

CS208 (Semester 1) Topic 2 : Proof for Propositional Logic

Dr. Robert Atkey

Computer & Information Sciences

Proof for Propositional Logic, Part 1 Natural Deduction

Judgements

We want to deduce *judgements* of the form:

$$P_1, \ldots, P_n \vdash Q$$

meaning:

From assumptions P_1, \ldots, P_n , we can prove Q.

Soundness The system will be *sound*, meaning:

$$P_1, \ldots, P_n \vdash Q \text{ provable } \Rightarrow P_1, \ldots, P_n \models Q$$

We will make sure it is sound by checking each rule as we go.

If all the premises are valid entailments, then so is the conclusion

Judgements

The main judgement form is

$$P_1,\ldots,P_n\vdash Q$$

With assumptions P_1, \ldots, P_n , can prove Q

Judgements

The main judgement form is

$$P_1,\ldots,P_n\vdash Q$$

With assumptions P_1, \ldots, P_n , can prove Q

We will also use an auxiliary judgement:

$$P_1,\ldots,P_n$$
 $[P]\vdash Q$

- · With assumptions P_1, \ldots, P_n , focusing on P, can prove Q
- · Also "means" $P_1, \ldots, P_n, P \models Q$
- · Having a focus is useful for organising proofs

Judgements

The main judgement form is

$$P_1,\ldots,P_n\vdash Q$$

We will also use an auxiliary judgement:

$$P_1,\ldots,P_n\ [P]\vdash Q$$

Judgements

The main judgement form is

$$P_1, \ldots, P_n \vdash Q$$

We will also use an auxiliary judgement:

$$P_1,\ldots,P_n$$
 $[P] \vdash Q$

Assumption lists The list of assumptions P_1, \ldots, P_n will appear often. So we will shorten it to $\Gamma = P_1, \ldots, P_n$.

$$\overline{\Gamma\left[P\right] \vdash P} \ ^{\mathsf{Done}}$$

$$\frac{1}{\Gamma[P] \vdash P}$$
 Done

- ▶ If we have a focused assumption P, then we can prove P
- ightharpoonup (Remember Γ stands for a list of other assumptions)

$$\frac{P \in \Gamma \qquad \Gamma\left[P\right] \vdash Q}{\Gamma \vdash Q} \; \mathsf{Use}$$

$$\frac{P \in \Gamma \qquad \Gamma\left[P\right] \vdash Q}{\Gamma \vdash Q} \text{ Use }$$

- \triangleright P \in Γ means "P is in Γ ".
- If we have a P in our current assumptions, we can focus on it.
- ▶ $P \in \Gamma$ is a *side condition*: it is something we check when we apply the rule, not another judgement to be proved.

A first proof

A first proof

$$\frac{A[A] \vdash A}{A \vdash A}$$
 Use

First Use the A assumption.

A first proof

$$\frac{\overline{A \ [A] \vdash A}}{A \vdash A} \text{ Use}$$

- First Use the A assumption.
- ► Then we are Done.

Soundness

$$\overline{\Gamma\left[P\right]\vdash P}^{\ Done}$$

$$\frac{P \in \Gamma \quad \Gamma\left[P\right] \vdash Q}{\Gamma \vdash Q} \; \mathsf{Use}$$

Soundness

$$\overline{\Gamma\left[P\right] \vdash P} \ ^{\mathsf{Done}}$$

$$\frac{P \in \Gamma \qquad \Gamma\left[P\right] \vdash Q}{\Gamma \vdash Q} \text{ Use }$$

Done

is sound because assuming P entails P, and extra assumptions make no difference.

Soundness

$$\overline{\Gamma\left[P\right]\vdash P}^{\ Done}$$

$$\frac{P \in \Gamma \qquad \Gamma[P] \vdash Q}{\Gamma \vdash Q} \text{ Use }$$

Done

is sound because assuming P entails P, and extra assumptions make no difference.

Use

is sound because if we assuming P twice entails Q, then it is okay to assume it once.

Rules for connectives

The rule Done and Use do not mention the connectives.

