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Proof for Propositional Logic, Part 1

Natural Deduction
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Proof for Propositional Logic, Part 1: Natural Deduction

Judgements
We want to deduce judgements of the form:

P1, . . . , Pn ⊢ Q

meaning:

From assumptions P1, . . . , Pn, we can prove Q.

Soundness The system will be sound, meaning:

P1, . . . , Pn ⊢ Q provable ⇒ P1, . . . , Pn |= Q

We will make sure it is sound by checking each rule as we go.
If all the premises are valid entailments, then so is the conclusion

Atkey CS208 - Topic 2 - page 4 of 57



Proof for Propositional Logic, Part 1: Natural Deduction

Judgements
The main judgement form is

P1, . . . , Pn ⊢ Q

With assumptions P1, . . . , Pn, can prove Q

We will also use an auxiliary judgement:

P1, . . . , Pn [P] ⊢ Q

· With assumptions P1, . . . , Pn, focusing on P, can prove Q
· Also “means” P1, . . . , Pn, P |= Q

· Having a focus is useful for organising proofs
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Proof for Propositional Logic, Part 1: Natural Deduction

Judgements
The main judgement form is

P1, . . . , Pn ⊢ Q

We will also use an auxiliary judgement:

P1, . . . , Pn [P] ⊢ Q

Assumption lists The list of assumptions P1, . . . , Pn will appear
often. So we will shorten it to Γ = P1, . . . , Pn.
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Proof for Propositional Logic, Part 1: Natural Deduction

Basic Rules

Γ [P] ⊢ P
Done

▶ If we have a focused assumption P, then we can prove P
▶ (Remember Γ stands for a list of other assumptions)
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Proof for Propositional Logic, Part 1: Natural Deduction

Basic Rules

P ∈ Γ Γ [P] ⊢ Q

Γ ⊢ Q
Use

▶ P ∈ Γ means “P is in Γ”.
▶ If we have a P in our current assumptions, we can focus on it.
▶ P ∈ Γ is a side condition: it is something we check when we

apply the rule, not another judgement to be proved.
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Proof for Propositional Logic, Part 1: Natural Deduction

A first proof

A ⊢ A

▶ First Use the A assumption.
▶ Then we are Done.
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Proof for Propositional Logic, Part 1: Natural Deduction

A first proof

A [A] ⊢ A

A ⊢ A
Use

▶ First Use the A assumption.

▶ Then we are Done.
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Proof for Propositional Logic, Part 1: Natural Deduction

A first proof

A [A] ⊢ A
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Use
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Proof for Propositional Logic, Part 1: Natural Deduction

Soundness

Γ [P] ⊢ P
Done

P ∈ Γ Γ [P] ⊢ Q

Γ ⊢ Q
Use

Done
is sound because assuming P entails P, and extra assumptions
make no difference.

Use
is sound because if we assuming P twice entails Q, then it is okay
to assume it once.
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Proof for Propositional Logic, Part 1: Natural Deduction

Rules for connectives
The rule Done and Use do not mention the connectives.

In Natural Deduction, rules for connectives come in two kinds:

1. Introduction rules
How to construct a proof with the connective

2. Elimination rules
How to use an assumption with this connective

Very rough analogy: but can be made very precise
1. Introduction rules are like constructors for building objects
2. Elimination rules are like methods for taking apart objects
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Proof for Propositional Logic, Part 1: Natural Deduction

“And” Introduction

Γ ⊢ Q1 Γ ⊢ Q2

Γ ⊢ Q1 ∧Q2

Split

▶ To prove P1 ∧ P2 we have to prove P1 and P2

▶ This rule is often called ∧-IntRoduction
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An example proof

A,B [A] ⊢ A
Done

A,B ⊢ A
Use

A,B [B] ⊢ B
Done

A,B ⊢ B
Use

A,B ⊢ A∧ B
Split

To prove A∧ B, we Split into proofs of A and B.
In each case, we Use the corresponding assumption.
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Proof for Propositional Logic, Part 1: Natural Deduction

“And” Elimination

Γ [P1] ⊢ Q

Γ [P1 ∧ P2] ⊢ Q
FiRst

Γ [P2] ⊢ Q

Γ [P1 ∧ P2] ⊢ Q
Second

If we are focused on an formula P1 ∧ P2, we can select either the
FiRst or Second component to focus on.
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“And” Elimination
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FiRst
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Γ [P1 ∧ P2] ⊢ Q
Second
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Example proof

