

where ∀i ∈ N,mi ∈ M and for i > 0, ei ∈ E we have mi−1
ei−→ mi. A run is maximal if

it is infinite or the last state in the run has no outgoing transitions. Runs(m) denotes all
maximal runs ρ starting from m and Runs(M) denote all maximal runs inM. ρ(i) denotes

4 Parametric Verification of Weighted Systems

the state of ρ with index i. Finally |ρ| denotes the length of a run ρ given by the number of
states. Runs over PTSs accumulate sums of linear expressions from the transitions in the
run. Given a position j ∈ N in a run ρ, let ρ(j) = mj . The accumulated weight, AWρ(j), of
ρ at position j is then defined by AWρ(j) =

∑j
i=1 ei if j > 0 and AWρ(j) = 0 if j = 0. We

denote by out(m) the set of all expression-successor pairs of outgoing transitions from m.
The notion of interpretations, presented next, was first introduced in [8]. We will briefly

explain the concept of interpretations; for further discussions, see [8]. Interpretations on the
set of parameters is a mapping of each parameter to a natural number. As in [8], we will first
define the simplest form of interpretations, namely the interpretation directly on parameters.

I Definition 2. i : P −→ N is a function mapping each parameter to a natural number.

We denote the set of all interpretations by I.
Interpretations are extended to the domain E , by letting for an arbitrary x ∈ N, i(x) = x

and by requiring that i preserves polynomial structures, i.e., for arbitrary p1, ..., pk ∈ P and
x1, ...xk+1 ∈ N:

i(x1p1 + ...+ xkpk + xk+1) = x1i(p1) + ...+ xki(pk) + xk+1

To reason about parametric properties of PTS, we define a parametric extension of
Weighted Computation Tree Logic (WTL) called Parametric Temporal Logic (PTL) and give
a satisfiability relation of formulae w.r.t. PTS. Interpretations are used to interpret both
formulae bounds and PTS edge expressions.

I Definition 3. The set of PTL state formulae are given by the abstract syntax:

Φ,Ψ ::= > | ⊥ | a | Φ ∧Ψ | Φ ∨Ψ | Eϕ | Aϕ

and the set of PTL path formulae are given by the abstract syntax:

ϕ ::= X≤eΦ | ΦU≤eΨ
where a ∈ AP and e ∈ E .

Whether a PTL formula is satisfied by a state m or a run ρ of some PTS M with an
interpretation i, is given by the satisfiability relation |=i. We denote this byM,m |=i Φ and
M, ρ |=i ϕ, respectively.

I Definition 4. Given a PTL formula, a PTS M = (M,−→, `), a state m ∈ M or a run
ρ ∈ Runs(M) and an interpretation i ∈ I, the satisfiability relation |=i is inductively defined
as:

M,m |=i > always
M,m |=i ⊥ never
M,m |=i a iff a ∈ `(m)
M,m |=i Φ ∧Ψ iff M,m |=i Φ andM,m |=i Ψ
M,m |=i Φ ∨Ψ iff M,m |=i Φ orM,m |=i Ψ
M,m |=i Eϕ iff there exists ρ ∈ Runs(m), such thatM, ρ |=i ϕ

M,m |=i Aϕ iff for all ρ ∈ Runs(m), it is the case thatM, ρ |=i ϕ

M, ρ |=i X≤eΦ iff |ρ| > 0, i (AWρ(1)) ≤ i(e) andM, ρ(1) |=i Φ
M, ρ |=i ΦU≤eΨ iff there exists j ∈ N s.t. M, ρ(j) |=i Ψ where i (AWρ(j)) ≤ i(e)

andM, ρ(j′) |=i Φ for all j ∈ N, j′ < j

Peter Christoffersen et. al. 5

3 Analysis of Parametric Properties

In this section we present a global method for analysis of various parametric problems using
fixed point computations on Parametric Dependency Graphs (PDG). In this work we show
how to abstract model checking problems into finding minimal fixed point assignments on
PDGs specifically built for model checking. Refer to the technical report [10] for missing
proofs.

3.1 Fixed Point Computations on Parametric Dependency Graphs
As presented in [19], Symbolic Dependency Graphs (SDG) can be used as an abstraction of
problems with quantitative dependencies. We give a parametric extension to SDGs called
Parametric Dependency Graph (PDG). This section will introduce PDGs in a general and
formal fashion without context. Intuition and example of application is given in Section 3.2,
where we show how to encode the model checking problem.