In Natural Deduction, rules for connectives come in two kinds:

- 1. Introduction rules
 - How to *construct* a proof with the connective
- 2. Elimination rules
 - How to use an assumption with this connective

Rules for connectives

The rule Done and Use do not mention the connectives.

In Natural Deduction, rules for connectives come in two kinds:

- 1. Introduction rules
 - How to *construct* a proof with the connective
- 2. Elimination rules
 - How to use an assumption with this connective

Very rough analogy: but can be made very precise

- 1. Introduction rules are like *constructors* for building objects
- **2.** Elimination rules are like *methods* for taking apart objects

University of Strathclyde

"And" Introduction

$$\frac{\Gamma \vdash Q_1 \qquad \Gamma \vdash Q_2}{\Gamma \vdash Q_1 \land Q_2} \text{ Split}$$

"And" Introduction

$$\frac{\Gamma \vdash Q_1 \qquad \Gamma \vdash Q_2}{\Gamma \vdash Q_1 \land Q_2} \text{ Split}$$

- ▶ To prove $P_1 \land P_2$ we have to prove P_1 and P_2
- ► This rule is often called \-INTRODUCTION

An example proof

$$\frac{\overline{A, B [A] \vdash A}}{A, B \vdash A} \overset{\mathsf{Done}}{\mathsf{Use}} \qquad \frac{\overline{A, B [B] \vdash B}}{A, B \vdash B} \overset{\mathsf{Done}}{\mathsf{Use}}$$

$$\frac{A, B \vdash A \land B}{A, B \vdash A \land B} \overset{\mathsf{Done}}{\mathsf{Split}}$$

An example proof

$$\frac{\overline{A, B [A] \vdash A}}{A, B \vdash A} \stackrel{\mathsf{Done}}{\mathsf{Use}} \qquad \frac{\overline{A, B [B] \vdash B}}{A, B \vdash B} \stackrel{\mathsf{Done}}{\mathsf{Use}}$$

$$\frac{A, B \vdash A \land B}{\mathsf{A} \land B} \stackrel{\mathsf{Done}}{\mathsf{Split}}$$

To prove $A \wedge B$, we Split into proofs of A and B. In each case, we Use the corresponding assumption.

"And" Elimination

$$\frac{\Gamma\left[P_{1}\right] \vdash Q}{\Gamma\left[P_{1} \land P_{2}\right] \vdash Q} \text{ First}$$

$$\frac{\Gamma\left[P_{2}\right] \vdash Q}{\Gamma\left[P_{1} \land P_{2}\right] \vdash Q} \text{ Second}$$

University of Strathclyde

"And" Elimination

$$\frac{\Gamma\left[P_{1}\right] \vdash Q}{\Gamma\left[P_{1} \land P_{2}\right] \vdash Q} \text{ First}$$

$$\frac{\Gamma\left[P_{2}\right] \vdash Q}{\Gamma\left[P_{1} \land P_{2}\right] \vdash Q} \text{ Second}$$

If we are focused on an formula $P_1 \wedge P_2$, we can select either the First or Second component to focus on.

Example proof

$$\frac{\overline{A \wedge B \ [B] \vdash B} \ ^{\mathsf{Done}}}{A \wedge B \ [A \wedge B] \vdash B} \frac{\mathsf{A} \wedge \mathsf{B} \ [\mathsf{A} \wedge \mathsf{B}]}{\mathsf{Use}}$$

"True" Introduction

"True" Introduction

$$\frac{}{\Gamma \vdash \mathsf{T}}$$
 True

► T is always provable.

Proof for Propositional Logic, Part 1: Natural Deduction

"True" Elimination

"True" Elimination

No elimination rule!

Summary

▶ The judgement forms for (focused) Natural Deduction:

$$P_1, \ldots, P_n \vdash Q$$

$$P_1, \ldots, P_n \vdash Q$$
 $P_1, \ldots, P_n [P] \vdash Q$

- Rules for Use and Done
- \triangleright Rules for introducing and eliminating \land .