A∧ B [B] ⊢ B
Done

A∧ B [A∧ B] ⊢ B
Second

A∧ B ⊢ B
Use
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Proof for Propositional Logic, Part 1: Natural Deduction

“True” Introduction

Γ ⊢ T TRue

▶ T is always provable.
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Proof for Propositional Logic, Part 1: Natural Deduction

“True” Elimination

No elimination rule!
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Proof for Propositional Logic, Part 1: Natural Deduction

“True” Elimination

No elimination rule!
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Proof for Propositional Logic, Part 1: Natural Deduction

Summary

▶ The judgement forms for (focused) Natural Deduction:

P1, . . . , Pn ⊢ Q P1, . . . , Pn [P] ⊢ Q

▶ Rules for Use and Done

▶ Rules for introducing and eliminating ∧.
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Proof for Propositional Logic, Part 2

Rules for “Implies”
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Proof for Propositional Logic, Part 2: Rules for “Implies”

“Implies” Introduction

Γ, P ⊢ Q

Γ ⊢ P → Q
IntRoduce

To prove P → Q, we prove Q under the assumption P.
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Proof for Propositional Logic, Part 2: Rules for “Implies”

Example: A → A

A [A] ⊢ A
Done

A ⊢ A
Use

⊢ A → A
IntRoduce
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Proof for Propositional Logic, Part 2: Rules for “Implies”

Example : (A∧ B) → A

A ∧ B [A] ⊢ A
Done

A ∧ B [A ∧ B] ⊢ A
FiRst

A ∧ B ⊢ A
Use

⊢ (A ∧ B) → A
IntRoduce
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Proof for Propositional Logic, Part 2: Rules for “Implies”

“Implies” Elimination

Γ ⊢ P1 Γ [P2] ⊢ Q

Γ [P1 → P2] ⊢ Q
Apply

If we have P1 → P2 and we can prove P1, then we have P2.
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Proof for Propositional Logic, Part 2: Rules for “Implies”

Example: A → (A → B) → B

A,A → B [A] ⊢ A
Done

A,A → B ⊢ A
Use

A,A → B [B] ⊢ B
Done

A,A → B [A → B] ⊢ B
Apply

A,A → B ⊢ B
Use

A ⊢ (A → B) → B
IntRoduce

⊢ A → (A → B) → B
IntRoduce
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Proof for Propositional Logic, Part 2: Rules for “Implies”

The Rules so far

Γ [P] ⊢ P
Done

P ∈ Γ Γ [P] ⊢ Q

Γ ⊢ Q
Use

Γ ⊢ Q1 Γ ⊢ Q2

Γ ⊢ Q1 ∧Q2

Split
Γ [P1] ⊢ Q

Γ [P1 ∧ P2] ⊢ Q
FiRst

Γ [P2] ⊢ Q

Γ [P1 ∧ P2] ⊢ Q
Second

Γ, P ⊢ Q

Γ ⊢ P → Q
IntRoduce

Γ ⊢ P1 Γ [P2] ⊢ Q

Γ [P1 → P2] ⊢ Q
Apply
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Proof for Propositional Logic, Part 2: Rules for “Implies”

Summary

▶ The rules for Implication

Γ, P ⊢ Q

Γ ⊢ P → Q
IntRoduce

Γ ⊢ P1 Γ [P2] ⊢ Q

Γ [P1 → P2] ⊢ Q
Apply
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Proof for Propositional Logic, Part 3

Rules for “Or”
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Proof for Propositional Logic, Part 3: Rules for “Or”

“Or” Introduction

Γ ⊢ Q1

Γ ⊢ Q1 ∨Q2

Left
Γ ⊢ Q2

Γ ⊢ Q1 ∨Q2

Right

To prove Q1 ∨Q2, either we:
1. prove Q1, or
2. prove Q2.
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Example

A [A] ⊢ A
Done

A ⊢ A
Use

A ⊢ A∨ B
Left
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Proof for Propositional Logic, Part 3: Rules for “Or”

“Or” Elimination

Γ, P1 ⊢ Q Γ, P2 ⊢ Q

Γ [P1 ∨ P2] ⊢ Q
Cases

Γ, P means all the assumptions in Γ , and P

If we are focused on P1 ∨ P2, then:
1. Either P1 holds, so we have to prove Q assuming P1; or
2. Either P2 holds, so we have to prove Q assuming P2
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Proof for Propositional Logic, Part 3: Rules for “Or”

“Or” Elimination

Γ, P1 ⊢ Q Γ, P2 ⊢ Q

Γ [P1 ∨ P2] ⊢ Q
Cases

We (the provers) don’t know which of P1 or P2 is true, so we need
to write proofs for both eventualities.

