
1

CS208 Logic Week 02 : Notes on SAT Solvers
Robert Atkey 〈robert.atkey@strath.ac.uk〉

�ese notes cover the same material as CS208 Videos 2.2 and 2.3.

1 SATis�ability Solving

As we saw in Video 2.1, if we had a way of e�ciently �nding satisfying valuations for large logical formu-
las, we would have a way of e�ciently computing working combinations of installed packages. �ere are
many other problems that can be e�ciently solved if we have a way of testing formulas for satis�ability:

1. As we saw inWeek 1, discovering whether or not an entailment holds can be reduced to the problem
of whether or not a certain formula is satis�able.

2. We can encode digital circuits as logical formulas. If we have two circuits, encoded as formulas %
and &, that we want to check are equivalent for all inputs, then we can encode this problem as
asking whether there is a valuation that makes % true and & false (% ∧¬&) or vice versa (¬% ∧&).
If there is such a valuation, then we have found an input for which the two circuits di�er. We will
see examples of this in Week 3.

3. It is possible to encode the possible steps of �nite state machine as logical formulas. Finding satisfy-
ing valuations in this case corresponds to �nding sequences of states with certain properties, such
as a sequence that might lead to a “bad” state.

�ere are so many problems that would be solvable if there were e�cient ways of �nding satisfying
valuations that considerable e�ort has been spent on �nding ways to do this. Programs that �nd satisfying
valuations are known a SAT solvers.

Unfortunately, there is a stumbling block. �e problem of �nding satisfying valuations is NP-complete.
“NP” refers to the class of problems that are solvable in Non-deterministic Polynomial time. �ese are
problems that if we were able to guess the answer (using the non-determinism) then we could check
it in polynomial time. Satis�ability is in this class: if we guess a valuation E, we can check it quickly
by computing È%ÉE using the steps we saw in Week 1. However, if we can’t guess a satisfying valuation
there is currently no known general strategy be�er than trying all of them, which takes an amount of time
exponential in the size of the input. �e question of whether or not there is a general strategy that works
in polynomial time is known as the P = NP problem, which is a major unsolved problem in Computer
Science. Finding satisfying valuations is also NP-complete, which means that a polynomial time solution
to this problem would give a polynomial time solution to all NP problems.

Despite there being no known general solution that is be�er than trying every possible valuation,
there has been great progress on SAT solvers that do well on problems that arise in the “real world” like
the ones listed above. Formulas that are generated from real world problems o�en have a large amount
of regularity that it is possible for a SAT solver to exploit to avoid searching every possible valuation. In
this section, I will describe what SAT solvers do, and outline how a simple but not completely naive SAT
solver works.

1.1 What a SAT Solver Inputs and Outputs

Input SAT solvers do not take arbitrary formulas as input. �e input formula must be in a special form
called Conjunctive Normal Form (CNF). Formulas in CNF look like the following:

(¬0 ∨ ¬1 ∨ ¬2)
∧ (¬1 ∨ ¬2 ∨ ¬3)
∧ (¬0 ∨ ¬1 ∨ 2)
∧ 1

where

September 25, 2020 1



2

1. the entire formula is a conjunction �1 ∧ �2 ∧ · · · ∧ �= of

2. clauses, where each clause �8 has the form !8,1 ∨ !8,2 ∨ · · · ∨ !8,: and is a disjunction of

3. literals, where each literal !8, 9 is either an atom G8, 9 or a negated atom ¬G8, 9 .

We will see how to convert formulas to CNF in Week 3. O�en, however, it is possible to arrange things so
that our encoding of a particular problem is already in CNF. �e Package Installation Problem from Video
2.1 is an example of this.

Output Given a formula in CNF as input, a SAT solver’s job is to �nd a valuation E for the atoms in
the formulas that satsi�es the formula. Due to the special form of formulas in CNF, this valuation must
make at least one literal in every clause is true. If there is such a valuation then the SAT solver returns
SAT with the valuation, or returns UNSAT. (In practice, a SAT solver may also return UNKNOWN if it
runs for more than a user-set amount of time, or runs out of memory.)

1.2 Partial Valuations

Even though a SAT solver returns a full valuation in the end, during its operation it constructs partial
valuations. A partial valuation only assigns T or F to some of the atoms, unlike a (full) valuation which
must assign a truth value to all the atoms. A partial valuation also keeps track of the status of each
assignment in terms of whether it is a 3ecision that has been made, or something that has been 5 orced.
�is information is used to guide the search, as I describe in the next section.