Proof for Propositional Logic, Part 2 Rules for "Implies"

Proof for Propositional Logic, Part 2: Rules for "Implies"

"Implies" Introduction

$$\frac{\Gamma\!\!\!\!/\, P \vdash Q}{\Gamma \vdash P \to Q} \text{ Introduce}$$

Proof for Propositional Logic, Part 2: Rules for "Implies"

"Implies" Introduction

$$\frac{\Gamma\!\!\!\!/\, P \vdash Q}{\Gamma \vdash P \to Q} \text{ Introduce}$$

To prove $P \rightarrow Q$, we prove Q under the assumption P.

Example: $A \rightarrow A$

$$\frac{\overline{A [A] \vdash A}}{A \vdash A} \text{ Use}$$

$$\frac{A \vdash A}{\vdash A \to A} \text{ Introduce}$$

Example : $(A \land B) \rightarrow A$

$$\frac{ \overline{A \wedge B [A] \vdash A} \ \, \text{Done} }{ \overline{A \wedge B [A \wedge B] \vdash A} \ \, \text{First} } \\ \frac{ \overline{A \wedge B [A \wedge B] \vdash A} \ \, \text{Use} }{ \overline{A \wedge B \vdash A} \ \, \text{Introduce} }$$

"Implies" Elimination

$$\frac{\Gamma \vdash P_1 \qquad \Gamma\left[P_2\right] \vdash Q}{\Gamma\left[P_1 \to P_2\right] \vdash Q} \text{ Apply }$$

University of Strathclyde

"Implies" Elimination

$$\frac{\Gamma \vdash P_1 \qquad \Gamma\left[P_2\right] \vdash Q}{\Gamma\left[P_1 \to P_2\right] \vdash Q} \text{ Apply }$$

If we have $P_1 \rightarrow P_2$ and we can prove P_1 , then we have P_2 .

Example: $A \rightarrow (A \rightarrow B) \rightarrow B$

$\overline{A, A \to B[A] \vdash A}$ Done	
$rac{\overline{\mathrm{A},\mathrm{A} ightarrow \mathrm{B}\left[\mathrm{A} ight] dash \mathrm{A}}{\mathrm{A},\mathrm{A} ightarrow \mathrm{B} dash \mathrm{A}}$ Use $rac{\overline{\mathrm{A},\mathrm{A} ightarrow \mathrm{B}\left[\mathrm{A} ight] dash \mathrm{A}}{\mathrm{A},\mathrm{A} ightarrow \mathrm{B}\left[\mathrm{B} ight] dash \mathrm{B}}$	Done
$\frac{1, 11 + B + 11}{A, A \to B [A \to B] \vdash B}$	- Apply
$A, A \rightarrow B \vdash B$	— Use
$A \vdash (A \to B) \to B$	— Introduce
$\vdash A \to (A \to B) \to B$	— Introduce

The Rules so far

$$\frac{1}{\Gamma[P] \vdash P}$$
 Done

$$\frac{P \in \Gamma \qquad \Gamma\left[P\right] \vdash Q}{\Gamma \vdash Q} \text{ Use }$$

$$\frac{\Gamma \vdash Q_1 \quad \Gamma \vdash Q_2}{\Gamma \vdash Q_1 \land Q_2} \text{ Split } \quad \frac{\Gamma \left[P_1\right] \vdash Q}{\Gamma \left[P_1 \land P_2\right] \vdash Q} \text{ First } \frac{\Gamma \left[P_2\right] \vdash Q}{\Gamma \left[P_1 \land P_2\right] \vdash Q} \text{ Second}$$

$$\frac{\Gamma [P_1] \vdash Q}{\Gamma [P_1 \land P_2] \vdash Q}$$

$$\frac{\Gamma[P_2] \vdash Q}{\Gamma[P_1 \land P_2] \vdash Q} \text{ Se}$$

$$\frac{\Gamma, P \vdash Q}{\Gamma \vdash \Gamma}$$
 Introduce

$$\frac{\Gamma, P \vdash Q}{\Gamma \vdash P \to Q} \text{ Introduce } \frac{\Gamma \vdash P_1 \qquad \Gamma\left[P_2\right] \vdash Q}{\Gamma\left[P_1 \to P_2\right] \vdash Q} \text{ Apply }$$