As the name suggests, Dependency Graphs encode dependencies. These dependencies
may arise from the optimal substructure of a given problem. We encode this through the
notion of hyper-edges with multiple targets, one for each dependency. In the most general
sense the notion of a cover-edge states an upper bound constraint for the cost of some
sub-property to be true, where cost is encoded as expression weights on the hyper-edges.

I Definition 5. A Parametric Dependency Graph (PDG) is a tuple G = (N,H,C), where:
N is a finite set of nodes,
H ⊆ N × 2E×N is a finite set of hyper-edges.
C ⊆ N × E ×N is a finite set of cover-edges.

Whenever (n, T) ∈ H we refer to n as the source node and T as the target-set. For each
n′ ∈ T we refer to n′ as a target node, or simply target. We will use n e

99Kn′ whenever
(n, e, n′) ∈ C.

The set of all PDGs will be denoted by G. We will now proceed to define assignments
which are used to encode the parametric cost for reaching a truth value in PDGs and note
that the assignments form a complete lattice.

I Definition 6. Given a PDG G = (N,H,C), an assignment

A : N −→ (I −→ N ∪ {∞})

on G is a mapping from each node n ∈ N to a function that, given a parameter interpretation,
yields a natural number or ∞.

We denote the set of all assignments A. The partial ordering over A is defined as follows:

I Definition 7. (A,v) is a poset such that for A1, A2 ∈ A:

A1 v A2 iff ∀n ∈ N ∀i ∈ I : A1(n)(i) ≥ A2(n)(i)

(A,v) is clearly a complete lattice with A0 and A∞ as top and bottom element, respectively.
Let A0 denote the assignment that maps to each node a function that assigns the value

0 regardless of parameter interpretations, i.e. ∀n ∈ N ∀i ∈ I : A0(n)(i) = 0. Similarly
A∞ denotes the assignment that maps to each node a function that assigns the value ∞
regardless of parameter interpretations.

Generally when computing assignments, we use ∞ to represent negative results (infinite
cost) and 0 (no cost) to represent positive results. As usual, when computing a minimal

6 Parametric Verification of Weighted Systems

fixed point, we start from the bottom element, A∞ and similarly from the top element, A0,
for maximal fixed points.

We are now ready to define the global update function, which applied iteratively, updates
PDG node assignments. Note that this function only considers PDG where for any node
there is at most one outgoing cover-edge. This is not a limitation for this work as we only
consider problems where one cover-edge is sufficient and one can easily extend the function
to consider multiple cover-edges while preserving all results.

I Definition 8. Given a PDG G = (N,H,C), F : A −→ A is a function that, given an
assignment A on G, produces a new assignment on G for any n ∈ N, i ∈ I, as follows:

F (A)(n)(i) =

{
0 if A(n′)(i) ≤ i(e)
∞ otherwise

if n e
99Kn′

min
(n,T)∈H

{ max
(e,n′)∈T

{A(n′)(i) + i(e)}} otherwise

We use F i(A) to denote i repeated applications of the function F on A, i.e
F i(A) = F (F i−1(. . .F 1(A))) for i > 0 and F 0(A) = A.

To show that F has a minimal fixed point, we observe by case inspection of Definition 8
that F is monotone with respect to the complete lattice (A,v) as stated by the following
lemma.

I Lemma 9. The update function F is monotone on the complete lattice (A,v).

By Tarski’s Fixed Point Theorem, we can conclude that F has a minimal and maximal
fixed point. The assignment corresponding to these fixed points are denoted by Amin and
Amax. We now proceed to show that Amin corresponds to F i(A) for some i ∈ N, ensuring
that the minimal fixed point is computable in a finite number of steps. The key to this is
the notion of well-quasi orders [14].

In general, assignments are functions that, given a node and an interpretation, compute
a number. As our function is monotone w.r.t. v we know that the sequence of assignments
computed by our function, given an interpretation, is decreasing for any node. We can
therefore pick any interpretation and interpret an assignment A as a tuple (x0, x1, . . . , xk)
where k + 1 is the number of nodes in the PDG and xi ∈ N ∪ {∞} for all 0 ≤ i ≤ k. Each
iteration can then be interpreted as a function computing the next tuple in a (possibly)
infinite sequence of tuples. Let the set of all such tuples be denoted by AT and let ATi ∈ AT

denote the tuple computed by the i’th iteration and ≤ the component-wise ordering of tuples
in AT .