More formally, a partial valuation E? is a sequence of assignments of truth values to atoms; with each one
marked as either a

1. 3ecision point, if we guessed this value.

2. 5 orced, if we were forced to have this value.

So each assignment looks like 0 :3 G or 0 : 5 G, where 0 is an atom name and G is a truth value (T or F).

Notation Some notation, which will be useful for the next section:

1. I will write E? to stand for some partial valuation. Here are some examples:

E?1 = [0 :3 T, 1 :3 F, 2 : 5 T]
E?2 = [0 : 5 F, 1 :3 F]

Note that, unlike in normal valuations, the order of assignments ma�ers. Partial valuations are
used to keep track of the decisions made while searching for a satisfying assignment, and it ma�ers
which order the decisions are made.

2. We write
E?1, 0 :3 G, E?2

for a partial valuation with 0 :3 G somewhere in the middle.

3. We write
decisionfree(E?)

if none of the assignments in E? are marked 3, i.e. all decisions in E? are 5 orced.

1.3 Finding Satisfying Valuations via Rules

�e kind of SAT solver I will describe here works by incrementally building a partial valuation, until
either the partial valuation is a valuation that satsi�es the formula, or the solver works out that no such
valuation is possible. �e solver starts with an empty partial valuation and extends it by following the
rules described below. In this section, I will introduce the rules one by one, with examples of how the
solver works with those rules. �e rules will all be summarised in Section 1.4.

2 September 25, 2020



3

Initial Partial Valuation We start the search for a satisfying valuationwith the empty partial valuation:

E? = []

With the empty valuation, we have made no commitments

Guessing If the current partial valuation E? does not contain an atom 0 that is in the clauses, then we
can make a guess. We have a rule DecideTrue, which guesses that 0 ought to be T:

E?, 0 :3 T

and a rule DecideFalse, which guesses that 0 ought to be F:

E?, 0 :3 F

Because these assignments to 0 are guesses, we have marked these as 3ecision points. Note that I have
not said which atom 0 or which of T or F is chosen at any particular step. It is up to the implementor of
a SAT Solver to invent a strategy for which one to pick at each step: for example, always choosing the
atoms in alphabetical order, and always choosing T �rst. More sophisticated strategies are also possible,
such as trying atoms that appear more o�en �rst.

Success If the current E? makes all the clauses true (for all 8, È�8ÉE? = T), then we have a rule Success
that allows the solver to stop with result SAT(E?).

Example I With the stepswe have so far, we are able to �nd satisfying assignments, as long aswe always
get lucky with our guesses. Let’s look at how the rules we have so far work on an example formula:

(¬0 ∨ ¬1 ∨ ¬2) ∧ (¬1 ∨ ¬2 ∨ ¬3) ∧ (¬0 ∨ ¬1 ∨ 2) ∧ 1

To illustrate how the solver works, I will colour in literals in green when they are true with the current
partial valuation, and red when they are false. Remember: the goal is to make at least one literal in every
clause CAD4 .

• We start with the initial partial valuation:

1. []

�is makes none of the literals true or false, so the formula is unannotated:

(¬0 ∨ ¬1 ∨ ¬2) ∧ (¬1 ∨ ¬2 ∨ ¬3) ∧ (¬0 ∨ ¬1 ∨ 2) ∧ 1

• We guess that the atom 0 ought to be F, so we update our partial valuation:

2. [0 :3 F]

�e annotated formula is now:

( ¬0 ∨ ¬1 ∨ ¬2) ∧ (¬1 ∨ ¬2 ∨ ¬3) ∧ ( ¬0 ∨ ¬1 ∨ 2) ∧ 1

• We guess that the atom 1 ought to be T:

3. [0 :3 F, 1 :3 T]

�e annotated formula is now:

( ¬0 ∨ ¬1 ∨ ¬2) ∧ ( ¬1 ∨ ¬2 ∨ ¬3) ∧ ( ¬0 ∨ ¬1 ∨ 2) ∧ 1

We are now seeing some literals become false, but this is OK because our goal is to make at least
one literal in every clause true. Crucially, the �nal clause, which is just 1, is satis�ed.