Atkey CS208 - Topic 2 page 25 of 57

Summary

► The rules for Implication

$$\frac{\Gamma, P \vdash Q}{\Gamma \vdash P \to Q}$$
 Introduce

$$\frac{\Gamma \vdash P_1 \qquad \Gamma\left[P_2\right] \vdash Q}{\Gamma\left[P_1 \to P_2\right] \vdash Q} \text{ Apply }$$

Proof for Propositional Logic, Part 3 Rules for "Or"

"Or" Introduction

$$\frac{\Gamma \vdash Q_1}{\Gamma \vdash Q_1 \lor Q_2} \ \mathsf{Left}$$

$$\frac{\Gamma \vdash Q_2}{\Gamma \vdash Q_1 \lor Q_2}$$
 RIGHT

"Or" Introduction

$$\frac{\Gamma \vdash Q_1}{\Gamma \vdash Q_1 \lor Q_2} \text{ Left}$$

$$rac{\Gamma dash Q_2}{\Gamma dash Q_1 ee Q_2}$$
 Rіднт

To prove $Q_1 \vee Q_2$, either we:

- **1.** prove Q_1 , *or*
- **2.** prove Q_2 .

Example

$$\frac{\overline{A \ [A] \vdash A}}{A \vdash A} \overset{\mathsf{Done}}{\mathsf{Use}}$$

$$\frac{A \vdash A}{A \vdash A \lor B} \overset{\mathsf{Left}}{\mathsf{Left}}$$

"Or" Elimination

$$\frac{\Gamma\!,P_1\vdash Q}{\Gamma\;[P_1\vee P_2]\vdash Q}\;\text{Cases}$$

 Γ , P means all the assumptions in Γ , and P

"Or" Elimination

$$\frac{\Gamma\!\!,P_1\vdash Q}{\Gamma\!\!,[P_1\vee P_2]\vdash Q}\text{ Cases}$$

 Γ , P means all the assumptions in Γ , and P

If we are focused on $P_1 \vee P_2$, then:

- 1. Either P_1 holds, so we have to prove Q assuming P_1 ; or
- **2.** Either P_2 holds, so we have to prove Q assuming P_2

"Or" Elimination

$$\frac{\Gamma\!,P_1\vdash Q}{\Gamma\;[P_1\vee P_2]\vdash Q}\;\text{Cases}$$

"Or" Elimination

$$\frac{\Gamma\!\!, P_1 \vdash Q \quad \Gamma\!\!, P_2 \vdash Q}{\Gamma \left[P_1 \lor P_2\right] \vdash Q} \text{ Cases}$$

We (the provers) don't know which of P₁ or P₂ is true, so we need to write proofs for both eventualities.

University of Strathclyde

"Or" Elimination

$$\frac{\Gamma, P_1 \vdash Q \qquad \Gamma, P_2 \vdash Q}{\Gamma \ [P_1 \lor P_2] \vdash Q} \text{ Cases}$$

We (the provers) don't know which of P_1 or P_2 is true, so we need to write proofs for both eventualities.

This is dual to the case for conjunction: for $P_1 \wedge P_2$ we had to provide both sides in the introduction rule, but got to choose in the elimination rule.

Example

$$\frac{\overline{A \lor B, A [A] \vdash A}}{A \lor B, A \vdash A} \underbrace{\begin{array}{c} \mathsf{Done} \\ \mathsf{Use} \end{array}}_{\mathsf{RIGHT}} \qquad \frac{\overline{A \lor B, B [B] \vdash B}}{A \lor B, B \vdash B} \underbrace{\begin{array}{c} \mathsf{Done} \\ \mathsf{Use} \end{array}}_{\mathsf{Cases}} \\
\underline{\begin{array}{c} A \lor B, A \vdash B \lor A \end{array}}_{\mathsf{Cases}} \\
\underline{\begin{array}{c} A \lor B, A \vdash B \lor A \end{array}}_{\mathsf{Cases}} \\
\underline{\begin{array}{c} A \lor B [A \lor B] \vdash B \lor A \end{array}}_{\mathsf{Cases}} \\
\underline{\begin{array}{c} A \lor B \vdash B \lor A \end{array}}_{\mathsf{Use}} \\
\underline{\begin{array}{c} \mathsf{Use} \end{array}}_{\mathsf{Cases}}$$

Proof for Propositional Logic, Part 3: Rules for "Or"

"False" Introduction

No introduction rule!