As ((N ∪ {∞}),≤) is a well-quasi order, we can use [17] (Theorem 2.3) saying that the
Cartesian product of a finite number of well-quasi-ordered spaces is well-quasi-ordered, to
state the following lemma.

I Lemma 10. (AT ,≤) is a well-quasi-order.

By the well quasi-ordering of (AT ,≤), we can now state that the fixed point computation
ends in a finite number of steps, when applied iteratively on the bottom element A∞.

I Theorem 11. There exists a natural number i such that Amin = F i(A∞).

A similar result for the maximal fixed point does not exist. Consider a PDG consisting
of only one node with a non-zero self loop. In this case, the next assignment is the old one
plus the loop expression weight, thereby never reaching a fixed point.

I Lemma 12. There exists a PDG such that Amax 6= F i(A0) for any i ∈ N.

Peter Christoffersen et. al. 7

3.2 Parametric Dependency Graphs For Model Checking
The verification of PTL properties differs from the usual notion of model checking in that
it may not always be possible to give a Boolean answer. Instead we seek constraints on
parameter interpretations that makes a PTL formula satisfiable by a given PTS state.

The construction rules in Figure 2 define the PDG construction for model checking.
As PDGs in this context are used to encode constraints on satisfiability of PTL formulae,

they are constructed over a PTS modelM, a state m in the model and a PTL formula Φ.
Each node n ∈ N of a PDG G will be a pair 〈m,Φ〉, where Φ is interpreted as a formula
that may be satisfied in state m. A node n therefore represents M,m |=i Φ. We notice
that the problem may depend on sub-formulae of Φ and successors of m. We therefore use
hyper-edges to connect the root 〈m,Φ〉 to nodes representing these dependencies. For PTL
path formulae we encode the parametric upper bounds as cover-edges in the PDG.

It should be clear from the PDG construction that by applying the update function F

on an assignment to the PDG, any node that has an outgoing hyper-edge with an empty
target set, i.e. nodes representingM,m |=i > orM,m |=i a where a ∈ `(m), gets the value
min{max{∅}} = 0 thus representing satisfiability whereas nodes with no outgoing edges gets
the value min{∅} =∞ thus representing non-satisfiability. This shows the intuition behind
the semantics of the values, that 0 represents satisfiability and ∞ represents non-satisfiability.
In the context of model checking we compute a minimal fixed point, meaning that we start
from the bottom element, A∞.

We now state the correctness theorem of the developed model-checking algorithm. The
proof follows the correctness proof in [19], as models and formulae can be converted to
a non-parametric setting using an interpretation. We denote by B(M,m,Φ) the PDG
constructed by the rules in Figure 2 for the model checking problemM,m |=i Φ.

I Theorem 13 (Correctness of Model-Checking Algorithm). Let M = (M,→, `) be a PTS,
m ∈ M a state, i ∈ I an interpretation and let G = B(M,m,Φ) = (N,H,C) where
〈m,Φ〉 ∈ N . Then

M,m |=i Φ iff Amin(〈m,Φ〉)(i) = 0

The following example shows the construction of a PDG given a PTL formula and a PTS
model and the application of Theorem 13 to derive parameter constraints.

I Example 14. Given the PTSM (Figure 3) and the formula

Φex = EbU≤5(a ∧ EX≤7+qb),

we now apply the construction rules in Figure 2 to encode the queryM,m |=i Φex as the
PDG G in Figure 4.

By repeated application of the monotone function F , we arrive at a fixed point after 7
iterations. Using the correctness theorem (and a few trivial simplifications) we get the exact
constraints i(p) ≤ 7 + i(q) and i(q) ≤ 5 for i to be a valid interpretation. A quick look at
the PTS should convince the reader of the correctness of these constraints.

4 Prototype Tool (PVTool)

We now present a proof of concept tool (PVTool [11]), being entirely web-based, for verification
of parametric properties using the technique developed in this work. In Section 1, Figure 1
we presented an example of a parametric system which depicts a robotic vacuum cleaner.
We now want to verify whether or not the cleaner can move from the starting location to

8 Parametric Verification of Weighted Systems

〈m,>〉

∅
(a) True

〈m,⊥〉
(b) False

〈m, a〉

∅
(c)

a ∈ `(m)

〈m, a〉
(d)

a 6∈ `(m)