• We guess that the atom 2 ought to be T:

4. [0 :3 F, 1 :3 T, 2 :3 T]

September 25, 2020 3



4

�e annotated formula becomes:

( ¬0 ∨ ¬1 ∨ ¬2 ) ∧ ( ¬1 ∨ ¬2 ∨ ¬3) ∧ ( ¬0 ∨ ¬1 ∨ 2 ) ∧ 1

• We guess that 3 ought to be F:

5. [0 :3 F, 1 :3 T, 2 :3 T, 3 :3 F]

�e annotated formula becomes:

( ¬0 ∨ ¬1 ∨ ¬2 ) ∧ ( ¬1 ∨ ¬2 ∨ ¬3 ) ∧ ( ¬0 ∨ ¬1 ∨ 2 ) ∧ 1

• We now observe that for all clauses at least one literal is true . �erefore, we have found a satisfying
valuation. �e SAT solver now terminates with the result SAT({0 ↦→ F, 1 ↦→ T, 2 ↦→ T, 3 ↦→ F}).

But what happens if we do not always get lucky with our guesses? If this happens we will have to
backtrack and try again.

Backtracking If we have a partial valuation:

E?1, 0 :3 G, E?2

and decisionfree(E?2), so that 0 ↦→ G was our most recent guess, then we can backtrack (throw away E?2)
and change our mind:

E?1, 0 : 5 ¬G

now marking the assignment as 5 orced. �is rule is called BackTrack.

Failure If all decisions in the current partial valuation E? are forced (decisionfree(E?)), then we cannot
backtrack. If there is at least one clause�8 such that È�ÉE? = F, then we have run out of options and have
to return UNSAT. �is rule is called Fail.

Example II Let’s look at our example formula again, but this time doing a more realistic search where
we don’t rely on lucky guesses. Instead, we systematically try the atoms in the order 0, 1, 2, 3 and always
try T �rst. We will rely on the backtracking steps to undo any bad decisions we make.

• We start again with the empty partial valuation:

1. []

�is makes none of the literals true or false, so the formula is unannotated:

(¬0 ∨ ¬1 ∨ ¬2) ∧ (¬1 ∨ ¬2 ∨ ¬3) ∧ (¬0 ∨ ¬1 ∨ 2) ∧ 1

• Following our strategy, we �rst pick the atom 0 and guess that it is T:

2. [0 :3 T]

�e formula is now annotated:

( ¬0 ∨ ¬1 ∨ ¬2) ∧ (¬1 ∨ ¬2 ∨ ¬3) ∧ ( ¬0 ∨ ¬1 ∨ 2) ∧ 1

• Again we follow our strategy, and guess that the next atom 1 is T:

3. [0 :3 T, 1 :3 T]

�e formula is now annotated:

( ¬0 ∨ ¬1 ∨ ¬2) ∧ ( ¬1 ∨ ¬2 ∨ ¬3) ∧ ( ¬0 ∨ ¬1 ∨ 2) ∧ 1

• And again we follow our strategy, and guess that the next atom 2 is T:

4. [0 :3 T, 1 :3 T, 2 :3 T]

4 September 25, 2020



5

�e formula is now annotated:

( ¬0 ∨ ¬1 ∨ ¬2 ) ∧ ( ¬1 ∨ ¬2 ∨ ¬3) ∧ ( ¬0 ∨ ¬1 ∨ 2 ) ∧ 1

• Now we have a problem: the �rst clause is all red, but our goal was to make every clause have at
least one green. We backtrack to our most recent decision, and �ip the assignment to 2 from T to F,
making the decision as 5 orced:

5. [0 :3 T, 1 :3 T, 2 : 5 F]

�e formula is now annotated:

( ¬0 ∨ ¬1 ∨ ¬2 ) ∧ ( ¬1 ∨ ¬2 ∨ ¬3) ∧ ( ¬0 ∨ ¬1 ∨ 2 ) ∧ 1

• Now we have another problem: the third clause is all red. We backtrack again to the rightmost
3ecision. �is means that we �ip the 1 from T to F and mark it as 5 orced:

6. [0 :3 T, 1 : 5 F]

�e formula is now annotated:

( ¬0 ∨ ¬1 ∨ ¬2) ∧ ( ¬1 ∨ ¬2 ∨ ¬3) ∧ ( ¬0 ∨ ¬1 ∨ 2) ∧ 1

• Now the fourth clause has become completely red ! We backtrack again, and �ip our decision on
0, marking it as 5 orced:

7. [0 : 5 F]

�e formula is now annotated:

( ¬0 ∨ ¬1 ∨ ¬2) ∧ (¬1 ∨ ¬2 ∨ ¬3) ∧ ( ¬0 ∨ ¬1 ∨ 2) ∧ 1

• No clauses are all marked red , so we resume with our guessing. Following our strategy, we guess
that 1 is T (we already guessed this above, but in the context of guessing that 0 was T, we are now
trying it when 0 is F):

8. [0 : 5 F, 1 :3 T]

�e formula is now annotated:

( ¬0 ∨ ¬1 ∨ ¬2) ∧ ( ¬1 ∨ ¬2 ∨ ¬3) ∧ ( ¬0 ∨ ¬1 ∨ 2) ∧ 1

• No clauses are marked as failing, so we continue with our strategy and guess that 2 is T:

9. [0 : 5 F, 1 :3 T, 2 :3 T]

�e formula is now annotated:

( ¬0 ∨ ¬1 ∨ ¬2 ) ∧ ( ¬1 ∨ ¬2 ∨ ¬3) ∧ ( ¬0 ∨ ¬1 ∨ 2 ) ∧ 1

• Again, no clauses are marked as failing, so we continue with our strategy and guess that 3 is T:

10. [0 : 5 F, 1 :3 T, 2 :3 T, 3 :3 T]

�e formula is now annotated:

( ¬0 ∨ ¬1 ∨ ¬2 ) ∧ ( ¬1 ∨ ¬2 ∨ ¬3 ) ∧ ( ¬0 ∨ ¬1 ∨ 2 ) ∧ 1

• Now the second clause has failed! We must backtrack and undo our guess that 3 was T:

11. [0 : 5 F, 1 :3 T, 2 :3 T, 3 : 5 F]

�e formula is now annotated:

( ¬0 ∨ ¬1 ∨ ¬2 ) ∧ ( ¬1 ∨ ¬2 ∨ ¬3 ) ∧ ( ¬0 ∨ ¬1 ∨ 2 ) ∧ 1

September 25, 2020 5



6

• We now observe that for all clauses at least one literal is true . �erefore, we have found a satisfying
valuation. �e SAT solver now terminates with the result SAT({0 ↦→ F, 1 ↦→ T, 2 ↦→ T, 3 ↦→ F}).

As can be seen from this example, backtracking has the potential to waste a lot of time when it is
“obvious” from looking at the formula that trying a particular guess will not work. Looking at the formula
in this example, we can see straight away that 1 must be T in any solution because it is in a clause by
itself. To speed up the search, we use the formula to guide the search process by le�ing some decisions be
forced by looking for “unit clauses”. Unit clauses are those where there is only one literal le� that is not
yet marked red . Clauses with only one literal are always unit clauses.

Unit Propagation If we are in a situation like:

( ¬1 ∨ ¬2 ∨ ¬3)

then if the current valuation is to succeed in any way, it must be the case that 3 ↦→ F. Similarly, in a
situation like:

( ¬1 ∨ ¬2 ∨ 3)

then if the current valuation is to succeed in any way, it must be the case that 3 ↦→ T. We turn this
observation into an extra rules that describe what steps a SAT solver can take.

�e Unit Propagation step: If there is a clause

� ∨ 0

and È�ÉE? = F, then the rule UnitPropTrue extends E? to:

E?, 0 : 5 T

Symmetrically, if there is a clause
� ∨ ¬0

and È�ÉE? = F, then the rule UnitPropFalse extends E? to:

E?, 0 : 5 F

Note: the 0 needn’t necessarily appear at the end of the clause.

Example III With the Unit Propagation rule, we can go through the same example again, and see that
unit propagation saves us from doing many of the backtrackings. When do have to make a decision, we
will use the same strategy as above: we try the atoms in alphabetical order, and we try T �rst.

