
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Adequacy and Complete Axiomatization for
Timed Modal Logic

Samy Jaziri1 Kim G. Larsen2 Radu Mardare2 Bingtian Xue2

1Lab. Spécification & Vérification, ENS Cachan, France 2Aalborg University, Denmark

Abstract

In this paper we develop the metatheory for Timed Modal Logic (TML), which is the modal logic used for the analysis of
timed transition systems (TTSs). We solve a series of long-standing open problems related to TML. Firstly, we prove that
TML enjoys the Hennessy-Milner property and solve one of the open questions in the field. Secondly, we prove that the
set of validities are not recursively enumerable. Nevertheless, we develop a strongly-complete proof system for TML. Since
the logic is not compact, the proof system contains infinitary rules, but only with countable sets of instances. Thus, we can
involve topological results regarding Stone spaces, such as the Rasiowa-Sikorski lemma, to complete the proofs.
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1 Introduction

In the areas of embedded and cyber-physical systems, more than two decades of research
have been dedicated to developing quantitative modeling and specification formalisms that
allow for the construction of systems with guaranteed functional and non-functional proper-
ties. In particular, many embedded systems are highly safety critical, with hard constraints
on real-time behaviors being essential. Here, the notion of timed transition system and
timed automata [4] have proven extremely convenient for modeling purposes and are now
routinely used for the analysis of real-time communication protocols and control programs.

Accompanying the timed transition systems, a variety of timed temporal logics have been
introduced as convenient ways of capturing requirements to real-time systems. These log-
ics include MTL [14], MITL [5], TPTL [7, 8] and ECL [23] all providing timed extensions
of LTL. Similarly TCTL [2], Tµ [13] and Lν [17] provide timed extensions of CTL and
the modal µ-calculus. Emphasis has been on detailed investigation of decidability and
complexity of model checking and satisfiability checking, identifying the importance of
(absence of) punctual constraints in the logic [5, 16] as well as of the choice of semantics
of timed automata (point-wise or continuous) [19–21]. Also, with the purpose of gaining
decidability, satisfiability checking given constraints on number of clocks and size of con-
stants in a satisfying timed automata has been considered [17]. In all of the aforementioned
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logics, quantitative requirements are either obtained by decorating modalities with timing
constraints, or by using clocks in formulas.

The presence of time in all these settings makes it difficult to address fundamental meta-
theoretical questions regarding the timed logics, such as adequacy 1 or the development
of complete proof systems. Regarding the axiomatization, there exists a series of results
proved in very restricted settings, such as for TPTL [11] that only looks to models with
discrete time, or for ECTL [24] under the restriction of models with finite variability –
only finitely many state changes can occur in a finite amount of time. Other attempts, such
as [9], failed already in achieving soundness results, as argued in [24].

In this paper we take the challenge of developing a strongly-complete proof system for the
most basic Timed Modal Logic (TML) defined for the most general model of real-time sys-
tems, without any restriction on the nature of time. Our models are timed labelled transition
systems (TTSs), which generalize timed automata [1]: their transitions are labeled with ac-
tions or time delays (real numbers). Our logic is the non-recursive fragment of Lν [17],
which generalizes the logic of [1]. In these settings we solve a series of open problems.

Firstly, we prove that TML is adequate not only for timed automata, but in general, for
entire class of TTSs. This settles an open problem and disproves a belief often found in the
literature, e.g., [1] – that such a logic is not sufficiently expressive to characterize timed-
bisimulation. In proving this result, we use a novel exploitation of formulas with free clock
variables.

Secondly, we prove that the satisfiability problem for TML is undecidable despite its restric-
tive expressive power, thus generalizing the known undecidability result of satisfiability for
TCTL [2]. Moreover, we show that the set of TML-validities is not recursively-enumerable.
This implicitly means that any complete proof system will generate a non-recursively enu-
merable set of provable formulas, and makes one wonder whether this logic can, in fact, be
axiomatized at all - see e.g., the discussion in [6].

We prove that TML can be axiomatized and we develop a proof system for it that is
strongly-complete 2 for the TTS-semantics. However, TML is not compact: there exists
an infinite set of formulas that admits no model while all its finite subsets have mod-
els. For this reason our axiomatization must contains infinitary proof rules; they reflect
Archimedean properties of the rational numbers used to interpret clocks. Due to these in-
finitary rules, the proofs of our system cannot be enumerated. Nevertheless, these rules
have countable sets of instances.

Our axioms provide a set of sufficient conditions that characterizes the concept of time in
models like TTSs and timed automata. They reflect properties such as persistence, continu-
ity, linearity, density of time, synchronization, or the fact that all clocks measure the same
time flow. Most of these axioms are similar to axioms seen in other modal logics and these
relations open interesting further questions.

An other important contribution of the paper is the construction of the canonical model,
which generalizes for the case of a (non-compact) higher-order modal logic the classic

1 A logic is adequate when its semantical equivalence over the class of models coincides with bisimilarity.
2 Strong completeness means that [Φ ` φ iff Φ |= φ], where Φ |= φ denotes that all the models of the set Φ of formulas are
also models of the formula φ; and Φ ` φ denotes that φ is provable from Φ.
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filtration construction usually used for propositional modal logics. This follows the line
opened by the second and the third author in collaboration with Panangaden and Kozen
in [15]; it involves complex topological and model-theoretical arguments, such as the
Rasiowa-Sikorski lemma, which are essential in achieving the main results and are pointing
to a general methodology for constructing canonical models for non-compact modal logics.

This paper does not aim at addressing problems related to timed automata, nor to model
verification, model construction or model checking. Our purpose is to clarify the open
problems of model theory for TML. The interesting questions regarding timed automata-
semantics will be addressed in a future work.

2 Preliminaries

Hereafter we fix the notation used in the paper.

Kleene equality. Given a partial function f : X → Y , we write f (x) ∼= f (x′) for x, x′ ∈ X
to denote the fact that f (x) and f (x′) are simultaneously well-defined and whenever they
are well-defined, they are equal.

Orders on reals. We use E and D to range over the set {≤,≥} such that {E,D} = {≤,≥};
this means that E can either be interpreted as ≤ or as ≥; if E represents one of the two,
then D denotes the other. Similarly, we use C and B to range over the set {<, >} such that
{C,B} = {<, >}. Moreover, x C y means [x E y and x , y], and similarly for B and D. We
use ./ to denote to an arbitrary element of the set {≤,≥, <, >}.

Interpretations on reals. Given a set K , an interpretation of K (on non-negative reals) is
a function i : K → R≥0; if x ∈ K and r ∈ R≥0, we denote by i[x 7→ r] the interpretation j of
K such that j(x) = r and j(y) = i(y) for y , x. The arithmetic operations on interpretations
are defined pointwise; 0 is used for the constant null interpretation and [x 7→ r] denotes
0[x 7→ r].

The Rasiowa-Sikorski Lemma [10, 22] is a result with important applications in logic.

Definition 2.1 Let B be a Boolean algebra and let T ⊆ B such that T has a greatest lower
bound

∧
T in B. An ultrafilter (maximal filter) U is said to respect T if T ⊆ U implies that∧

T ∈ U.

If T is a family of subsets of B, we say that an ultrafilter U respects T if it respects every
member of T .

Lemma 2.2 (Rasiowa–Sikorski [22]) For any Boolean algebraB and any countable fam-
ily T of subsets of B, each member of which has a meet in B, and for any nonzero x ∈ B,
there exists an ultrafilter in B that contains x and respects T .

3 Timed Transition Systems

A timed transition system (TTS) [1] is a labeled transition system that uses both actions
and time delays as transition labels. The delay transitions describe the time flow and con-
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sequently are continuous and deterministic. Here we propose an equivalent definition for
TTS that encodes the time in an algebraic format and simplifies our future developments.

Definition 3.1 [Timed Transition System] A timed labeled transition system (TTS) is a
tupleW = (M,Σ, θ,⊕) where M is a non-empty set of states, Σ a non-empty set of actions,
θ : M ×Σ→ 2M is the action-labelling function and ⊕ : R≥0 ×M ⇀ M is a partial function
that encodes the delay transitions; for arbitrary m ∈ M and d, d′ ∈ R≥0,
1. 0 ⊕ m = m;
2. d ⊕ (d′ ⊕ m) ∼= (d + d′) ⊕ m.

Whenever it is defined, d ⊕ m denotes a time delay d applied to the state m. Condition 1
guarantees that a zero-delay is always well-defined and it does not change the state of the
system; and condition 2 expresses that time is both additive and deterministic. As usual,
instead of m′ ∈ θ(m, a) we will write m

a
−→ m′.

In the rest of this paper we fix the set Σ and omit it in the description of TTSs.

A timed bisimulation is a relation that equates states of a TTS with identical behaviours.

Definition 3.2 [Timed Bisimulation] Given a TTS W = (M, θ,⊕), a timed bisimulation
is an equivalence relation R ⊆ M × M such that whenever (m, n) ∈ R, for all a ∈ Σ and
d ∈ R≥0,
• if m

a
−→ m′, then there exists n′ ∈ M s.t. n

a
−→ n′ and (m′, n′) ∈ R;

• if d ⊕ m is well-defined, then d ⊕ n is well-defined and (d ⊕ m, d ⊕ n) ∈ R.

As for the other types of bisimulation, the previous definition can be extended to define the
time bisimulation between distinct TTSs by considering bisimulation relations on their dis-
joint union. Time bisimilarity is the largest time-bisimulation relation; ifWi = (Mi, θi,⊕i),
mi ∈ Mi for i = 1, 2 and m1 and m2 are bisimilar, we write (m1,W1) ∼ (m2,W2).

4 Timed Modal Logic

In this section we introduce the Timed Modal Logic (TML) that encodes properties of
TTSs. It is defined for a countable set K of clocks that we consider fixed in what follows.
It contains Henessy-Milner operators [a]φ for the actions a ∈ Σ, where Σ is the fixed set of
actions for which we have defined TTSs in the previous section. In addition, it is endowed
with time inequalities of type x E r for rational values r that evaluate the clock x ∈ K at
the current state; with delay quantifiers ∀∀ φ that predicate properties for any time-delay of
the current state; and clock quantifiers ∀x.φ that predicate properties for any interpretation
of the clock x at the current state.

Definition 4.1 [Syntax] For arbitrary r ∈ Q≥0 and a ∈ Σ,

L : φ := ⊥ | x E r | φ→ φ | [a]φ | ∀∀ φ | ∀x.φ.

Let =(K) be the set of interpretations of K . The semantics of TML is defined for an
arbitrary TTS M = (M, θ,⊕), m ∈ M and i ∈ =(K) as follows.
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• M,m, i |= ⊥ – never;
• M,m, i |= x E r if i(x) E r;
• M,m, i |= φ→ ψ if M,m, i |= ψ whenever M,m, i |= φ;
• M,m, i |= [a]φ if [for any m′ ∈ M s.t. m

a
−→ m′, M,m′, i |= φ];

• M,m, i |= ∀∀ φ if [for any d ∈ R≥0 s.t. d ⊕ m is well-defined, M, d ⊕ m, i + d |= φ];
• M,m, i |= ∀x.φ if [for any t ∈ R≥0,M,m, i[x 7→ t] |= φ].

We also use, in addition, all the boolean operators defined as usual and the De Morgan

duals of the modal operators: 〈a〉φ
d f
= ¬[a]¬φ, x B r

d f
= ¬(x E r), ∃∃ φ

d f
= ¬( ∀∀ ¬φ), and

∃x.φ
d f
= ¬(∀x.¬φ). Other derived operators used in what follows are:

(x = r)
d f
= (x ≤ r) ∧ (x ≥ r) and ∀(x ./ r).φ

d f
= ∀x.(x ./ r → φ), ./∈ {≤,≥, <, >}.

In TML we can express the reset operator used in [1, 13, 17] by

x in φ
d f
= ∀x.(x = 0→ φ).