〈m,Φ ∧Ψ〉

〈m,Φ〉 〈m,Ψ〉
(e) Conjunction

〈m,Φ ∨Ψ〉

〈m,Φ〉 〈m,Ψ〉
(f) Disjunction

〈m,QX≤eΦ〉

〈m,QXΦ〉

e

(g) Cover case for
the next operator

〈m,QΦU≤eΨ〉

〈m,QΦUΨ〉

e

(h) Cover case for
the until operator

〈m,EXΦ〉

· · · · · · · · ·〈m1,Φ〉 〈mk,Φ〉

e1 ek

(i) Existential next

〈m,AXΦ〉

· · · · · · · · ·〈m1,Φ〉 〈mk,Φ〉

e1 ek

(j) Universal next

〈m,EΦUΨ〉

〈m,Ψ〉

〈m,Φ〉

〈m1, EΦUΨ〉

〈mk, EΦUΨ〉

··
··
··
··
··
··

e1

ek

(k) Existential until

〈m,AΦUΨ〉

〈m,Ψ〉

〈m,Φ〉

〈m1, AΦUΨ〉

〈mk, AΦUΨ〉
··
··
··
··
··
··e1

ek

(l) Universal next

Figure 2 Let {(e1, m1), (e2, m2) . . . (ek, mk)} ∈ out(m) and Q ∈ {A, E}.

one of the next rooms within 10 minutes units and clean it within 20 minutes. This question
can be stated as follows:

Mex, charger1 |=i EX≤10[A dirty U≤20 clean]

In the online PVTool we can now construct a model of the vacuum cleaner problem and
state the PTL query and in return get the parameter constraints for the property to be
satisfied in the model as depicted in Figure 5. We will briefly explain the model syntax used
in the tool. The line “charger1 := {clean, ready} <p>room1 + <2>room2;” declares a
state with the symbolic name charger1 and two atomic propositions: clean and ready. The
state has two outgoing transitions; one going to the state room1 with the weight p and one
going to the state room2 with the weight 2. Subsequent lines declare states in a similar
manner. The formulae syntax is almost identical to the syntax used in the paper, with
the exceptions that all sub-formulae must be enclosed in square brackets, bounds on path
formulae must be enclosed on curly brackets and we do not write the ≤ sign. A thorough
explanation of the syntax can be found on PVTool’s web page.

Peter Christoffersen et. al. 9

m

{b}

m′

{a}

q

p

3

Figure 3 PTSM. `(m) = b, `(m′) = a

〈m,EbU≤5[a ∧ EX≤7+qb]〉1

〈m,EbU [a ∧ EX≤7+qb]〉2

〈m′, EbU [a ∧ EX≤7+qb]〉 3〈m, a ∧ EX≤7+qb〉10

〈m,EX≤7+qb〉12〈m, a〉11 〈m′, a ∧ EX≤7+qb〉4

〈m,EXb〉13 〈m′, EX≤7+qb〉5 〈m′, a〉 6

∅

〈m′, EXb〉7

〈m, b〉 8

∅

〈m′, b〉9

5

q

3

p

7 + q

q
7 + q

p

Figure 4 PDG G

To examine performance of the implementation we experiment with models that have
a variable number of states. All experiments use models with a structure similar to the
model depicted in Figure 1. We simply change the amount of rooms and intermediate “clean”
states. For all experiments we use the PTL query

Mex, charger1 |=i E [A dirty U≤s clean] U≤r done

Refer to Figure 6 to see the performance results. Memory and time consumption increase
exponentially in the number of PTS states, reflecting the exponential increase in number of
possible paths when scaling the PTS.

10 Parametric Verification of Weighted Systems

Figure 5 Screen shot of verification of PTL property on the model in Figure 1 using PVTool

PTS sts PDG nds Iter. Mem (kB) Time (s)
7 41 9 1,004 0.0015
13 77 13 1,504 0.017
19 113 17 3,808 0.19
25 149 21 14,264 2.5
31 185 25 60,548 35
34 221 29 263,832 781

Figure 6 Experiments on a 4 core Intel Xeon E3-1245 v2 3.4 GHz processor with 16 GB RAM

5 Conclusion and Future Work

We have defined a variant of Weighted CTL which uses parametric linear expressions as
upper bounds on transition weights to allow reasoning about unknown behavior. We call this
logic Parametric Temporal Logic (PTL). The semantics of PTL is defined for Parametric
Weighted Transition Systems (PTS) that allow parametric linear expressions as weights on
transitions.