• We start again with the empty partial valuation:

1. []

Again, this makes none of the literals true or false, so the formula is unannotated:

(¬0 ∨ ¬1 ∨ ¬2) ∧ (¬1 ∨ ¬2 ∨ ¬3) ∧ (¬0 ∨ ¬1 ∨ 2) ∧ 1

• We observe that there is a clause with exactly one unassigned literal: the �nal clause 1. We apply
the Unit Propagation rule, which says that 1 must be T for the whole formula to be satis�able. �is
yields the following partial valuation:

2. [1 : 5 T]

where the assignment to 1 is 5 orced. �e formula is annotated like so:

(¬0 ∨ ¬1 ∨ ¬2) ∧ ( ¬1 ∨ ¬2 ∨ ¬3) ∧ (¬0 ∨ ¬1 ∨ 2) ∧ 1

• Now there are no unit clauses — every unsatis�ed clause either has at least two unassigned literals
or none. So we must make a decision. Using our strategy, we pick 0 to be T, yielding the following
partial valuation:

3. [1 : 5 T, 0 :3 T]

6 September 25, 2020



7

and the formula is annotated like so:

( ¬0 ∨ ¬1 ∨ ¬2) ∧ ( ¬1 ∨ ¬2 ∨ ¬3) ∧ ( ¬0 ∨ ¬1 ∨ 2) ∧ 1

• �ere are now two unit clauses: the �rst one and the third one. We pick the �rst one (a real SAT
solver may have some strategy for picking clauses based on some heuristics). �e only non-F literal
in this clause is ¬2, so to satisfy this clause we are forced to make 2 be F:

4. [1 : 5 T, 0 :3 T, 2 : 5 F]

and the formula is annotated like so:

( ¬0 ∨ ¬1 ∨ ¬2 ) ∧ ( ¬1 ∨ ¬2 ∨ ¬3) ∧ ( ¬0 ∨ ¬1 ∨ 2 ) ∧ 1

• Now the third clause has failed! All of its literals aremarked as F. �ismeans that wemust backtrack
to the last 3ecision we made, which was 0 :3 T, and �ip it to a 5 orced decision. Note that we skip
over the forced assignment to 2: this assignment was forced by the decisions made beforehand, so
there is no point in changing it. �e new partial valuation is this:

5. [1 : 5 T, 0 : 5 F]

and now the formula is annotated like so:

( ¬0 ∨ ¬1 ∨ ¬2) ∧ ( ¬1 ∨ ¬2 ∨ ¬3) ∧ ( ¬0 ∨ ¬1 ∨ 2) ∧ 1

• Now there are no unit clauses: there are clauses that only have one unassigned literal, but no clauses
with one unassigned literal and all the others false . So the Unit Propagation rule does not apply.
Instead, we follow our strategy and assign the next unassigned atom, 2, to be T:

6. [1 : 5 T, 0 : 5 F, 2 :3 T]

and now the formula is annotated like so:

( ¬0 ∨ ¬1 ∨ ¬2 ) ∧ ( ¬1 ∨ ¬2 ∨ ¬3) ∧ ( ¬0 ∨ ¬1 ∨ 2 ) ∧ 1

• Now we do have a unit clause: the second one. In order to satisfy this clause, we must set 3 to be F:

7. [1 : 5 T, 0 : 5 F, 2 :3 T, 3 : 5 F]

and now the formula is annotated like so:

( ¬0 ∨ ¬1 ∨ ¬2 ) ∧ ( ¬1 ∨ ¬2 ∨ ¬3 ) ∧ ( ¬0 ∨ ¬1 ∨ 2 ) ∧ 1

• Now every clause as at least one satis�ed literal. �e solver terminates with the result SAT ({0 ↦→
F, 1 ↦→ T, 2 ↦→ T, 3 ↦→ F}).

Comparing the examples For ease of comparison, I have wri�en out the sequences of partial valua-
tions for the two examples side by side:

Without Unit Propagation With Unit Propagation

1. []
2. [0 :3 T]
3. [0 :3 T, 1 :3 T]
4. [0 :3 T, 1 :3 T, 2 :3 T]
5. [0 :3 T, 1 :3 T, 2 : 5 F]
6. [0 :3 T, 1 : 5 F]
7. [0 : 5 F]
8. [0 : 5 F, 1 :3 T]
9. [0 : 5 F, 1 :3 T, 2 :3 T]
10. [0 : 5 F, 1 :3 T, 2 :3 T, 3 :3 T]
11. [0 : 5 F, 1 :3 T, 2 :3 T, 3 :3 F]