Whenever it is not the case that M,m, i |= φ, we write M,m, i 6|= φ. We say that a formula
φ is satisfiable if there exists at least one TTS that satisfies it in one of its states under at
least one interpretation; φ is a validity if it is satisfied in all states of any TTS under any
interpretation - in this case we write |= φ. For an arbitrary set Φ ⊆ L, we write Φ |= φ if all
the models of all the formulas in Φ are also models of φ.

4.1 Undecidability of TML.

Individual formulae of TML express properties which only depend on the behaviour of a
TTS up to a finite action-depth, thus making TML significantly less expressive than TCTL
[3]. In a number of papers it has been shown how recursive extensions of TML – e.g.
extensions with the ability to define logical properties recursively – enable the encoding of
TCTL, while maintaining decidability of model-checking.

As stated in the theorem below, despite its limited expressive power the question of satisfia-
bility for TML is (highly) undecidable, as is the case of TCTL. Formally, given an arbitrary
TML formula φ ∈ L, it is undecidable whether there exists a TTS (M, θ,⊕) with m ∈ M
and interpretation i ∈ =(K) such that M,m, i |= φ.

Theorem 4.2 (Undecidability of TML) The satisfiability question for TML is Σ1
1-hard,

hence undecidable.

Proof. We show that we can reduce the TML satisfiability question into the question as to
whether a non-deterministic 2-counter machines has a computation with the initial location
being visited infinitely often. This last question is known to be Σ1

1-hard. Our proof is similar
to the one in [3] and for this reason it is presented in the Appendix.

The undecidability of satisfiability for TML implies, as usual, the undecidability of validity
for TML. In fact, Theorem 4.2 proves that the set of validities is not recursively enumerable.
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5 Adequacy of TML

The Hennessy-Milner property (H-Mp), which states for a logic that bisimilarity of the
models coincides with the semantic equivalence induced by the logic, is currently an open
problem for timed logic. In [1] it was proven that the closed formulas (without free clock
variables) cannot characterize bisimilarity. In this section we prove the H-Mp for TML,
therefore we solve the adequacy problem.

Before proceeding with the proof, observe the essential role of interpretations in the se-
mantics of TML. Consider the two TTSs depicted in Figure 1, where the horizontal lines
represent the time flow from the initial states m and m′ respectively. The two systems in the
initial states can delay forever and they can both take an a-transition to states that satisfy
END after each delay 2 − 2

2n and 2 + 2
2n for each integer n > 0. However, the two systems

differ: m can take an a-transition after the delay 2, while m′ cannot.

If we consider an interpretation i ∈ =(K) s.t. i(x) < Q≥0 for any x ∈ K , one can notice
that m and m′ satisfy exactly the same formulas. However, this is not true if we consider
an interpretation i′ s.t. i′(x) = 0 for some x ∈ K , since m, i′ |= ∃∃ (x = 2 ∧ 〈a〉>) and
m′, i′ |= ¬( ∃∃ (x = 2 ∧ 〈a〉>)).

m m1

END END

END END

END END

END

m′
m′1

END END

END END

END END

... ...

.......

Fig. 1. non-bisimilar TTSs

To clarify this situation, we start from analysing how the formulas satisfied by a model
under a certain interpretation change when we change the interpretation.

It is useful in what follows to identify the set K(φ) of the free clocks in a formula φ ∈ L,
defined by: K(⊥) = ∅, K(x ./ r) = {x}, K(φ → ψ) = K(φ) ∪ K(ψ), K([a]φ) = K( ∀∀ φ) =

K(φ), K(∀x.φ) = K(φ) \ {x}.

For a clock variable y ∈ K that does not appear in the syntax of φ and x ∈ K(φ), we denote
by φ{y/x} the formula obtained by uniformly substituting all the occurrences of x in φ by y.

Definition 5.1 Given two rational interpretations f−, f+: K → Q and a bijection σ : K →
K , for any formula φ ∈ L let φ +σ

f−/f+ be defined as follows, where x ./ t for t < 0 should
be read as x ≥ 0:
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⊥ +σ
f−/f+

df
= ⊥

(x ≤ r) +σ
f−/f+

df
= σ(x) ≤ (r + f+(x))

(¬φ) +σ
f−/f+

df
= ¬(φ +σ

f+/f−)

( ∀∀ φ) +σ
f−/f+

df
= ∀∀ (φ +σ

f−/f+)

(φ ∧ ψ) +σ
f−/f+

df
= (φ +σ

f−/f+) ∧ (ψ +σ
f−/f+)

(x ≥ r) +σ
f−/f+

df
= σ(x) ≥ (r + f−(x))

([a]φ) +σ
f−/f+

df
= [a](φ +σ

f−/f+)

(∀x.φ) +σ
f−/f+

df
= ∀σ(x).(φ +σ

f−[x 7→ 0]/f+[x 7→ 0])

Whenever f− = f+ = f , we write +σ f ; whenever σ is the identity on K , we write + f−/f+.

The following lemma, which can be proved by induction over the structure of formulas,
and its corollaries characterize the relationships between the formulas satisfied by the same
model under different interpretations.

Lemma 5.2 Let M = (M, θ,⊕) be a TTS, σ : K → K , δ : K → R and f−, f+ : K → Q s.t.
f− ≤ δ ≤ f+. Then for any m ∈ M, φ ∈ L and i ∈ =(K), if i + δ ≥ 0 then:

M,m, i |= φ =⇒ M,m, (i + δ) ◦ σ−1 |= φ +σ
f−/f+.

The implication from right to left is not always true, since f− and f+ are approximations of
δ. However we have equivalences in some concrete cases.

Corollary 5.3 Let M = (M, θ,⊕) be a TTS and f : K → Q. Then for any m ∈ M, φ ∈ L
and i ∈ =(K), if i + f ≥ 0 then:

M,m, i |= φ ⇐⇒ M,m, i + f |= φ + f .

Corollary 5.4 Let M = (M, θ,⊕) be a TTS and δ : K → R. Then for any m ∈ M, φ ∈ L
and i ∈ =(K), if i + δ ≥ 0 and for any x ∈ K(φ), δ(x) = 0, then:

M,m, i |= φ ⇐⇒ M,m, i + δ |= φ.

With these, we can proceed with the proof of the H-Mp. We say that a TTS M = (M, θ, ⊕)
has the finite image property if for any action a ∈ Σ and any m ∈ M, θ(m, a) is finite.

Theorem 5.5 (Hennessy-Milner Theorem) Consider a TTS M = (M, θ,⊕) satisfying the
finite image property. Then for any m, n ∈ M:

m ∼ n iff ∀i ∈ =(K), φ ∈ L,M,m, i |= φ⇔ M, n, i |= φ.

Proof. (⇐): We prove that R is a bisimulation
R = {(m, n) | ∀i,∀φ, M,m, i |= φ⇔ M, n, i |= φ}.

Supp. that m
a
−→ m′. If there exists no n′ ∈ M s.t n

a
−→ n′, then M, n, i |= [a]⊥, implying

M,m, i |= [a]⊥ - contradicting the assumption. Let F = {nk | n
a
−→ nk}, which is finite since

the TTS is image finite. Suppose that (m′, nk) < R for any k. Then, there exists ik ∈ =(K)
and φk ∈ L s.t. M,m′, ik |= φk and M, nk, ik |= ¬φk, for any k. For every x ∈ K(φk), consider
a new variable xk distinct from all the other variables. Let φ′k = φk{xk/x}, for every k and
let i′ ∈ =(K) s.t. i′(xk) = ik(x) for any k. We have: M,m′, i′ |=

∧
k φ
′
k and M, nk, i′ |= ¬φ′k

by Corollary 5.4. Then M,m, i′ |= 〈a〉
∧

k φ
′
k and M, n, i′ |= [a]

∨
¬φ′k - contradiction.

Supp. that m′ = d ⊕ m. For r ∈ Q≥0, r ≥ d, M,m, i[x 7→ r − d] |= ∃∃ (x = r), which
implies M, n, i[x 7→ r − d] |= ∃∃ (x = r). Hence, there exists n′ ∈ M s.t. n′ = d ⊕ n.
We prove that (m′, n′) ∈ R. For any i ∈ =(K) and φ ∈ L, M,m′, i |= φ implies, using
Corollary 5.4, that M,m′, i[x 7→ 0] |= φ for any x < K(φ); further, applying Corollary 5.3,
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M,m′, i[x 7→ 0] + r |= φ + r. Then, M,m, i[x 7→ 0] + r − d |= ∃∃ (x = r ∧ (φ + r)) and
M, n, i[x 7→ 0] + r − d |= ∃∃ (x = r ∧ (φ+ r)). Consequently, M, n, i[x 7→ 0] + r − d |= ∀∀ (x =

r → (φ + r)). This implies that M, n′, i[x 7→ 0] + r |= x = r → (φ + dde) (dde denotes the
smallest natural number bigger than d), which implies M, n′, i[x 7→ 0] + r |= (φ + r). So
M, n′, i + r |= φ + r, and using Corollary 5.3, M, n′, i |= φ.
The symmetry of R proves the other cases.

6 Metatheory for TML

In this section we develop a proof system for TML. We prove that TML is not compact
and consequently requires infinitary rules. However, we demonstrate that our proof system
is strongly-complete for the TTS-semantics. The completeness proofs consist of the con-
struction of a canonical model. Being the role of interpretations in the semantics of TTS,
the canonical model is not constructed from maximal consistent sets, as for other modal
logics. This is because a maximal consistent set does not identify a state of a TTS; it iden-
tifies a set in the presence of a fixed interpretation. Moreover, the same maximal consistent
set might be satisfied by non-bisimilar models under different interpretations. To cope with
all this complex situation we propose a new method for constructing canonical models.

6.1 Axiomatization for TML

Modal prefixes are words w ∈ Mod∗ over the alphabet
Mod = {[a] | a ∈ Σ} ∪ { ∀∀ } ∪ {∀x. | x ∈ K},

e.g., ∀x.[a] ∀∀ [b][c],∀x. ∀∀ , [a], ε ∈ Mod∗, where ε is the empty word. A context is a word
formed by a modal prefix w ∈ Mod∗ concatenated with the metavariable X; e.g., [a]X,
∀x. ∀∀ X, ∀x.[a] ∀∀ [b][c]X are contexts. To emphasize the presence of the metavariable
we will use the functional representation of type C[X] for contexts; this will allow us to
instantiate the metavariable with elements fromL. For example, if C[X] = ∀x.[a] ∀∀ [b][c]X
is a context, then C[(x ≥ r)] = ∀x.[a] ∀∀ [b][c](x ≥ r) ∈ L. Also ε[X] is a context - the
empty one - and for φ ∈ L, ε[φ] = φ.

The axiomatic system of TML includes, in addition to the axioms and the rules of propo-
sitional logic, the axioms and the rules in Table 1. They are stated for arbitrary φ, ψ ∈ L,
r, s, t ∈ Q≥0, a ∈ Σ, � ∈ Mod and arbitrary context C[X].

A formula φ is provable, denoted by ` φ, if it can be proven from the given axioms and
rules. We say that φ is consistent, if φ → ⊥ is not provable. Given a set Φ of formulas, we
say that Φ proves φ, Φ ` φ, if from the formulas of Φ and from the axioms one can prove φ,
eventually using Boolean or infinitary-Boolean reasoning. In other words, we assume that
the provability is closed under the rule

Φ ∪ {φ} ` ψ iff Φ ` φ→ ψ,

for arbitrary (possibly infinite) sets Φ ⊆ L. Φ is consistent if it is not the case that Φ ` ⊥.