For encoding of parametric propositional dependencies we present Parametric Dependency
Graphs (PDGs). We associate to each node in a PDG a parametric cost and demonstrate
that a maximal and minimal fixed point on these costs exists. We also show that the minimal
fixed point can always be computed in a finite number of steps. Furthermore we show that
deciding model checking PTS with PTL properties corresponds to finding the minimal fixed
point in a PDG abstraction of model checking problems.

For verification of PTL properties on PTS we have implemented a model checking tool,
PVTool ([11]) - available online, in which it is possible to define a PTS, give a PTL formula
and get as output the constraints on parameters for a state in the PTS to satisfy the formula.

Peter Christoffersen et. al. 11

In this context, preliminary experiments were made using an easily scalable PTS model to
assess memory and time consumption which scaled exponentially in the size of the PTS, as
expected.

As extension on this work, we propose to further look into other methods for updates on
assignments to PDG nodes. In [19], the authors present a local fixed point algorithm for
dependency graphs. If something similar can be done in the parametric setting we expect
significant performance improvements. It would also be interesting to investigate whether a
complete characterisation of PDGs for which the maximal fixed point can be computed in
a finite number of steps, can be made. Finally one could look for new or existing problem
domains where our method can be applied. A first step in this direction was done in the
draft [10], for a variant of bisimilarity checking.

References

1 Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. General decid-
ability theorems for infinite-state systems. In Logic in Computer Science, 1996. LICS’96.
Proceedings., Eleventh Annual IEEE Symposium on, pages 313–321. IEEE, 1996.

2 Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking in dense real-time.
Inf. Comput., 104(1):2–34, 1993.

3 Rajeev Alur and David L. Dill. Automata for modeling real-time systems. In ICALP, pages
322–335, 1990.

4 Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-time reasoning.
In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May
16-18, 1993, San Diego, CA, USA, pages 592–601, 1993.

5 Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in weighted timed
automata. In HSCC, pages 49–62, 2001.

6 Étienne André, Thomas Chatain, Laurent Fribourg, and Emmanuelle Encrenaz. An inverse
method for parametric timed automata. International Journal of Foundations of Computer
Science, 20(05):819–836, 2009.

7 Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Guldstrand Larsen, Paul Petters-
son, Judi Romijn, and Frits W. Vaandrager. Minimum-cost reachability for priced timed
automata. In HSCC, pages 147–161, 2001.

8 Sine Viesmose Birch, Peter Christoffersen, Mikkel Hansen, Anders Mariegaard, and Ju-
lian T. Ringsmose. Weighted transition system: From boolean to parametric analysis. 8th
semester project at Aalborg University, Department of Computer Science, 2014.

9 Patricia Bouyer, Ulrich Fahrenberg, Kim Guldstrand Larsen, Nicolas Markey, and Jirí
Srba. Infinite runs in weighted timed automata with energy constraints. In FORMATS
2008. Proceedings, pages 33–47, 2008.

10 Peter Christoffersen, Mikkel Hansen, Anders Mariegaard, and Julian T. Ringsmose. Para-
metric verification of weighted systems. Unpublished Technical Report. http://pvtool.
dk/tech_draft.pdf.

11 Peter Christoffersen, Mikkel Hansen, Anders Mariegaard, and Julian T. Ringsmose. Proto-
type tool. http://pvtool.dk/.

12 Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterex-
ample guided abstraction refinement. In Computer Aided Verification, 12th International
Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings, pages 154–169,
2000.

13 Leonard Eugene Dickson. Finiteness of the odd perfect and primitive abundant numbers
with n distinct prime factors. American Journal of Mathematics, 35(4):pp. 413–422, 1913.

http://pvtool.dk/tech_draft.pdf
http://pvtool.dk/tech_draft.pdf
http://pvtool.dk/

12 Parametric Verification of Weighted Systems

14 Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1):63–92, 2001.

15 Goran Frehse, Sumit Kumar Jha, and Bruce H. Krogh. A counterexample-guided approach
to parameter synthesis for linear hybrid automata. In Magnus Egerstedt and Bud Mishra,
editors, Hybrid Systems: Computation and Control, volume 4981 of Lecture Notes in Com-
puter Science, pages 187–200. Springer Berlin Heidelberg, 2008.

16 Thomas A. Henzinger and Howard Wong-Toi. Using hytech to synthesize control param-
eters for a steam boiler. In Jean-Raymond Abrial, Egon Börger, and Hans Langmaack,
editors, Formal Methods for Industrial Applications, volume 1165 of Lecture Notes in Com-
puter Science, pages 265–282. Springer Berlin Heidelberg, 1996.