"False" Elimination

$$\overline{\Gamma\left[\mathsf{F}\right]\vdash Q}^{\mathsf{False}}$$

Proof for Propositional Logic, Part 3: Rules for "Or"

"False" Elimination

$$\overline{\Gamma[\mathsf{F}] \vdash Q}$$
 False

If we have a false assumption, we can prove anything.

Example

$$\frac{\overline{\mathsf{F}\left[\mathsf{F}\right]} \vdash A \land B \land C}{\overline{\mathsf{F}} \vdash A \land B \land C} \text{ Use} \\ \frac{\mathsf{F} \vdash A \land B \land C}{\vdash \mathsf{F} \rightarrow (A \land B \land C)} \text{ Introduce}$$

$$\frac{\overline{A \lor F, A [A] \vdash A}}{A \lor F, A \vdash A} \underbrace{\begin{matrix} \text{Done} \\ \text{Use} \end{matrix}}_{\begin{matrix} \text{Use} \end{matrix}} \frac{\overline{A \lor F, F [F] \vdash A}}{A \lor F, F \vdash A} \underbrace{\begin{matrix} \text{Use} \\ \text{Use} \end{matrix}}_{\begin{matrix} \text{Cases} \end{matrix}}$$

$$\frac{A \lor F [A \lor F] \vdash A}{A \lor F \vdash A} \underbrace{\begin{matrix} \text{Use} \\ \text{Use} \end{matrix}}_{\begin{matrix} \text{Introduce} \end{matrix}}$$

Summary

► Rules for "Or":

$$\frac{\Gamma \vdash Q_1}{\Gamma \vdash Q_1 \lor Q_2} \mathrel{\mathsf{Left}}$$

$$rac{\Gamma dash Q_2}{\Gamma dash Q_1 ee Q_2}$$
 Rіднт

$$\frac{\Gamma, P_1 \vdash Q \qquad \Gamma, P_2 \vdash Q}{\Gamma \ [P_1 \lor P_2] \vdash Q} \ \text{Cases}$$

"False" lets us prove anything:

$$\overline{\Gamma[F] \vdash Q}$$
 False

Proof for Propositional Logic, Part 4 Rules for "Not"

Negation

We could *define* negation:

$$\neg P \equiv P \rightarrow F$$

Then we wouldn't need any rules for it.

Rules for Negation: Introduction

$$(\neg P \equiv P \rightarrow F)$$

$$\frac{\Gamma\!\!\!\!/\, P \vdash F}{\Gamma \vdash P \to F} \text{ Introduce}$$

To prove $\neg P$, we prove that P proves false.

Rules for Negation: Elimination

$$(\neg P \equiv P \rightarrow F)$$

$$\frac{\Gamma \vdash P \qquad \overline{\Gamma\left[F\right] \vdash Q}}{\Gamma\left[P \to F\right] \vdash Q}^{\mathsf{FALSE}} \xrightarrow{\mathsf{APPLY}}$$

If we know that $\neg P$ is true, and we can prove P, then we get a contradiction which allows us to prove anything.

Specialised Rules for Negation

Introduction:

$$\frac{\Gamma, P \vdash F}{\Gamma \vdash \neg P} \text{ Not-Intro}$$

Elimination:

$$\frac{\Gamma \vdash P}{\Gamma \left[\neg P \right] \vdash Q} \text{ Not-Elim}$$

Example: $(A \lor B) \rightarrow \neg A \rightarrow B$

$rac{\overline{\mathrm{A} ee \mathrm{B}, \lnot \mathrm{A}, \mathrm{A} \ [\mathrm{A}] \vdash \mathrm{A}}}{\mathrm{A} ee \mathrm{B}, \lnot \mathrm{A}, \mathrm{A} \vdash \mathrm{A}} \ Use$	
$\frac{A \lor B, \neg A, A \vdash A}{A \lor B, \neg A, A \vdash B} \neg \text{-ELIM} $ $A \lor B, \neg A, A \vdash B$ Use $\frac{A \lor B, \neg A, A}{A \lor B, \neg A, A} \vdash B$	$rac{B [B] \vdash B}{A, B \vdash B}$ Done Use Cases
$\begin{array}{c} A \vee B, \neg A \ [A \vee B] \vdash B \\ \\ A \vee B, \neg A \vdash B \\ \\ A \vee B \vdash \neg A \to B \end{array}$	CASES USE INTRODUCE INTRODUCE
$\vdash (A \lor B) \to \neg A \to B$	INTRODUCE