The axioms (A1)-(A3) state simple facts about the clock values. The axiom (A4) reflects
the fact that action-transitions in a TTS happen instantaneously.
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(A1): ` x ≥ 0

(A2): ` (x ≥ r) ∨ (x ≤ r)

(A3): ` x ≤ r → ¬(x ≥ s), r < s

(A4): ` x E r → [a](x E r)

(A5): ` ∀∀ φ→ φ ∧ ∀∀ ∀∀ φ

(A6): ` ∀∀ φ→ ∀∀ (r ≤ x ≤ s→ φ), r ≤ s

(A7): ` x ≥ r → ∀∀ (x ≥ r)

(A8): ` ∃∃ (x = r ∧ φ)→ ∀∀ (x = r → φ)

(A9): ` ∃∃ (x ≤ r ∧ ∀∀ φ)→ ∀∀ (x ≥ r → φ)

(A10): ` ∃∃ (x ≤ r) ∧ ∃∃ (x ≥ r)→ ∃∃ (x = r)

(A11): ` x E r ∧ y E s→ ∀∀ (x E r + t → y E s + t)

(A12): ` ∀x.φ→ φ + [x 7→ r]/[x 7→ s], r ≤ s

(A13): ` ∀(x ≤ r). ∀∀ (x = s→ φ)→

∀(x = r). ∀∀ (s ≤ x ≤ s + r → φ)

(A14): ` �(φ→ ψ)→ (�φ→ �ψ)

(R1): If ` φ, then ` �φ

(R2): {C[x E r] | r B s} ` C[x E s]

(R3): {C[x ≥ r] | r ∈ Q≥0} ` C[⊥]

(R4): {C[φ + [x 7→ r]/[x 7→ s]] | r ≤ s} ` C[∀x.φ]

(R5): {C[ ∀∀ (x ≤ s→ φ)] | s ∈ Q≥0} ` C[ ∀∀ φ]
Table 1

The Axiomatic System of TML

The axioms (A5)-(A10) describe the nature of time in TTSs. Thus, (A5) states that the time
is linear and 0-delays do not perturb the system; (A6) that the time is persistent; (A7) that
the flow of time is unidirectional (the past and the future are disjoint); (A8) that the time
is deterministic; (A9) and (A10) that the time is continuous. The axiom (A11) guarantees
that all the clocks measure the same time flow.

The axiom (A12) together with the infinitary rule (R4) describe the fact that the information
provided by a clock variable x in a formula prefixed by ∀x is superfluous. The role of (A13)
is to characterize the interaction between the two types of universal quantifiers.

The axiom (A14) and the rule (R1) state that all the box-like operators of TML are normal.

The rules (R2)-(R5) are infinitary and have instances for any possible context. For instance,
the formulas below are instances of the rules (R2) and (R3) respectively.

{[a](x ≥ r) | r < s} ` [a](x ≥ s),
{ ∀∀ [a](x ≥ r) | r ∈ Q≥0} ` ∀∀ [a]⊥.

The rule (R2) reflects the Archimedean property of rationals. (R3) guarantees that the value
of any clock is finite in any model under any interpretation.

By induction on the structure of possible proofs, we prove the soundness.

Theorem 6.1 (Soundness) The axiomatic system in Table 1 is sound with respect to the
TTS-semantics, i.e., for arbitrary Φ ⊆ φ and φ ∈ L,

Φ ` φ implies Φ |= φ.

6.2 Non-Compactness of TML

We have seen in Section 4 that the set of validities of TML are not recursively enumerable.
This means that any complete axiomatization of TML must be infinitary. Otherwise, we
could enumerate all the proofs and the set of provable formulas, which in a complete logic
coincides with the set of validities, is recursively enumerable - contradiction!

There is also a model theoretic result that ensures us the necessity of having infinitary rules:

9
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Theorem 6.2 (Non-Compactness of TML) TML with the TTS-semantics is not compact,
i.e., there exists an infinite set Φ ⊆ L such that each finite subset of Φ admits a model but
Φ does not admit any model.

Proof. The result derives from the soundness of the infinitary rules and each rule can be
used to produce examples of such sets. Consider, for example, s ∈ Q≥0 and the set

Φ = {x ≥ r | r < s} ∪ {x < s}.
Since for any i ∈ =(K), i(x) ≥ r for each r < s implies i(x) ≥ s, Φ does not admit any
model. However, it is not difficult to construct a model for just any finite subset of Φ.

6.3 Canonical Model and Completeness

In this section we prove that the axiomatic system of TML is not only sound, but also
complete for the TTS-semantics, meaning that for arbitrary Φ ⊆ L and φ ∈ L, Φ |=

φ iff Φ ` φ. To complete this proof it is sufficient to show that any consistent formula has
a model. In the following we construct a canonical model, which is a TTS such that each
consistent formula is satisfied at some state under some interpretation. In modal logics such
a construction is usually done using maximally consistent sets of formulas as states.

For some set Λ ⊆ L, we say that Φ ⊆ L is Λ-maximally consistent if Φ is consistent and no
formula of Λ can be added to Φ without making it inconsistent. Φ is maximally-consistent
if it is L-maximally-consistent.

The aforementioned technique to construct canonical models cannot be applied directly for
TML because to the same state of a given TTS corresponds different maximally-consistent
sets of formulas under different interpretations. We generalize this construction to cope
with the complexity of TML. To the best of our knowledge, the following construction is
original.

For the beginning, we observe that given a maximally-consistent set of formulas, the infor-
mation contained about a given clock is complete.

Let Ω be the set of L-maximally consistent sets.

Lemma 6.3 For arbitrary Λ ∈ Ω and x ∈ K ,
sup{r ∈ Q+ | x ≥ r ∈ Λ} = inf{r ∈ Q+ | x ≤ r ∈ Λ} ∈ R≥0.

Proof. Let A = {r ∈ Q+ | x ≥ r ∈ Λ} and B = {r ∈ Q+ | x ≤ r ∈ Λ}. (A1) guarantees that
A , ∅ and if B = ∅, we can derive a contradiction from (R3) for C[X] = X.

Since the two sets are non-empty, the sup and inf exist. Moreover, (R3) can also be used to
prove that sup A < ∞. Let sup A = u and inf B = v. If u < v, there exists r ∈ Q+ such that
u < r < v. Hence, x ≤ r ∈ Λ, which contradicts r ≤ v. If v < u, there exists r1, r2 ∈ Q

+

such that v < r1 < r2 < u. Hence, x ≤ ri, x ≥ ri ∈ Λ for i = 1, 2. Since r2 − r1 > 0,
(A3)` x ≥ r2 → ¬(x ≤ r1), which proves the inconsistency of Λ - contradiction.

10



Jaziri, Larsen, Mardare and Xue

The previous lemma demonstrates that to each maximally-consistent set corresponds a
unique interpretation of clocks that we will identify in what follows using the function
I : Ω −→ =(K) defined for arbitrary Λ ∈ Ω and x ∈ K by

I (Λ)(x) = sup{r ∈ Q+ | x ≥ r ∈ Λ} ∈ R≥0.

Since I (Λ) synthesize only the information in Λ regarding the clocks, there exist disjoint
sets Λ1,Λ2 ∈ Ω s.t. I (Λ1) = I (Λ2); this equality defines an equivalence relation on Ω

and the equivalence classes are in one to one correspondence with the interpretations in
=(K).

Observe that any state in a model of TML corresponds to a function from =(K) to Ω: given
a model, each interpretation identifies a maximally-consistent set of formulas satisfied by
that model under the given interpretation. Consequently, to construct the canonical model
we will have to take as states not maximally-consistent sets of formulas, but functions from
interpretations to maximally-consistent sets. However, not just any function γ : =(K)→ Ω

is a good candidate for a model, because between the maximally-consistent sets associ-
ated to a model under different interpretation there are certain coherence conditions as the
ones described in Lemma 5.2 and corollaries 5.3 and 5.4. These coherences are formally
described in the next definition.

Definition 6.4 A function γ : =(K) → Ω is coherent, if for any i ∈ =(K), any bijection σ
on K , any δ : K → R s.t. i + δ ≥ 0, and any f−, f+ : K → Q s.t. f− ≤ δ ≤ f+,
1. (I ◦ γ)(i) = i;
2. if φ ∈ γ(i), then φ +σ

f−/f+ ∈ γ((i + δ) ◦ σ−1).

The first fundamental result that we prove is that any maximally-consistent set Λ belongs
to the image γ(=(K)) of some coherent function γ. After constructing the canonical model
on the set of coherent functions, this result will guarantee that any maximally-consistent
set is satisfied by some model under some interpretation.

Lemma 6.5 For any Λ ∈ Ω, there exists a coherent function γ s.t. γ(I (Λ)) = Λ.

Proof. We say that a set S ⊆ Ω is coherent if there exists a set T ⊆ =(K) and a bijection
γ : T → S that satisfies the two conditions of Definition 6.4. S is maximally-coherent if
T = =(K). Observe that the bijection that defines a maximally-coherent set is a coherent
function in the sense of Definition 6.4.

We prove, using a transfinite induction, that any coherent set has a maximally-coherent
extension. And this proves the existence of γ, because {Λ} is coherent.

I. Firstly, observe that S ⊆ Ω is coherent iff for any Λ1,Λ2 ∈ Ω, with is = I (Λs), s = 1, 2,
Λ1 + (i2 − i1) ⊆ Λ2 and Λ2 + (i1 − i2) ⊆ Λ1,

where for arbitrary Λ′ ∈ Ω and δ : K → R,
Λ′ + δ = {φ + f−/f+ | f−, f+ : K → Q, f− ≤ δ ≤ f+}.

Moreover, Λ1 + (i2 − i1) ⊆ Λ2 iff Λ2 + (i1 − i2) ⊆ Λ1.

II. If i = I (Λ) and i′ ∈ =(K), then there exists Λ′ ∈ Ω s.t. I (Λ′) = i′ and {Λ,Λ′} is
coherent. To prove this, we firstly use Definition 5.1 and the axioms to prove that Λ+ (i′− i)
is consistent. Then, we observe that all the infinitary rules have countable sets of instances,
which allows us to apply Rasiowa-Sikorski lemma to conclude that Λ + (i′ − i) must have

11
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a maximal-consistent extension Λ′. Since Λ + (i′ − i) ⊆ Λ′, we also have Λ′ + (i − i′) ⊆ Λ.
Hence, {Λ,Λ′} is coherent.

III. If S = {Λ0,Λ1, ..Λk} is a finite coherent set, is = I (Λs), s = 1..k and j ∈ =(K), then
there exists Λ j ∈ Ω s.t. I (Λ j) = j and S ∪ {Λ j} is coherent. Supp. Λ = Λ0. It is sufficient
to show that the following set is consistent, which is not a difficult task:

X =
⋃

s=0..k

(Λs + ( j − is)).

IV. If S = {Λs | s ∈ N} is a countable coherent set (supp. Λ = Λ0) and j ∈ =(K). There
exists Λ j ∈ Ω s.t. S ∪ {Λ j} is coherent. As before, we need to prove that

X =
⋃
s∈N

(Λs + ( j − is))

is consistent. Let Xt =
⋃

s≤t(Λs + ( j − is)) for t ∈ N. We have previously proved that Xt is
consistent for any t ∈ N. Moreover, observe that X =

⋃
t∈N Xt.

Suppose that X is not consistent. If the contradiction can be proven without involving the
infinitary rules, then there must exist one Xt that contains all the formulas in the proof,
which contradicts the consistency of Xt. Consequently, if X is inconsistent it is because,
when t goes to infinity, the sets Xt \ Xt−1 collect the left-hand side of some of our infinitary
rules.

If for arbitrary contexts C, formulas φ ∈ L, r ∈ Q≥0 and x ∈ K we denote by
L1(C, x) = {C[x ≤ s],C[x ≥ s] | s ∈ Q≥0}

L2(C, x, φ) = {C[φ + [x 7→ s]/[x 7→ s′]] | s, s′ ∈ Q, s ≤ s′},
L3(C, x, φ, r) = {C[ ∀∀ (r ≤ x ≤ s→ φ)] | r, s ∈ Q≥0, r ≤ s},
one can prove that for each t ∈ N, Xt is L1(C, x)-maximally consistent and for each L of
type L2(C, x, φ) or L3(C, x, φ, r)}, either Xt ∩ L = ∅ or Xt is L-maximally consistent. This
demonstrates that if in X we can use some infinitary rule, it must be used within some Xt

for some t ∈ N. Consequently, the consistency of Xt proves the consistency of X.