This is dual to the case for conjunction: for P1 ∧ P2 we had to
provide both sides in the introduction rule, but got to choose in the
elimination rule.
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Example

A∨ B,A [A] ⊢ A
Done

A∨ B,A ⊢ A
Use

A∨ B,A ⊢ B∨A
Right

A∨ B,B [B] ⊢ B
Done

A∨ B,B ⊢ B
Use

A∨ B,B ⊢ B∨A
Left

A∨ B [A∨ B] ⊢ B∨A
Cases

A∨ B ⊢ B∨A
Use
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Proof for Propositional Logic, Part 3: Rules for “Or”

“False” Introduction

No introduction rule!
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Proof for Propositional Logic, Part 3: Rules for “Or”

“False” Elimination

Γ [F] ⊢ Q
False

If we have a false assumption, we can prove anything.
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“False” Elimination

Γ [F] ⊢ Q
False

If we have a false assumption, we can prove anything.
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Example

F [F] ⊢ A ∧ B ∧ C
False

F ⊢ A ∧ B ∧ C
Use

⊢ F → (A ∧ B ∧ C)
IntRoduce
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Example

A ∨ F,A [A] ⊢ A
Done

A ∨ F,A ⊢ A
Use

A ∨ F,F [F] ⊢ A
False

A ∨ F,F ⊢ A
Use

A ∨ F [A ∨ F] ⊢ A
Cases

A ∨ F ⊢ A
Use

⊢ (A ∨ F) → A
IntRoduce
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Proof for Propositional Logic, Part 3: Rules for “Or”

Summary
▶ Rules for “Or”:

Γ ⊢ Q1

Γ ⊢ Q1 ∨Q2

Left
Γ ⊢ Q2

Γ ⊢ Q1 ∨Q2

Right

Γ, P1 ⊢ Q Γ, P2 ⊢ Q

Γ [P1 ∨ P2] ⊢ Q
Cases

▶ “False” lets us prove anything:

Γ [F] ⊢ Q
False
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Proof for Propositional Logic, Part 4

Rules for “Not”
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Proof for Propositional Logic, Part 4: Rules for “Not”

Negation

We could define negation:

¬P ≡ P → F

Then we wouldn’t need any rules for it.
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Proof for Propositional Logic, Part 4: Rules for “Not”

Rules for Negation: Introduction

(¬P ≡ P → F)

Γ, P ⊢ F
Γ ⊢ P → F IntRoduce

To prove ¬P, we prove that P proves false.
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Proof for Propositional Logic, Part 4: Rules for “Not”

Rules for Negation: Elimination

(¬P ≡ P → F)

Γ ⊢ P Γ [F] ⊢ Q
False

Γ [P → F] ⊢ Q
Apply

If we know that ¬P is true, and we can prove P, then we get a
contradiction which allows us to prove anything.
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Proof for Propositional Logic, Part 4: Rules for “Not”

Specialised Rules for Negation

Introduction:
Γ, P ⊢ F
Γ ⊢ ¬P

Not-IntRo

Elimination:
Γ ⊢ P

Γ [¬P] ⊢ Q
Not-Elim
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Proof for Propositional Logic, Part 4: Rules for “Not”

Example: (A∨ B) → ¬A → B

A ∨ B,¬A,A [A] ⊢ A
Done

A ∨ B,¬A,A ⊢ A
Use

A ∨ B,¬A,A [¬A] ⊢ B
¬-Elim

A ∨ B,¬A,A ⊢ B
Use

A ∨ B,¬A,B [B] ⊢ B
Done

A ∨ B,¬A,B ⊢ B
Use

A ∨ B,¬A [A ∨ B] ⊢ B
Cases

A ∨ B,¬A ⊢ B
Use

A ∨ B ⊢ ¬A → B
IntRoduce

⊢ (A ∨ B) → ¬A → B
IntRoduce
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Proof for Propositional Logic, Part 4: Rules for “Not”