Summary

- Negation can be defined in terms of Implication and False
- ► Nicer to have specific rules:

$$\frac{\Gamma\!,\,P\vdash F}{\Gamma\vdash \neg P}$$

$$\frac{\Gamma \vdash P}{\Gamma \left[\neg P \right] \vdash Q}$$

Proof for Propositional Logic, Part 5

Soundness & Completeness & Philosophy

Soundness and Completeness

Soundness: "Everything that is provable is valid":

$$P_1, \ldots, P_n \vdash Q \quad \Rightarrow P_1, \ldots, P_n \models Q$$

I've tried, informally, to convince you of this for each rule. If each rule is sound, then the whole system is sound.

Soundness and Completeness

Soundness: "Everything that is provable is valid":

$$P_1, \ldots, P_n \vdash Q \quad \Rightarrow P_1, \ldots, P_n \models Q$$

I've tried, informally, to convince you of this for each rule. If each rule is sound, then the whole system is sound.

Completeness: "Everything that is provable is valid":

$$P_1, \ldots, P_n \models Q \quad \Rightarrow P_1, \ldots, P_n \vdash Q$$

Does this property hold of the system so far?

Proof for Propositional Logic, Part 5: Soundness & Completeness & Philosophy

Failure of Completeness

Recall that this entailment is valid:

$$\models A \lor \neg A$$

Can we prove this?

Proof for Propositional Logic, Part 5: Soundness & Completeness & Philosophy

University of Strathclyde Science

Failure of Completeness

Recall that this entailment is valid:

$$\models A \lor \neg A$$

Can we prove this? Is there a proof of $\vdash A \lor \neg A$?

Proof for Propositional Logic, Part 5: Soundness & Completeness & Philosophy

University of Strathclyde Science

Failure of Completeness

Recall that this entailment is valid:

$$\models A \lor \neg A$$

Can we prove this? Is there a proof of $\vdash A \lor \neg A$? Have three options:

1. Apply Use to use an assumption.

Failure of Completeness

Recall that this entailment is valid:

$$\models A \lor \neg A$$

Can we prove this? Is there a proof of $\vdash A \lor \neg A$? Have three options:

1. Apply Use to use an assumption. No assumptions!

University of Strathclyde Science

Failure of Completeness

Recall that this entailment is valid:

$$\models A \lor \neg A$$

- 1. Apply Use to use an assumption. No assumptions!
- **2.** Apply Left and try to prove $\vdash A$,

Recall that this entailment is valid:

$$\models A \lor \neg A$$

- 1. Apply Use to use an assumption. No assumptions!
- **2.** Apply Left and try to prove \vdash A, but this can't be provable, by soundness!

Recall that this entailment is valid:

$$\models A \lor \neg A$$

- 1. Apply Use to use an assumption. No assumptions!
- **2.** Apply Left and try to prove \vdash A, but this can't be provable, by soundness!
- **3.** Apply Right and try to prove $\vdash \neg A$,

Recall that this entailment is valid:

$$\models A \lor \neg A$$

- 1. Apply Use to use an assumption. No assumptions!
- **2.** Apply Left and try to prove \vdash A, but this can't be provable, by soundness!
- **3.** Apply Right and try to prove $\vdash \neg A$, but this can't be provable, by soundness!

Recall that this entailment is valid:

$$\models A \lor \neg A$$

Can we prove this? Is there a proof of $\vdash A \lor \neg A$? Have three options:

- 1. Apply Use to use an assumption. No assumptions!
- **2.** Apply Left and try to prove \vdash A, but this can't be provable, by soundness!
- **3.** Apply Right and try to prove $\vdash \neg A$, but this can't be provable, by soundness!