17 Graham Higman. Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society, 3(1):326–336, 1952.

18 Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager. Linear paramet-
ric model checking of timed automata. J. Log. Algebr. Program., 52-53:183–220, 2002.

19 Jonas Finnemann Jensen, Kim Guldstrand Larsen, Jiří Srba, and Lars Kaerlund Oester-
gaard. Local model checking of weighted CTL with upper-bound constraints. In Model
Checking Software, pages 178–195. Springer, 2013.

20 Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Systems, 2(4):255–299, 1990.

21 Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

22 Xinxin Liu and Scott A. Smolka. Simple linear-time algorithms for minimal fixed points.
In Automata, Languages and Programming, pages 53–66. Springer, 1998.

23 Chaiwat Sathawornwichit and Takuya Katayama. A parametric model checking approach
for real-time systems design. In Software Engineering Conference, 2005. APSEC’05. 12th
Asia-Pacific, pages 8–pp. IEEE, 2005.

24 Alfred Tarski et al. A lattice-theoretical fixpoint theorem and its applications. Pacific
journal of Mathematics, 5(2):285–309, 1955.

Peter Christoffersen et. al. 13

A Fixed point computation results

In this appendix we show the fixed point computation from Example 14 in Table 1. For
readability we have taken the liberty of simplifying the assignments based on properties of
expressions and min /max functions valid under any interpretation of parameters. If any
assignment to a node does not change (modulus our simplification rules) during the entire
computation, we have omitted the node from the table. Let A(n) be the assignment to some
node n and e ∈ E an expression.

max{∅} = min{0, . . .} = 0
min{∅} = max{∞, . . .} =∞+A(n) = e+∞ =∞
0 +A(n) = A(n)
e+ 0 = e

Min/max of a single element is the element itself

Finally, let F i(n) be a shorthand for F i(A∞)(n). Using the correctness theorem we
can now derive constraints that must be satisfied by an interpretation i for M,m |=i

EbU≤5[a ∧ EX≤7+qb] to be true. From our simplified assignments it is easy to see that the
constraints for F 7(1)(i) = F 8(1)(i) = 0 given some interpretation i must be i(p) ≤ 7 + i(q)
and i(q) ≤ 5.

14 Parametric Verification of Weighted Systems

n
1

2
3

4
5

6
7

8
A

∞
(n

)(
i)

∞
∞

∞
∞

∞
∞

∞
∞

F
1
(n

)(
i)

∞
∞

∞
∞

∞
0

∞
0

F
2
(n

)(
i)

∞
∞

∞
∞

∞
0

i(
p
)

0

F
3
(n

)(
i)

∞
∞

∞
∞

{ 0
if

i(
p
)≤

7
+

i(
q)

∞
ot
he

rw
is
e

0
i(

p
)

0

F
4
(n

)(
i)

∞
∞

∞
F

3
(5

)(
i)

F
3
(5

)(
i)

0
i(

p
)

0
F

5
(n

)(
i)

∞
∞

F
4
(4

)(
i)

F
3
(5

)(
i)

F
3
(5

)(
i)

0
i(

p
)

0
F

6
(n

)(
i)

∞
i(

q)
+

F
5
(3

)(
i)

F
4
(4

)(
i)

F
3
(5

)(
i)

F
3
(5

)(
i)

0
i(

p
)

0

F
7
(n

)(
i)

{ 0
if

F
6
(2

)(
i)
≤

5
∞

ot
he

rw
is
e

i(
q)

+
F

5
(3

)(
i)

F
4
(4

)(
i)

F
3
(5

)(
i)

F
3
(5

)(
i)

0
i(

p
)

0

F
8
(n

)(
i)

{ 0
if

F
6
(2

)(
i)
≤

5
∞

ot
he

rw
is
e

i(
q)

+
F

5
(3

)(
i)

F
4
(4

)(
i)

F
3
(5

)(
i)

F
3
(5

)(
i)

0
i(

p
)

0

Ta
bl
e
1
U
pd

at
in
g
as
si
gn

m
en
ts

	Introduction
	Parametric Weighted Models and Logic
	Analysis of Parametric Properties
	Fixed Point Computations on Parametric Dependency Graphs
	Parametric Dependency Graphs For Model Checking

	Prototype Tool (PVTool)
	Conclusion and Future Work
	Fixed point computation results