1. []
2. [1 : 5 T]
3. [1 : 5 T, 0 :3 T]
4. [1 : 5 T, 0 :3 T, 2 : 5 F]
5. [1 : 5 T, 0 :3 F]
6. [1 : 5 T, 0 : 5 F, 2 :3 T]
7. [1 : 5 T, 0 : 5 F, 2 :3 T, 3 : 5 F]

Unit Propagation saves the solver from trying several dead ends by using the formula itself to guide the
search. In this example, Unit Propagation meant that we never bothered to try 1 being F at any point,
because this can never be a part of a solution to the formula, but the backtracking-only solver tried this
out for steps 3-5. Also, while the right-hand trace still made the bad decision 0 :3 T in step 3, but this was
undone by step 5 with Unit Propagation. It takes the trace on the le�-hand side until step 7 to undo this
decision.

September 25, 2020 7



8

1.4 �e Rules Summarised

�e following table summarises all the rules presented in the previous section. �e �rst column gives the
name of each rule, for identi�cation purposes. �e second column describes what the current partial valu-
ation ought to look like before applying this rule. �e fourth column describes what the partial valuation
looks like a�er applying the rule. �e �nal column describes what conditions must hold for this rule to
be applicable.

DecideTrue E? =⇒ E?, 0 :3 T if 0 is not assigned in E?

DecideFalse E? =⇒ E?, 0 :3 F if 0 is not assigned in E?

Success E? =⇒ SAT(E?) if E? makes all the clauses true.
BackTrack E?1, 0 :3 G, E?2 =⇒ E?1, 0 : 5 ¬G if E?2 is decision free
Fail E? =⇒ UNSAT if E? is decision free, and makes at least one clause false.
UnitPropTrue E? =⇒ E?, 0 : 5 T if there is a clause � ∨ 0 and È�É(E?) = F
UnitPropFalse E? =⇒ E?, 0 : 5 F if there is a clause � ∨ ¬0 and È�É(E?) = F

Note that several of the rulesmay apply at the same time. For instance, the rulesDecideTrue andDecideFalse
will both be applicable if either one is. An actual implementation of a SAT solver will have some heuristic
based strategy for choosing which one to pick in any given situation.

1.5 Two Examples

1. �e following formula is satis�able:

(¬1 ∨ 2) ∧ (¬2 ∨ 3) ∧ (¬1 ∨ ¬2) ∧ (¬0 ∨ 1 ∨ 2) ∧ 0

If we take the strategy of assigning the atoms in the order 0, 1, 2, 3 and always guessing T �rst, then
we get the following steps:

1. [] initial partial valuation
2. [0 : 5 T] unit propagation (clause 5)
3. [0 : 5 T, 1 :3 T] guess
4. [0 : 5 T, 1 :3 T, 2 : 5 T] unit propagation (clause 1)
5. [0 : 5 T, 1 : 5 F] backtrack (con�ict in clause 3)
6. [0 : 5 T, 1 : 5 F, 2 : 5 T] unit propagation (clause 4)
7. [0 : 5 T, 1 : 5 F, 2 : 5 T, 3 : 5 T] unit propagation (clause 2)

So solver returns SAT and the satisfying valuation is [0 ↦→ T, 1 ↦→ F, 2 ↦→ T, 3 ↦→ T].

2. �e following minor variation of the above formula is not satis�able:

(¬1 ∨ 2) ∧ (¬2 ∨ 1) ∧ (¬1 ∨ ¬2) ∧ (¬0 ∨ 1 ∨ 2) ∧ 0

(the 3 in the second clause has been replaced with a 1). Using the same strategy we get the following
steps, where the �rst six are the same:

1. [] initial partial valuation
2. [0 : 5 T] unit propagation (clause 5)
3. [0 : 5 T, 1 :3 T] guess
4. [0 : 5 T, 1 :3 T, 2 : 5 T] unit propagation (clause 1)
5. [0 : 5 T, 1 : 5 F] backtrack (con�ict in clause 3)
6. [0 : 5 T, 1 : 5 F, 2 : 5 T] unit propagation (clause 4)

A�er line six we are stuck, because we have a partial valuation where all the decisions are 5 orced,
but it makes all the clauses false. �erefore, we return UNSAT.

8 September 25, 2020


	SATisfiability Solving
	What a SAT Solver Inputs and Outputs
	Partial Valuations
	Finding Satisfying Valuations via Rules
	The Rules Summarised
	Two Examples