Summary

▶ Negation can be defined in terms of Implication and False
▶ Nicer to have specific rules:

Γ, P ⊢ F
Γ ⊢ ¬P

Γ ⊢ P

Γ [¬P] ⊢ Q
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Proof for Propositional Logic, Part 5

Soundness &
Completeness &

Philosophy
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Proof for Propositional Logic, Part 5: Soundness & Completeness & Philosophy

Soundness and Completeness
Soundness : “Everything that is provable is valid”:

P1, . . . , Pn ⊢ Q ⇒ P1, . . . , Pn |= Q

I’ve tried, informally, to convince you of this for each rule. If each
rule is sound, then the whole system is sound.

Completeness : “Everything that is provable is valid”:

P1, . . . , Pn |= Q ⇒ P1, . . . , Pn ⊢ Q

Does this property hold of the system so far?
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Proof for Propositional Logic, Part 5: Soundness & Completeness & Philosophy

Failure of Completeness
Recall that this entailment is valid:

|= A∨ ¬A

Can we prove this?

Is there a proof of ⊢ A∨ ¬A?
Have three options:
1. Apply Use to use an assumption. No assumptions!
2. Apply Left and try to prove ⊢ A, but this can’t be provable, by

soundness!
3. Apply Right and try to prove ⊢ ¬A, but this can’t be provable,

by soundness!
So the system so far is not complete, with respect to our semantics.
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3. Apply Right and try to prove ⊢ ¬A, but this can’t be provable,
by soundness!

So the system so far is not complete, with respect to our semantics.
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Fixing completeness
We could add the following rule:

Γ, P ⊢ Q Γ,¬P ⊢ Q

Γ ⊢ Q
ExcludedMiddle

To prove Q, pick any proposition P and say “either P or ¬P”.

This lets us prove ⊢ A∨ ¬A.

It is sound, but is it a good idea?
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Some Philosophy of Mathematics

Where do mathematical objects live?
(objects include numbers, shapes, functions, propositions, proofs, …)
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“Platonism”

▶ Objects exist “out there”, independently of us.
▶ There is a universal notion of “truth”.

▶ Every proposition is either true or false, even if we can’t see why.

Image: By Copy of Silanion, Public Domain, https://commons.wikimedia.org/w/index.php?curid=7831217
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“Intuitionism”

(L.E.J. Brouwer, 1900/10/20s)

▶ Objects exist as constructions within our heads.
▶ Including proofs of propositions

▶ We convince ourselves of the truth of a proposition by constructing
evidence for it.

Image: By Source (WP:NFCC#4), Fair use, https://en.wikipedia.org/w/index.php?curid=39567913
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Evidence based Interpretation
(Instead of saying P□Q is true when…)

Evidence of… is
T there always evidence of T
F there is no evidence of F

P ∧Q evidence of P and evidence of Q
P ∨Q evidence of P or evidence of Q
P → Q a process converting evidence of P into evidence of Q
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Evidence for Negation

We define ¬P = P → F.
▶ evidence of ¬P is a process converting evidence of P to

evidence of F
▶ but there is no evidence of F
▶ so there can be no evidence of P.
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Excluded Middle?
In two valued (T,F) logic, excluded middle is valid for any P:

P ∨ ¬P

The proof of validity (via truth tables) makes no commitment to
which one is actually true.

However, in terms of evidence, we have to construct either
1. evidence of P, or
2. evidence of ¬P.

For an arbitrary proposition P, this seems unlikely.
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Failure of Excluded Middle

For instance, if x is a real number (has an arbitrarily long decimal
expansion), then, in terms of evidence

(x = 0)∨ ¬(x = 0)

asks us to determine whether x is 0.

But there is no process to do this in finite time.
(Another example: does this Turing Machine halt?)
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Intuitionistic Logic

Intuitionistic Logic is the similar to “Classical” Logic, except that it
does not include the Law of Excluded Middle P ∨ ¬P for all
propositions P.

Note: this does not mean that ¬(P ∨ ¬P) is provable. There may
be some Ps for which P ∨ ¬P holds.

(For example, (x = 0)∨ ¬(x = 0) when x is an integer)
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Summary

▶ The system was have so far is sound but not complete
▶ We can make it complete by adding a rule for excluded middle:

P ∨ ¬P

▶ But should we? What does Logic mean?
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