V. If S ⊆ Ω is an uncountable coherent set and j ∈ =(K), then there exists Λ j ∈ Ω s.t.
S ∪ { j} is coherent. Supp. S = {Λs | s ∈ R}, Λ = Λ0 and is = I (Λs). As in the other cases
it is sufficient to prove that the following set is consistent:

Y =
⋃
s∈R

(Λs + ( j − is)).

Since Y ⊆ L and L is countable, Y is countable and consequently we can assume that
Y =

⋃
s∈N

(Λs + ( j − is)).

Further the result is a consequence of IV.

In what follows we define a TTS using the set
Γ = {γ : =(K)→ Ω | γ is a coherent function}

as the support-set of the model and the structure
• γ

a
−→ γ′ if [∀i ∈ =(K), [a]φ ∈ γ(i)⇒ φ ∈ γ′(i)];

• γ′ = d ⊕ γ if [∀i, ∀∀ φ ∈ γ(i)⇒ φ ∈ γ′(i + d)].

Theorem 6.6 (Canonical Model) The tuple Γ = (Γ, θ,⊕) defined above is a TTS.

Proof. Firstly, we prove that γ1 = d ⊕ γ and γ2 = d ⊕ γ implies γ1 = γ2.

12



Jaziri, Larsen, Mardare and Xue

For any ∀i ∈ =(K) and x ∈ K \ K(φ), φ ∈ γ1(i) implies x = dde ∧ φ ∈ γ1(i[x 7→ dde]),
where dde denote the smallest integer larger than d. Since γ1 = d ⊕ γ,

∃∃ (x = dde ∧ φ) ∈ γ(i[x 7→ dde] − d),
which further implies, due to (A8), that

∀∀ (x = dde → φ) ∈ γ(i[x 7→ dde] − d).
x = dde → φ ∈ γ2(i[x 7→ dde]) since γ2 = d ⊕ γ. Then φ ∈ γ2(i[x 7→ dde]), which implies
φ ∈ γ2(i) because x < K(φ). Hence for any i ∈ =(K), γ1(i) ⊆ γ2(i). Similarly, γ2(i) ⊆ γ2(i).

Observe now that due to (A5), ∀∀ φ ∈ γ(i) implies φ ∈ γ(i), for any γ ∈ Γ and i ∈ =(K).
Hence, 0 ⊕ γ = γ.

Now we prove that d ⊕ (d′ ⊕m) ∼= (d + d′) ⊕m, i.e. ∃γ1, γ2 s.t. γ1 = d′ ⊕ γ, γ2 = d ⊕ γ1 iff
∃γ3 s.t. γ3 = (d + d′) ⊕ γ.

(⇒) Suppose ∃γ1, γ2 s.t. γ1 = d⊕γ, γ2 = d′⊕γ1. From (A5), ∀∀ φ ∈ γ(i) implies ∀∀ ∀∀ φ ∈ γ(i)
and since γ1 = d ⊕ γ, ∀∀ φ ∈ γ1(i + d). This implies φ ∈ γ2(i + d + d′) because γ2 = d′ ⊕ γ1.
Hence, there exists γ3 = (d + d′) ⊕ γ and, in fact, γ3 = γ2.

(⇐) Supp. that ∃γ3 s.t. γ3 = (d + d′) ⊕ γ.

Firstly, we prove that there exists γ1 s.t. γ1 = d′ ⊕ γ by constructing it. For each i ∈
=(K), γ(i) +σ d′ ⊆ γ1(i + d′). It is not difficult to verify that for arbitrary i, j ∈ =(K),
γ(i) +σ d′ + ( j − i) ⊆ γ( j) +σ d′ and⋃

x∈K {x E r | r ∈ Q+, i(x) E r} ⊆ γ(i) +σ d′.
Now, we can use a similar transfinite construction as in Lemma 6.5 to construct entire γ1.

Secondly, we need to prove that there exists d ⊕ γ1. For any i ∈ =(K), ∀∀ φ ∈ γ1(i) implies
x ≤ r ∧ ∀∀ φ ∈ γ1(i) for r ∈ Q+ s.t. i(x) ≤ r ≤ i(x) + d. Then,

x ≤ r + dd′e ∧ ∀∀ (φ + dd′e) ∈ γ1(i + dd′e).
Now because γ1 = d′ ⊕ γ, we obtain

∃∃ (x ≤ r + dd′e ∧ ∀∀ (φ + dd′e)) ∈ γ(i + dd′e − d′).
From this we get, by applying (A9), that

∀∀ (x ≥ r + dd′e → ∀∀ (φ + dd′e)) ∈ γ(i + dd′e − d′).
Since γ3 = (d + d′) ⊕ γ,

x ≥ r + dd′e → ∀∀ (φ + dd′e) ∈ γ3(i + dd′e + d).
And because r ≤ i(x) + d, x ≥ r + dd′e ∈ γ3(i + dd′e + d). We then get that ∀∀ (φ + dd′e) ∈
γ3(i + dd′e + d), implying ∀∀ φ ∈ γ3(i + d), which using (A5) gives φ ∈ γ3(i + d). Hence,
there exists d ⊕ γ1 = γ3.

Lemma 6.7 (Truth Lemma) For any ψ ∈ L, i ∈ =(K) and γ ∈ Γ,
Γ, γ, i |= ψ iff ψ ∈ γ(i).

Proof. Induction on ψ.

[The case ψ = ∀x.φ]: Γ, γ, i |= ∀x.φ iff Γ, γ, i[x 7→ u] |= φ for any u ∈ R≥0, i.e., φ ∈ γ(i[x 7→
u]) for all u ∈ R≥0.
(=⇒) φ ∈ γ(i[x 7→ u]) implies φ + [x 7→ r]/[x 7→ s] ∈ γ(i) for all r, s ∈ Q s.t r ≤ u − i(x) ≤ s. This
must happen for any u ∈ R≥0, so for any r, s ∈ Q, φ + [x 7→ r]/[x 7→ s] ∈ γ(i). Hence, ∀x.φ ∈ γ(i)
by rule (R4).
(⇐=) Using (A12), ∀x.φ ∈ γ(i) implies φ + [x 7→ r]/[x 7→ s] ∈ γ(i[x 7→ u) for any u ∈ R≥0 and
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r, s ∈ Q s.t. r ≤ u − i(x) ≤ s. Consequently, ∀x.φ ∈ γ(i[x 7→ u]) by (R4). And (A12),
φ ∈ γ(i[x 7→ u]) for all u ∈ R≥0.

[The case ψ = ∀∀ φ]: Γ, γ, i |= ∀∀ φ iff [for any d ∈ R≥0 and γ′ ∈ Γ s.t. γ′ = d ⊕ γ,
Γ, γ′, i + d |= φ] iff φ ∈ γ′(i + d) by the inductive hypothesis.
(=⇒) φ ∈ γ′(i + d) implies (x = r)∧φ ∈ γ′((i + d)[x 7→ r]), for any r ∈ Q+, r ≥ d. Applying
(A8), ∀∀ (x = r → φ) ∈ γ(i[x 7→ r−d]) , for any r ∈ Q+, r ≥ d. This implies x ≤ r → ∀∀ (x =

r → φ) ∈ γ(i[x 7→ u]) for any u ∈ R≥0. Then, ∀(x ≤ r). ∀∀ (x = r → φ) ∈ γ(i). Applying
(A13), ∀(x = r). ∀∀ (r ≤ x ≤ 2r → φ) ∈ γ(i), which further implies ∀(x = 0). ∀∀ (0 ≤ x ≤ r →
φ) ∈ γ(i) by (A12) and (R4). Using (R5), ∀(x = 0). ∀∀ (x ≥ 0 → φ) ∈ γ(i), which implies
∀(x = 0). ∀∀ (x ≥ 0 → φ) ∈ γ(i[x 7→ 0]). So, x = 0 → ∀∀ (x ≥ 0 → φ) ∈ γ(i[x 7→ 0]),
which implies ∀∀ (x ≥ 0 → φ) ∈ γ(i[x 7→ 0]). Using (A1), ∀∀ φ ∈ γ(i[x 7→ 0]) and further,
∀∀ φ ∈ γ(i).
(⇐=) derives from the definition of ⊕.

[The case ψ = [a]φ]: Γ, γ, i |= [a]φ iff for any γ′ ∈ Γ s.t. γ
a
−→ γ′, Γ, γ′, i |= φ, iff φ ∈ γ′(i)

by induction.
(=⇒) Supp. 〈a〉¬φ ∈ γ(i). Let A = {γ′ | γ

a
−→ γ′}, Bi = {¬φ} ∪ {ψ | [a]ψ ∈ γ(i)} ∪ ∆i and

B j = {ψ | [a]ψ ∈ γ( j)} ∪ ∆i for any j , i, where ∆k =
⋃

x∈ K{x ≤ r | r ≥ i(x)} ∪ {x ≥ r | r ≤
i(x)}.
{ψ | [a]ψ ∈ γ(i)} ∪ ∆i and B j, j , i are consistent.
Suppose that Bi is inconsistent. Then, there exists a set F ⊆ Bi s.t. F ` φ. If F is finite,
(R1) guarantees that [a]F ` [a]φ, where [a]F = {[a]ρ | ρ ∈ F}. Otherwise, F ` φ is
(modulo Boolean reasoning possible involving infinite meets) an instance of one of the
rules (R2)-(R5); in all these cases, [a]F ` [a]φ is an instance of the same rule for the
context C[X] = [a]X. Since F ⊆ Bi, [a]F ⊆ γ(i) implying [a]φ ∈ γ(i), which contradicts
the consistency of γ(i). Hence, Bi is consistent.
Now we prove that for any j, j′ ∈ I(K), B j and B j′ are such that B j + ( j′− j) ⊆ B j′ . If j , i,
then for arbitrary ρ ∈ B j either [a]ρ ∈ γ( j), or ρ = xEr. In the first case, [a]ρ+σ

f−/f+ ∈ γ( j′),
for all f− ≤ j′ − j ≤ f+. So, ρ +σ

f−/f+ ∈ B j′ . In the second case, since ρ = x E r is closed
under any interpretation transformation, for any f− ≤ j′ − j ≤ f+, ρ +σ

f−/f+ ∈ B j′ .
If j = i, consider an arbitrary ρ ∈ B j. If ρ , ¬φ, we get a similar case as above. Otherwise,
〈a〉ρ ∈ γ(i), which implies 〈a〉ρ +σ

f−/f+ ∈ γ( j) for all f− ≤ j − i ≤ f+. So, ρ +σ
f−/f+ ∈ B j.

At this point we can use a similar strategy as in Theorem 6.5 to prove that there exists
γ′′ ∈ Γ s.t. for any j ∈ I(K), B j ⊆ γ′′( j). But then, γ′′ ∈ A, which implies φ ∈ γ′′(i) -
contradiction!
Hence, [a]φ ∈ γ(i).
(⇐=) derives from the definition of θ.

Corollary 6.8 If Φ ⊆ L is consistent, there exists γ ∈ Γ and i ∈ =(K) s.t. Γ, γ, i |= Φ.

Proof. Because the infinitary rules of TML have countable sets of instances, the Rasiowa-
Sikorski lemma guarantees the existence of some Λ ∈ Ω s.t. Λ ⊇ Φ. Lemma 6.5 guarantees
that there exists γ ∈ Γ s.t. Λ = γ(I (Λ)). Hence Γ, γ,I (Λ) |= Φ by applying Lemma 6.7.

Corollary 6.8 is a well known equivalent formulation of the strong completeness theorem.
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Theorem 6.9 (Strong Completeness) TML is strongly-complete with respect to the TTS-
semantics, i.e., for arbitrary Φ ⊆ L and φ ∈ L,

Φ |= φ implies Φ ` φ.