So the system so far is **not** complete, with respect to our semantics.

We could add the following rule:

$$\frac{\Gamma, P \vdash Q \qquad \Gamma, \neg P \vdash Q}{\Gamma \vdash Q} \text{ ExcludedMiddle}$$

We could add the following rule:

$$\frac{\Gamma\!\!,\mathsf{P}\vdash Q}{\Gamma\!\!\vdash Q} \xrightarrow{\Gamma\!\!,\neg\mathsf{P}\vdash Q} \mathsf{ExcludedMiddle}$$

To prove Q, pick any proposition P and say "either P or \neg P".

We could add the following rule:

$$\frac{\Gamma, P \vdash Q \qquad \Gamma, \neg P \vdash Q}{\Gamma \vdash Q} \text{ ExcludedMiddle}$$

To prove Q, pick any proposition P and say "either P or $\neg P$ ".

This lets us prove $\vdash A \lor \neg A$.

We could add the following rule:

$$\frac{\Gamma, P \vdash Q \qquad \Gamma, \neg P \vdash Q}{\Gamma \vdash Q} \text{ ExcludedMiddle}$$

To prove Q, pick any proposition P and say "either P or $\neg P$ ".

This lets us prove $\vdash A \lor \neg A$.

It is sound, but is it a good idea?

Proof for Propositional Logic, Part 5: Soundness & Completeness & Philosophy

University of Strathclyde Science

Some Philosophy of Mathematics

Where do mathematical objects live?

(objects include numbers, shapes, functions, propositions, proofs, ...)

"Platonism"

- Objects exist "out there", independently of us.
- ► There is a universal notion of "truth".
 - Every proposition is either true or false, even if *we* can't see why.

Image: By Copy of Silanion, Public Domain, https://commons.wikimedia.org/w/index.php?curid=7831217

University of Strathclyde Science

"Intuitionism"

(L.E.J. Brouwer, 1900/10/20s)

- Objects exist as constructions within our heads.
- Including proofs of propositions
 - We convince ourselves of the truth of a proposition by constructing evidence for it.

Image: By Source (WP:NFCC#4), Fair use, https://en.wikipedia.org/w/index.php?curid=39567913

Evidence based Interpretation

(Instead of saying $P \square Q$ is true when...)

Evidence of	is
Т	there always evidence of T
F	there is no evidence of F
$P \wedge Q$	evidence of P and evidence of Q
$P \vee Q$	evidence of P or evidence of Q
$P \to Q$	a process converting evidence of P into evidence of Q

Evidence for Negation

We define $\neg P = P \rightarrow F$.

- evidence of ¬P is a process converting evidence of P to evidence of F
- but there is no evidence of F
- so there can be no evidence of P.

Excluded Middle?

In two valued (T, F) logic, excluded middle is valid for any P:

$$P \lor \neg P$$

The proof of validity (via truth tables) makes no commitment to which one is actually true.

Excluded Middle?

In two valued (T, F) logic, excluded middle is valid for any P:

$$P \lor \neg P$$

The proof of validity (via truth tables) makes no commitment to which one is actually true.

However, in terms of evidence, we have to construct either

- 1. evidence of P, or
- **2.** evidence of $\neg P$.

For an arbitrary proposition P, this seems unlikely.

Failure of Excluded Middle

For instance, if x is a real number (has an arbitrarily long decimal expansion), then, in terms of evidence

$$(x = 0) \lor \neg(x = 0)$$

asks us to determine whether x is 0.

But there is no process to do this in finite time.

(Another example: does this Turing Machine halt?)

Intuitionistic Logic

Intuitionistic Logic is the similar to "Classical" Logic, except that it does not include the Law of Excluded Middle P $\vee \neg$ P for all propositions P.

Note: this does not mean that $\neg(P \lor \neg P)$ is provable. There may be some Ps for which $P \lor \neg P$ holds.

(For example, $(x = 0) \lor \neg(x = 0)$ when x is an integer)

Summary

- ► The system was have so far is *sound* but not *complete*
- ► We can make it complete by adding a rule for *excluded middle*:

$$P \lor \neg P$$

But should we? What does Logic mean?