7 Conclusions

In this paper we addressed and solved a series of open problems regarding the timed logics
and real-time systems. We develop the metatheory for the Timed Modal Logic (TML),
which is the most basic logic used in practice for specifying and analyzing timed transition
systems (TTSs).

In this paper we demonstrate that TML is adequate for the TTS semantics. We show that its
satisfiability problem is undecidable and the set of the validities is not recursively enumer-
able. Despite this, we develop a strongly-complete proof system for TML. Because TML
is not compact, the proof system contains necessarily infinitary rules and these rules also
explain why the set of validities is not recursively enumerable. Our axioms characterize
the concept of time used in the definition of TTS. Our completeness proof is based on a
novel method that generalizes the classic filtration technique used in modal logics for the
construction of canonical models. Essential in the proof is the use of the Rasiowa-Sikorski
lemma.

All these results open new perspective on real-time systems and on their analysis and re-
veal new research directions. The proof system contains similar axioms to those of other
well-known logics, which makes one think about other possible connections and research
perspectives.
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Appendix

This appendix contains the details of the proofs of the major results presented in the paper.

Proof. [Proof of Theorem 4.2] Our reduction is similar to the one in [3]. The question as to
whether a non-deterministic 2-counter machine has a computation with the initial location
being visited infinitely often is Σ1

1-hard. We show how to reduce this problem into a TML
satisfiability question.

Let M be a 2-counter machine with counters X and Y and with n + 1 program instructions
`0, . . . , `n. The instruction `n represents termination, and each instruction `i (i < n) is
either an increment of the form [`i : X := X + 1; goto ` j] or a decrement of the form
[`i : if X , 0 then X := X − 1; goto ` j else goto `k] or a non-deterministic jump of the
form [`i : goto ` j or `k]. A configuration of M is a triple 〈`i, x, y〉, where x and y are natural
numbers representing the current values of X and Y . A computation of M is a “valid”
sequence of configurations starting in 〈`0, 0, 0〉 and ending in some configuration of the
type 〈`n, x, y〉.

We encode the computation of M in TML using the actions Σ = {`0, . . . , `n, X,Y}. We say
that a state m of a given TTS T encodes the configuration 〈`i, x, y〉 in the interval [a, b),
with a, b ∈ R+ and a < b, iff the following holds:

• (d ⊕ m)
X
−→ for exactly x distinct time-points d in (a, b);

• (d ⊕ m)
Y
−→ for exactly y distinct time-points d in (a, b);

• (d ⊕ m)
`i
−→ for d = a;

• (d ⊕ m) 6−→ ` j for all time-points d in (a, b) and for all j.

Let {〈`i( j), x j, y j〉 : j ≥ 0} be a computation of M (i.e. i(0) = 0). We may construct a
(closed) TML formula φM, such that for any TTS T and any state m, T ,m |= φ if and only
if m encodes the j’th configuration over the interval [ j, j + 1) for all j ≥ 0. Also φM will
ensure that m encodes a computation where `0 is visited infinitely often. The formula φM

is obtained as the conjunction of a formula expressing the initial configuration, a formula
expressing infinite repetition of the initial location and a formula for each instruction of M
ensuring that states (d⊕m) of T being separated by a delay of 1 correctly encodes the given
instruction. The following formula ensures that instructions of M are unique:

(i) ∀∀(〈`i〉> → [` j] ⊥), for all i , j (uniqueness);

The initial configuration may be encoded as the conjunction of the following TML formu-
lae:

(i) 〈`0〉>;

(ii) x in ∀∀(0 < x < 1→ [`i] ⊥), for all i ≥ 0;

(iii) x in ∀∀(0 < x < 1→ ([X] ⊥ ∧[Y] ⊥)).
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An increment statement of the form [`i : X := X+1; goto ` j] is reflected by the conjunction
of the following formulae relating the behaviour in a unit-interval {(d ⊕ m) : d ∈ [ j, j + 1)}

with ( j ⊕ m)
`i
−→ with the successor unit-interval:

(i) ∀∀
(
〈`i〉> → x in ∃∃(x = 1 ∧ 〈` j〉)>

)
;

(ii) ∀∀
(
〈`i〉> → x in ∀∀(0 < x < 1→ [` j] ⊥

)
, for all i, j;

(iii) ∀∀
[
〈`i〉> → x in ∀∀(x < 1 ∧ 〈X〉> → y in ∃∃(y = 1 ∧ 〈X〉>))

]
;

(iv) ∀∀
[
〈`i〉> →

x in ∀∀(x < 1 ∧ 〈X〉> ∧ y in ∀∀(y > 0 ∧ x < 1→ [X] ⊥)
→

y in (∃∃(y > 1 ∧ x < 2 ∧ 〈X〉>))∧
y in (∀∀(y > 1 ∧ x < 2 ∧ 〈X〉> → z in ∀∀(z > 0 ∧ x < 2→ [X] ⊥))))

]
Here (1) encodes the goto of the instruction. (2) ensures that `i actions are only possible
at integer-points. (3) ensures that all X actions in the interval [ j, j + 1) are copied to the
successor interval [ j + 1, j + 2). The most involved formula (4) ensures that exactly one
additional X action is inserted in [ j + 1, j + 2) after the copy of the last X action in [ j, j + 1).
The formulae for decrement and non-deterministic choice are similar (and simpler). Infinite
repetition of `0 is easily expressed as ∀∀[〈`0〉 → x in ∃∃(x > 0 ∧ 〈`0〉>)].

Proof. [Proof of Lemma 5.2] Induction on φ.

[The case x ≥ r]: (x ≥ r) +σ
f−/f+ = σ(x) ≥ (r + f−(x)). M,m, i |= x ≥ r implies i(x) ≥ r.

Then ((i + δ) ◦ σ−1)(x) ≥ r + δ(x) ≥ r + f−(x). Hence M,m, (i + δ) ◦ σ−1 |= (x ≥ r) +σ
f−/f+.

[The case x > r]: (x > r) +σ
f−/f+ = σ(x) > (r + f−(x)). M,m, i |= x > r implies i(x) > r.

Then ((i + δ) ◦ σ−1)(x) > r + δ(x) ≥ r + f−(x). Hence M,m, (i + δ) ◦ σ−1 |= (x > r) +σ
f−/f+.

[The case x ≤ r]: (x ≤ r) +σ
f−/f+ = σ(x) ≤ (r + f+(x)). M,m, i |= x ≤ r implies i(x) ≤ r.

Then ((i + δ) ◦ σ−1)(x) ≤ r + δ(x) ≤ r + f+(x). Hence M,m, (i + δ) ◦ σ−1 |= (x ≤ r) +σ
f−/f+.

[The case x < r]: (x < r) +σ
f−/f+ = σ(x) < (r + f+(x)). M,m, i |= x < r implies i(x) < r.

Then ((i + δ) ◦ σ−1)(x) < r + δ(x) ≥ r + f+(x). Hence M,m, (i + δ) ◦ σ−1 |= (x < r) +σ
f−/f+.

[The case φ ∧ ψ]: M,m, i |= φ ∧ ψ implies M,m, i |= φ and M,m, i |= ψ. By inductive
hypothesis, M,m, (i + δ) ◦σ−1 |= φ+σ

f−/f+ and M,m, (i + δ) ◦σ−1 |= ψ+σ
f−/f+, which imply

M,m, i + δ |= (φ +σ
f−/f+) ∧ (ψ +σ

f−/f+). Hence M,m, (i + δ) ◦ σ−1 |= (φ ∧ ψ) +σ
f−/f+.

[The case φ ∨ ψ]: M,m, i |= φ ∨ ψ implies M,m, i |= φ or M,m, i |= ψ. By inductive
hypothesis, M,m, (i + δ) ◦ σ−1 |= φ +σ

f−/f+ or M,m, (i + δ) ◦ σ−1 |= ψ +σ
f−/f+, which imply

M,m, (i + δ) ◦σ−1 |= (φ +σ
f−/f+) ∨ (ψ +σ

f−/f+). Hence M,m, (i + δ) ◦σ−1 |= (φ ∨ ψ) +σ
f−/f+.

[The case [a]φ]: M,m, i |= [a]φ implies for any m′ ∈ M s.t. m
a
−→ m′, M,m′, i |= φ. By

inductive hypothesis, M,m′, (i + δ) ◦ σ−1 |= φ +σ
f−/f+, which implies M,m, (i + δ) ◦ σ−1 |=

[a](φ +σ
f−/f+). Hence M,m, (i + δ) ◦ σ−1 |= ([a]φ) +σ

f−/f+.

[The case 〈a〉φ]: M,m, i |= 〈a〉φ implies exists m′ ∈ M s.t. m
a
−→ m′ and M,m′, i |= φ. By

inductive hypothesis, M,m′, (i + δ) ◦ σ−1 |= φ +σ
f−/f+, which implies M,m, (i + δ) ◦ σ−1 |=

〈a〉(φ +σ
f−/f+). Hence M,m, (i + δ) ◦ σ−1 |= (〈a〉φ) +σ

f−/f+.
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[The case ∀∀ φ]: M,m, i |= ∀∀ φ implies for any d ∈ R+ and m′ ∈ M s.t. m′ = d ⊕ m,
M,m′, i |= φ. By inductive hypothesis, M,m′, (i + δ) ◦ σ−1 |= φ +σ

f−/f+, which implies
M,m, (i + δ) ◦ σ−1 |= ∀∀ (φ +σ

f−/f+). Hence M,m, (i + δ) ◦ σ−1 |= ( ∀∀ φ) +σ
f−/f+.

[The case ∃∃ φ]: M,m, i |= ∃∃ φ implies exists d ∈ R+ and m′ ∈ M s.t. m′ = d ⊕ m,
M,m′, i |= φ. By inductive hypothesis, M,m′, (i + δ) ◦ σ−1 |= φ +σ

f−/f+, which implies
M,m, (i + δ) ◦ σ−1 |= ∃∃ (φ +σ

f−/f+). Hence M,m, (i + δ) ◦ σ−1 |= ( ∃∃ φ) +σ
f−/f+.

[The case ∀x.φ]: M,m, i |= ∀x.φ implies for any t ∈ Q+, M,m, i[x 7→ t] |= φ. By inductive
hypothesis, M,m′, (i[x 7→ t] + δ[x 7→ 0]) ◦ σ−1 |= φ +σ

f−[x 7→ 0]/f+[x 7→ 0], which implies
M,m′, ((i + δ) ◦ σ−1)[x 7→ t] |= φ +σ

f−[x 7→ 0]/f+[x 7→ 0]. Then M,m, (i + δ) ◦ σ−1 |= ∀x.(φ +σ
f−[x 7→ 0]/f+[x 7→ 0]). Hence M,m, (i + δ) ◦ σ−1 |= (∀x.φ) +σ

f−/f+.

[The case ∃x.φ]: M,m, i |= ∃x.φ implies exists t ∈ Q+ s.t. M,m, i[x 7→ t] |= φ. By inductive
hypothesis, M,m′, (i[x 7→ t] + δ[x 7→ 0]) ◦ σ−1 |= φ +σ

f−[x 7→ 0]/f+[x 7→ 0]. So M,m′, ((i + δ) ◦
σ−1)[x 7→ t] |= φ +σ

f−[x 7→ 0]/f+[x 7→ 0]. Then M,m, (i + δ) ◦ σ−1 |= ∃x.(φ +σ
f−[x 7→ 0]/f+[x 7→ 0]).

Hence M,m, (i + δ) ◦ σ−1 |= (∃x.φ) +σ
f−/f+.

Proof. [Proof of Corollary 5.3] (⇒): from Lemma 5.2.
(⇐): Since i + f − f ≥ 0, M,m, i + f |= φ + f implies M,m, i + f − f |= φ + f − f due to
lemma 5.2.

Proof. [Proof of Corollary 5.4] Let f−, f+ : K → Q be such that f− ≤ δ ≤ f+ and
f−(x) = f+(x) = 0 for any x ∈ Kφ). Then, φ + f−/f+ = φ + − f+/− f− = φ.
(⇒): derives from Lemma 5.2.
(⇐): Since i + δ − δ ≥ 0, M,m, i + δ |= φ implies M,m, i + δ − δ |= φ using Lemma 5.2.

Proof. [Proof of Theorem 5.5] (⇒): Induction on φ.

[The Case [a]φ]: M,m, i |= [a]φ implies for any m′ ∈ M s.t. m
a
−→ m′, M,m′, i |= φ. Since

m ∼ n, so exists n′ ∈ M s.t. n
a
−→ n′ and m′ ∼ n′. By inductive hypothesis, M,m′, i |= φ

implies M, n′, i |= φ. Hence M,m, i |= [a]φ implies M, n, i |= [a]φ. Similarly M, n, i |= [a]φ
implies M,m, i |= [a]φ.

[The Case ∀∀ φ]: M,m, i |= [a]φ implies for any d ∈ R≥0 and m′ ∈ M s.t. m′ = d ⊕ m,
M,m′, i |= φ. Since m ∼ n, so exists n′ ∈ M s.t. n′ = d ⊕ n and m′ ∼ n′. By inductive
hypothesis, M,m′, i |= φ implies M, n′, i |= φ. Hence M,m, i |= ∀∀ φ implies M, n, i |= ∀∀ φ.
Similarly M, n, i |= ∀∀ φ implies M,m, i |= ∀∀ φ.

[The Case ∀x.φ]: M,m, i |= ∀x.φ iff for any j = i[x 7→ t] and t ∈ R≥0, M,m, j |= φ. By
inductive hypothesis, M,m, j |= φ iff M, n, j |= φ. Hence M,m, i |= ∀x.φ iff M, n, i |= ∀x.φ.

Proof. [Proof of Lemma 6.3] First, the sets A = {r ∈ Q+ | x ≥ r ∈ Γ} and B = {r ∈ Q+ | x ≤
r ∈ Γ} are both non-empty: Axiom (A2) guarantees that for any r ∈ Q+, either x ≥ r ∈ Γ

or x ≤ r ∈ Γ. Suppose that there exists r ∈ Q+ such that x ≥ r ∈ Γ. Then, A , ∅. Suppose
that B = ∅, then (A2) implies that for any r ∈ Q+, x ≥ r ∈ Γ. Using (R3) for C[X] = X, we
derive that ⊥ ∈ Γ - contradiction. Consequently, B , ∅. Similarly can be proven that B , ∅
implies A , ∅.
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Since the two sets are non-empty, the sup and inf exist. Suppose that sup A = ∞. Then
applying (A3) we obtain that Q+ ⊆ A and (R2) for C[X] = X proves the inconsistency of Γ

- contradiction. Similarly one can prove that inf B ∈ R+.

Let sup A = u and inf B = v. We prove u = v. If u < v, there exists r ∈ Q+ such that
u < r < v. Since u < r, x ≥ r < Γ and (A2) guarantees that x ≤ r ∈ Γ. But this contradicts
the fact that r ≤ v. If v < u, there exists r1, r2 ∈ Q

+ such that v < r1 < r2 < u. Since r1 > v,
x ≤ ri ∈ Γ for i = 1, 2 (applying (A3)), and similarly, ri < u implies x ≥ ri ∈ Γ for i = 1, 2.
Since r2 − r1 > 0, we apply (A3) and obtain ` x ≥ r2 → ¬(x ≤ r1). This shows that Γ is
inconsistent - contradiction.

Consequently, u = v.

Proof. [Proof of Lemma 6.5]

We say that a set S ⊆ Ω is coherent if there exists a set T ⊆ =(K) and a bijection γ : T → S
that satisfies the two conditions of Definition 6.4. S is maximally-coherent if T = =(K).
Observe that the bijection that defines a maximally-coherent set is a coherent function in
the sense of Definition 6.4.

We prove, using a transfinite induction, that any coherent set has a maximally-coherent
extension. And this proves the existence of γ, because the singleton {Λ} is coherent.

I. Firstly, observe that the set S ⊆ Ω is coherent iff for arbitrary Λ1,Λ2 ∈ Ω, with is =

I (Λs), s = 1, 2,
Λ1 + (i2 − i1) ⊆ Λ2 and Λ2 + (i1 − i2) ⊆ Λ1,

where for arbitrary Λ′ ∈ Ω and δ : K → R,
Λ′ + δ = {φ + f−/f+ | f−, f+ : K → Q, f− ≤ δ ≤ f+}.

Moreover Λ1 + (i2 − i1) ⊆ Λ2 iff Λ2 + (i1 − i2) ⊆ Λ1. We prove it as follows:
Suppose Λ1 + (i2 − i1) ⊆ Λ2 but Λ2 + (i1 − i2) * Λ1, i.e., there exist ψ ∈ Λ2, bijection
σ and f−, f+ : I(K) → Q s.t. f− ≤ i1 − i2 ≤ f+ and ψ +σ f−/ f+ < Λ1. Since Λ1 is
maximal, ¬(ψ +σ f−/ f+) ∈ Λ1. So ¬ψ +σ f+/ f− ∈ Λ1. Since − f+ ≤ i2 − i1 ≤ − f− and σ
is bijection, (¬ψ +σ f+/ f−) +σ−1 − f+/ − f− ∈ Λ2. Then ¬ψ ∈ Λ2 - contradiction! Hence
Λ2 + (i1 − i2) ⊆ Λ1.
Similarly for the other direction.

II. If i = I (Λ) and i′ ∈ =(K), then there exists Λ′ ∈ Ω s.t. I (Λ′) = i′ and {Λ,Λ′} is
coherent, i.e., Λ + (i′ − i) ⊆ Λ′. To prove this, we firstly prove the following two properties
which will also be used in IV:

(a) For arbitrary φ ∈ Λ, σ a bijection on K , and f−, f+ : K → Q s.t. for any x ∈ K(φ),
either f−(x) = f+(x) = 0 or f−(x) ≤ (i′ − i)(x) ≤ f+(x). Then,

` (φ +σ
f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1)→ φ.

(b) For any x E r ∈ L,
{(x E r) + f−/f+ | f−, f+ : K → Q, f− < 0 < f+} ` x E r.

[Proof of (a)]: Induction on φ.
[The Case x ≥ r]:
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(x ≥ r) +σ
f−/f+ =

σ(x) ≥ (r + f−(x)), r + f−(x) ≥ 0

σ(x) ≥ 0, otherwise
(i). If r + f−(x) ≥ 0:
((x ≥ r) +σ

f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1) = (σ(x) ≥ (r + f−(x))) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1) = x ≥ r;
(ii). If r + f−(x) < 0:
((x ≥ r) +σ

f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1) = (σ(x) ≥ 0) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1) = x ≥ − f−(x).
r + f−(x) < 0 implies − f−(x) > r implies x ≥ r.
So ` ((x ≥ r) +σ

f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1)→ (x ≥ r).
[The Case x ≤ r]: If f−(x) = f+(x) = 0, then obviously

((x ≤ r) +σ
f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1) = x ≤ r.

Otherwise,

(x ≤ r) +σ
f−/f+ =

σ(x) ≤ (r + f+(x)), r + f+(x) ≥ 0

σ(x) ≥ 0, otherwise
x ≤ r ∈ Λ, r ≥ iΛ(x), so r + f+(x) ≥ iΛ(x) + δ(x) = i(x) ≥ 0. Then (x ≤ r) +σ

f−/f+ = σ(x) ≤
(r + f+(x)), which implies ((x ≤ r) +σ

f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1) = x ≤ r.
So ` ((x ≤ r) +σ

f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1)→ (x ≤ r).
[The Case x > r and x < r]: similar as the above two.
[The Case φ ∧ ψ and φ ∨ ψ]: Obviously.
[The Case [a]φ]: (([a]φ) +σ

f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1) = [a]((φ +σ
f−/f+) +σ−1

− ( f− ◦ σ−1)/− ( f+ ◦ σ−1)). By inductive hypothesis: ` (φ +σ
f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1) → φ. By

(R1) and (A5) ` [a]((φ +σ
f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1))→ [a]φ.

Hence ` (([a]φ) +σ
f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1)→ [a]φ.

[The Case 〈a〉φ]: ((〈a〉φ) +σ
f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1) = 〈a〉((φ +σ

f−/f+) +σ−1

− ( f− ◦ σ−1)/− ( f+ ◦ σ−1)). By inductive hypothesis: ` (φ +σ
f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1) → φ.

So ` ¬φ → ¬((φ +σ
f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1)). By (R1) and (A5), ` [a]¬φ →

[a]¬((φ+σ
f−/f+)+σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1)). Then ` 〈a〉((φ+σ

f−/f+)+σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1))→ 〈a〉φ.
Hence ` ((〈φ〉) +σ

f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1)→ 〈a〉φ.
[The Case ∀∀ φ]: (( ∀∀ φ)+σ

f−/f+)+σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1) = ∀∀ ((φ+σ
f−/f+)+σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1)).

By inductive hypothesis: ` (φ +σ
f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1) → φ. By (R2) and (A7)

` ∀∀ ((φ +σ
f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1))→ ∀∀ φ.

Hence ` (( ∀∀ φ) +σ
f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1)→ ∀∀ φ.

[The Case ∃∃ φ]: (( ∃∃ φ)+σ
f−/f+)+σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1) = ∃∃ ((φ+σ

f−/f+)+σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1)).
By inductive hypothesis: ` (φ +σ

f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1) → φ. So ` ¬φ →
¬((φ +σ

f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1)). By (R2) and (A7) ` ∀∀ ¬φ → ∀∀ ¬((φ +σ
f−/f+) +σ−1

− ( f− ◦ σ−1)/− ( f+ ◦ σ−1)). Then ` ∃∃ ((φ +σ
f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1))→ ∃∃ φ.

Hence ` (( ∃∃ φ) +σ
f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1)→ ∃∃ φ.

[The Case ∀x.φ]:
((∀x.φ) +σ

f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1) =

∀x.((φ +σ
f−[x 7→ 0]/f+[x 7→ 0]) +σ−1 − ( f−[x 7→ 0] ◦ σ−1)/− ( f+[x 7→ 0] ◦ σ−1)). By inductive hypothesis: `

(φ +σ
f−[x 7→ 0]/f+[x 7→ 0]) +σ−1 − ( f−[x 7→ 0] ◦ σ−1)/− ( f+[x 7→ 0] ◦ σ−1)→ φ.

By (R3), (R6) and (A13) ` ∀x.((φ+σ
f−[x 7→ 0]/f+[x 7→ 0])+σ−1 − ( f−[x 7→ 0] ◦ σ−1)/− ( f+[x 7→ 0] ◦ σ−1))→ ∀x.φ.

Hence ` ((∀x.φ) +σ
f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1)→ ∀x.φ.

[The Case ∃x.φ]:
((∃x.φ) +σ

f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1) =

∃x.((φ +σ
f−[x 7→ 0]/f+[x 7→ 0]) +σ−1 − ( f−[x 7→ 0] ◦ σ−1)/− ( f+[x 7→ 0] ◦ σ−1)).
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By inductive hypothesis: ` (φ +σ
f−[x 7→ 0]/f+[x 7→ 0]) +σ−1 − ( f−[x 7→ 0] ◦ σ−1)/− ( f+[x 7→ 0] ◦ σ−1)→ φ.

So ` ¬φ → ¬((φ +σ
f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1)). By (R3), (R6) and (A13), we have

` ∀x.(¬φ)→ ∀x.¬((φ +σ
f−[x 7→ 0]/f+[x 7→ 0]) +σ−1 − ( f−[x 7→ 0] ◦ σ−1)/− ( f+[x 7→ 0] ◦ σ−1)).

Then ` ∃x.((φ +σ
f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1))→ ∃x.φ.

Hence ` ((∃x.φ) +σ
f−/f+) +σ−1 − ( f− ◦ σ−1)/− ( f+ ◦ σ−1)→ ∃x.φ.

[Proof of (b)]: [The Case x ≥ r]:

(x ≥ r) + f−/f+ =

 x ≥ (r + f−(x)), r + f−(x) ≥ 0

x ≥ 0, otherwise
For any r + f−(x) ≥ 0, we have x ≥ (r + f−(x)). Since f−(x) < 0, we have exists s ∈ Q s.t.
s = r + f−(x) < r and x ≥ s. By rule (R2), x ≥ r.
So {(x ≥ r) + f−/f+ | for any f−, f+ : K → Q s.t. for any
x ∈ K , f−(x) < 0 < f+(x)} ` (x ≥ r).
[The Case x ≤ r]:

(x ≤ r) + f−/f+ =

 x ≤ (r + f+(x)), r + f+(x) ≥ 0

x ≥ 0, otherwise
For any r + f+(x) ≥ 0, we have x ≤ (r + f+(x)). Since f+(x) > 0, we have exists s ∈ Q s.t.
s = r + f+(x) > r, x ≤ s. By rule (R2), x ≤ r.
So {(x ≤ r) + f−/f+ | for any f−, f+ : K → Q s.t. for any
x ∈ K , f−(x) < 0 < f+(x)} ` (x ≤ r).
[The Case x > r and x < r]: similar as the above two.

Now we are ready to prove that there exists Λ′ ∈ Ω s.t. I (Λ′) = i′ and Λ + (i′ − i) ⊆ Λ′.
Suppose not, i.e., for any Λ′ ∈ Ω, either A * Λ′ or A ⊆ Λ′ but I (Λ′) , i′, where
A = {φ +σ

f−/f+ | φ ∈ Λ, f−, f+ : K → Q s.t. f− ≤ i′ − i ≤ f+}.
* Suppose A * Λ′, i.e., A ` ⊥ (otherwise by Rasiowa-Sikorski Lemma, there exists one
maximal consistent set that contains it). Then B ` ⊥, where B = A +σ−1 − f− ◦ σ−1/− f+ ◦ σ−1 =

{φ +σ−1 − f− ◦ σ−1/− f+ ◦ σ−1 | φ ∈ A}. For any φ ∈ Λ, φ +σ
f−/f+ +σ−1 − f− ◦ σ−1/− f+ ◦ σ−1 ∈ B. By (a),

φ ∈ B. So Λ ⊆ B. Since Λ is maximal, Λ = B. So Λ ` ⊥ - contradiction!
* Suppose A ⊆ Λ′ but I (Λ′) , i.
First we prove x E r < A implies ¬(x E r) ∈ A for any x ∈ K and r ∈ Q+ as follows:
x E r < A implies (x E r) +σ−1 − f− ◦ σ−1/− f+ ◦ σ−1 < Λ. So ¬((x E r) +σ−1 − f− ◦ σ−1/− f+ ◦ σ−1) ∈ Λ.
Then (¬(x E r) +σ−1 − f+ ◦ σ−1/− f− ◦ σ−1) +σ

f ′−/f ′+ ∈ A. So ¬(x E r) + f ′− − f+/f ′+ − f− ∈ A, where
f−, f ′− ≤ i′ − i ≤ f+, f ′+ which implies f ′− − f+ ≤ 0 ≤ f ′+ − f−. If i′ − i ∈ Q+, then there
exists f ′−, f+ s.t. f ′− − f+ = 0 (and f−, f ′+ s.t. f ′+ − f− = 0). Hence ¬(x E r) ∈ A. If not,
f ′− − f+ < 0 < f ′+ − f−. By (b), ¬(x E r) ∈ A.
Then for all r ≥ i(x) ≥ 0, suppose x > r ∈ Λ′. So x > r ∈ Ai by the above result. Then
x > r − f−(x) ∈ Λ, which implies r − f−(x) ≤ iΛ(x). Hence r ≤ iΛ(x) + f−(x) ≤ i(x) -
contradiction! So x ≤ r ∈ Λ′.
For all 0 < r ≤ i(x), suppose x < r ∈ Λ′. Then x < r ∈ Ai by the above result. Then
x < r − f+(x) ∈ Λ, which implies r − f+(x) ≥ iΛ(x). Then r ≥ iΛ(x) + f+(x) ≥ i(x) -
contradiction! So x ≥ r ∈ Λ′.
If r = 0, apparently x ≥ 0 ∈ Λ′.
So I (Λ′) = i - contradiction!

IV. If S = {Λs | s ∈ N} is a countable coherent set (supp. Λ = Λ0) and j ∈ =(K). There
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exists Λ j ∈ Ω s.t. S ∪ {Λ j} is coherent. As before, we need to prove that
X =

⋃
s∈N

(Λs + ( j − is))

is consistent. Let Xt =
⋃

s≤t(Λs + ( j − is)) for t ∈ N. We have previously proved that Xt is
consistent for any t ∈ N. Moreover, observe that X =

⋃
t∈N Xt.

Suppose that X is not consistent. If the contradiction can be proven without involving the
infinitary rules, then there must exist one Xt that contains all the formulas in the proof,
which contradicts the consistency of Xt. Consequently, if X is inconsistent it must be be-
cause, when t goes to infinite, the sets Xt \ Xt−1 collect the left-hand side of some of our
infinitary rules.

For arbitrary contexts C, formulas φ ∈ L, r ∈ Q≥0 and x ∈ K we denote by
L1(C, x) = {C[x ≤ s],C[x ≥ s] | s ∈ Q≥0}

L2(C, x, φ) = {C[φ + [x 7→ s]/[x 7→ s′]] | s, s′ ∈ Q, s ≤ s′},
L3(C, x, φ, r) = {C[ ∀∀ (r ≤ x ≤ s→ φ)] | r, s ∈ Q≥0, r ≤ s}.
We already proved that for each t ∈ N, Xt is L1(C, x)-maximally consistent in II. Similarly,
for L2(C, x, φ) either Xt ∩ L2(C, x, φ) = ∅ or Xt is L2(C, x, φ)-maximally consistent. To
prove the same result for L3(C, x, φ), we rely on the following fact:
If Λ1,Λ2 are coherent and t1 = sup{s ∈ Q | ∀∀ (x ≤ s → φ) ∈ Λ1}, then there exists no
t2 > t1 + (i2(x) − i1(x)) such that for any s′ ≤ t2 and any f− ≤ i2 − i1 ≤ f+,

¬ ∀∀ (x ≤ s′ → (φ + f−/ f+)) ∈ Λ2.

This demonstrates that if in X we can use some infinitary rule, it must be used within some
Xt for some t ∈ N. Consequently, the consistency of Xt proves the consistency of X.

V. If S ⊆ Ω is an uncountable coherent set and j ∈ =(K), then there exists Λ j ∈ Ω s.t.
S ∪ { j} is coherent. Supp. S = {Λs | s ∈ R}, Λ = Λ0 and is = I (Λs). As in the other cases
it is sufficient to prove that the set

Y =
⋃
s∈R

(Λs + ( j − is))

is consistent. Since Y ⊆ L and L is countable, Y is countable and consequently we can
assume that

Y =
⋃
s∈N

(Λs + ( j − is)).

Further the result is a consequence of IV.

Proof. [Proof of Theorem 6.6] We need to prove that ⊕ is well-defined and satisfies the re-
quired conditions 1 and 2 in Definition 3.1. That is to prove the following three conditions:

1. ⊕ is a well-defined partial function: R≥0 × Γ→ Γ, i.e. if γ1 = d ⊕ γ and γ2 = d ⊕ γ, then
γ1 = γ2.

For any ∀i ∈ I(K), φ ∈ γ1(i) implies x = dde ∧ φ ∈ γ1(i[x 7→ dde]), where x ∈ K\K(φ) is
a new clock different from those in φ. It implies that ∀∀ (x = dde → φ) ∈ γ(i[x 7→ dde] − d)
because γ1 = d⊕γ and axiom (A10). So x = dde → φ ∈ γ2(i[x 7→ dde]) because γ2 = d⊕γ.
Then φ ∈ γ2(i[x 7→ dde]), which implies φ ∈ γ2(i) since x ∈ K\K(φ).

Hence for any i ∈ I(K), γ1(i) ⊆ γ2(i). Similarly γ2 ⊆ γ2(i). Then for any i ∈ I(K),
γ1(i) = γ2(i). Hence γ1 = γ2.
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2. For any γ ∈ Γ, 0 ⊕ γ = γ, i.e. for any i ∈ I(K), ∀∀ φ ∈ γ implies φ ∈ γ. It is obviously
true by (A9).

3. d ⊕ (d′ ⊕ m) ∼= (d + d′) ⊕ m, i.e. ∃γ1, γ2 s.t. γ1 = d′ ⊕ γ, γ2 = d ⊕ γ1 iff ∃γ3 s.t.
γ3 = (d + d′) ⊕ γ.

(⇒): suppose ∃γ1, γ2 s.t. γ1 = d⊕γ, γ2 = d′⊕γ1. Then for any i ∈ I(K), for any ∀∀ φ ∈ γ(i)
implies ∀∀ ∀∀ φ ∈ γ(i) by (A8). So ∀∀ φ ∈ γ1(i + d) because γ1 = d ⊕ γ, which further implies
φ ∈ γ2(i + d + d′) because γ2 = d′ ⊕ γ1. Hence ∃γ3 = γ2 s.t. γ3 = (d + d′) ⊕ γ.

(⇐): suppose ∃γ3 s.t. γ3 = (d + d′) ⊕ γ.

- First, we prove: if γ3 = (d + d′) ⊕ γ then ∃γ1 s.t. γ1 = d′ ⊕ γ.

For any i ∈ I(K), let λi = {φ | ∀∀ φ ∈ γ(i)}, ∆i =
⋃

x∈K {x E r | i(x) E r, r ∈ Q+},
Θi+d′ = {φ | λi ∪ ∆i+d′ ` φ}.

We construct γ1 according to the following steps:

(1) We prove Θi+d′ is consistent.

We only need to show that λi ∪ ∆i+d′ is consistent.

Suppose not, i.e. λi ∪ ∆i+d′ ` ⊥.

Since both λi and ∆i+d′ are consistent, exists ρ ∈ L s.t. λi ` ¬ρ and ∆i+d′ ` ρ.

λi ` ¬ρ implies ∀∀ λi ` ∀∀ ¬ρ by rule (R2) or (R4), which further implies ∀∀ ¬ρ ∈ γ(i).

∆i+d′ ` ρ implies ρ ∈ γ′(i + d′) for any γ′ ∈ Γ.

Let δ = (i + d′)[K(ρ) 7→ dd′e] − (i + d′), f−, f+ : K → Q defined as:

f−(x) =

 dd
′e − rx, x ∈ K(ρ)

0, otherwise

f=(x) =

 dd
′e − sx, x ∈ K(ρ)

0, otherwise

where rx = max{x ≥ rx is in ρ with ¬ on atoms}, sx = min{x ≤ sx is in ρ with ¬ on atoms}.

Then ρ + f−/f+ ∈ γ′((i + d′)[K(ρ) 7→ dd′e]), which implies ρ + f−/f+ ∈ γ′(i′[K(ρ) 7→ dd′e]) for
any i′ ∈ I(K). Then

∧
x∈K(ρ) (x = dd′e) → ρ + f−/f+ ∈ γ′(i′) for any γ′ and i′. By rule (R2)

∀∀ (
∧

x∈K(ρ) (x = dd′e)→ ρ + f−/f+) ∈ γ′(i′).

x ≤ dd′e ∈ γ(i[K(ρ) 7→ dd′e − d′]) for any x ∈ K(ρ). Then
∨

x∈K(ρ)(x ≤ dd′e) ∈ γ(i[K(ρ) 7→
dd′e−d′]). And similarly

∨
x∈K(ρ)(x ≥ dd′e) ∈ γ(i[K(ρ) 7→ dd′e−d′]+(d+d′)), which implies

∃∃ (
∨

x∈K(ρ)(x ≥ dd′e)) ∈ γ(i[K(ρ) 7→ dd′e − d′]). So
∨

x∈K(ρ)(x ≤ dd′e) ∧ ∃∃ (
∨

x∈K(ρ)(x ≥
dd′e)) ∈ γ(i[K(ρ) 7→ dd′e − d′]). By axiom (A11) ∃∃ (

∨
x∈K(ρ)(x = dd′e)) ∈ γ(i[K(ρ) 7→

dd′e − d′]).

Together with ∀∀ (
∧

x∈K(ρ) (x = dd′e)→ ρ + f−/f+) ∈ γ(i[K(ρ) 7→ dd′e]), we get ∃∃ (ρ + f−/f+) ∈
γ(i[K(ρ) 7→ dd′e]) by axiom (A10).
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So ∃∃ ρ ∈ γ(i) - contradict that ∀∀ ¬ρ ∈ γ(i). Hence λi ∪ ∆i+d′ is consistent, which implies
Θi+d′ is consistent.

(2) Extend to maximal consistent set Λi for each i ∈ I.

(i) If there exists x ∈ K s.t. i(x) ≥ d′ and i(x) ∈ Q+, Θi is maximal, i.e. for any φ ∈ L,
φ < Θi implies ¬φ ∈ Θi.

By definition of ∆i, x = i(x) ∈ ∆i ⊆ Θi. Together with φ < Θi, x = i(x) → φ < Θi. By
definition of λi−d′ , ∀∀ (x = i(x) → φ) ∈ γ(i − d′) implies x = i(x) → φ ∈ λi−d′ ⊆ Θi. So
∀∀ (x = i(x)→ φ) < γ(i − d′). Since γ(i − d′) is maximal and ¬( ∃∃ (x = i(x) ∧ ¬φ)) = ∀∀ (x =

i(x) → φ), we have ∀∀ (x = i(x) → φ) < γ(i − d′) implies ∃∃ (x = i(x) ∧ ¬φ) ∈ γ(i − d′). By
(A10) ∀∀ (x = i(x) → ¬φ) ∈ γ(i − d′). So x = i(x) → ¬φ ∈ λi−d′ ⊆ Θi by the definition of
λi−d′ . Then we have ¬φ ∈ Θi.

So Λi = Θi, if there exists x ∈ K s.t. i(x) ≥ d′ and i(x) ∈ Q+.

(ii) If for all x ∈ K , i(x) ≥ d′ and i(x) ∈ R≥0 but < Q+, define the following function, which
given an interpretationi and finite set of clocks K f , maps to another interpretation:

iK f =

 i(x) x ∈ K f

dd′e otherwise

Then we define Λi =
⋃
K f⊂K {φ | K(φ) = K f , φ ∈ ΠiK f }.

Now we prove that Λi above is maximal consistent.

Obviously for any x ∈ K f and any finite K f ⊂ K , iK f (x) − d′ ≥ 0. And according to the
first case, ΛiK f is maximal consistent. So Λi is maximal.

Suppose Λi is not consistent, i.e. Λi ` ⊥. Suppose Ψ ⊆ Λi s.t. Ψ ` ⊥, and K(Ψ) is the set
of clocks of Ψ. Since even in the infinitary rules, the number of the clocks is finite, K(Ψ)
is finite. For any ψ ∈ Ψ, ψ ∈ ΛiK(ψ) by the definition of Λi.

By the first case, ΛiK(ψ) = ΘiV(ψ) , so λiK(ψ)−d′ ∪ ∆iK(ψ) ` ψ. Suppose Ψ′ ⊆ λiK(ψ)−d′ ∪ ∆iK(ψ) s.t.
Ψ′ ` ψ. Ψ′{y

′/y} ` ψ for any y ∈ K(Ψ)\K(ψ), y′ < K(Ψ). Since Ψ′{y
′/y} has no clocks in

K(Ψ)\K(ψ), and iK(Ψ) and iK(ψ) only differ for the clocks inK(Ψ)\K(ψ), it is easy to have
Ψ′{y

′/y} ∈ λiK(Ψ)−d′ ∪ ∆iK(Ψ) . Then ψ ∈ ΘiK(Ψ) . Hence Ψ ⊆ ΘiK(Ψ) , which implies ΘiK(Ψ) ` ⊥ -
contradiction.

(iii) If for all x ∈ K , i(x) < d′.

Λi = {φ | φ + dd′e ∈ Λi+dd′e}.

Obviously Λi is a consistent set since Λi+dd′e is consistent. Now we prove Λi is also maxi-
mal. Suppose φ < Λi, so φ+ dd′e < Λi+dd′e, which implies ¬(φ+ dd′e) ∈ Λi+dd′e since Λi+dd′e

is maximal. Then we have ¬φ ∈ Λi. So Λi is maximal.

(3) Let γ1(i) = Λi.

We prove that γ1 is a coherent function, i.e., γ1 satisfies the two conditions in Definition
6.4.

The first condition holds obviously.
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Before we prove γ1 satisfies the second condition, we first prove the following:

(a) For any bijection σ on K , any δ : K → R s.t. ∀x ∈ K , i(x) ≥ d′, i(x) + δ(x) ≥ d′, and
any f−, f+ : K → Q s.t. f− ≤ δ ≤ f+, we have: φ ∈ Θi ⇒ φ +σ

f−/f+ ∈ Θ(i+δ)◦σ−1 .

φ ∈ Θi implies λi−d′ ∪ ∆i ` φ. Because γ is interpretation coherent, so λi−d′ +σ
f−/f+ ⊆

λ(i+δ)◦σ−1−d′ . ∆i +σ
f−/f+ ⊆ ∆(i+δ)◦σ−1 by the definition of ∆i. So we have λ(i+δ)◦σ−1−d′ ∪

∆(i+δ)◦σ−1 ` φ +σ
f−/f+. Hence φ ∈ Θi ⇒ φ +σ

f−/f+ ∈ Θ(i+δ)◦σ−1 .

(b) For any bijection σ on K , any δ : K → R s.t. ∀x ∈ K , i(x) ≥ d′, i(x) + δ(x) ≥ d′, and
any f−, f+ : K → Q s.t. f− ≤ δ ≤ f+, we have: φ ∈ Λi ⇒ φ +σ

f−/f+ ∈ Λ(i+δ)◦σ−1 .

If Λi = Θi, it’s the (a) case.

If not, φ ∈ ΛiK(φ) = ΘiV(φ) . i(x) + δ(x) ≥ 0 implies iK(φ)(x) + δK(φ)(x) ≥ 0, so by the first
case, φ +σ

f−/f+ ∈ Θ(iK(φ)+δK(φ))◦σ−1 .

(iK(φ) + δK(φ)) ◦ σ−1(x) = iK(φ)(σ−1(x)) + δK(φ)(σ−1(x)) = (i ◦ σ−1)K(φ+σ f−/f+)(x) + (δ ◦
σ−1)K(φ+σ f−/f+)(x) (because σ−1(x) ∈ K(φ) iff x ∈ K(φ+σ

f−/f+)) = ((i + δ) ◦σ−1)K(φ+σ f−/f+)(x).

So we have φ +σ
f−/f+ ∈ Θ((i+δ)◦σ−1)K(φ+σ f−/f+) .

Hence φ ∈ Λi ⇒ φ +σ
f−/f+ ∈ Λ(i+δ)◦σ−1 .

Now we are ready to prove the second condition: for any bijection σ onK , any δ : K → R

s.t. ∀x ∈ K , i(x) + δ(x) ≥ 0, and any f−, f+ : K → Q s.t. f− ≤ δ ≤ f+, we have:
φ ∈ γ(i)⇒ φ +σ

f−/f+ ∈ γ((i + δ) ◦ σ−1).

• If i ≥ d′ and i + δ ≥ d′, it’s the (b) case above.

• If i � d′ and i + δ ≥ d′:

φ + dd′e ∈ γ1(i + dd′e) by the definition of γ1. Let i′ = i + dd′e, δ′ = δ − dd′e, f
′

− =

f− − dd′e and f
′

+ = f+ − dd′e. Then we have i′ ≥ d′, i′ + δ′ = i + δ ≥ d′. So we have
(φ + dd′e) +σ

f ′−/f ′+ ∈ γ1((i′ + δ′) ◦ σ−1), which implies φ +σ
f−/f+ ∈ γ((i + δ) ◦ σ−1).

• If i ≥ d′ and i + δ � d′:

Then φ +σ
f− + dd′e/f+ + dd′e ∈ γ1((i + δ + dd′e) ◦ σ−1).

Induction on φ:

[The case x ≥ r]:

(x ≥ r) +σ
f−/f+ + dd′e =σ(x) ≥ r + f−(x) + dd′e, if r + f−(x) ≥ 0

σ(x) ≥ dd′e, otherwise

So (x ≥ r) +σ
f−/f+ + dd′e ∈ γ1((i + δ + d′) ◦ σ−1).

[The case x > r]: similar as above.

[The case x ≤ r]:
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(x ≤ r) +σ
f−/f+ + dd′e =σ(x) ≤ r + f+(x) + dd′e, if r + f+(x) ≥ 0

σ(x) ≤ dd′e, otherwise

So (x ≤ r) +σ
f−/f+ + dd′e ∈ γ1((i + δ + d′) ◦ σ−1).

[The case x < r]: similar as above.

Other cases hold obviously.

So we have φ +σ
f−/f+ ∈ γ1((i + δ) ◦ σ−1).

• If i � d′ and i + δ � d′:
φ ∈ γ1(i) implies φ+ dd′e ∈ γ1(i + dd′e). Then (φ+ dd′e) +σ

f−/f+ ∈ γ1((i + dd′e+ δ) ◦σ−1).
So φ+σ

f− + dd′e/f+ + dd′e ∈ γ1((i + dd′e+ δ) ◦σ−1). Then we can do the same deduction as the
above case.

So we proved that there exists γ1 constructed as above, s.t. γ1 = d′ ⊕ γ.

- Now we prove that: ∃γ2 s.t. γ2 = d ⊕ γ1.

In the following we prove that γ3 = d ⊕ γ1, i.e. for any i ∈ I(K), ∀∀ φ ∈ γ1(i) implies
φ ∈ γ3(i + d).

Secondly we need to prove that exists γ2 s.t. γ2 = d ⊕ γ1. We prove that γ3 = d ⊕ γ1, i.e.
for any i ∈ I(K), for any ∀∀ φ ∈ γ1(i) implies φ ∈ γ3(i + d).

For any i ∈ I(K), ∀∀ φ ∈ γ1(i) implies x ≤ r ∧ ∀∀ φ ∈ γ1(i) for r ∈ Q+ s.t. i(x) ≤ r ≤ i(x) + d.
Then x ≤ r + dd′e ∧ ∀∀ (φ + dd′e) ∈ γ1(i + dd′e). Since γ1 = d′ ⊕ γ, we get ∃∃ (x ≤
r+dd′e∧ ∀∀ (φ+dd′e)) ∈ γ(i+dd′e−d′). By (A9), ∀∀ (x ≥ r+dd′e → ∀∀ (φ+dd′e)) ∈ γ(i+dd′e−d′).
So x ≥ r + dd′e → ∀∀ (φ + dd′e) ∈ γ3(i + dd′e + d) since γ3 = (d + d′) ⊕ γ. And r ≤ i(x) + d,
which implies x ≥ r + dd′e ∈ γ3(i + dd′e + d). Then ∀∀ (φ + dd′e) ∈ γ3(i + dd′e + d). Hence
∀∀ φ ∈ γ3(i + d).

So there exists γ2 = γ3 s.t. γ2 = d ⊕ γ1.

HenceW = (Γ, θ,⊕) defined above is a timed labeled transition system.
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