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Predicate Logic, Part 1

Introduction
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So far:

Propositional Logic

We can say things like:

“If it is raining or sunny, and it is not sunny, then it is raining”

((R∨ S)∧ ¬S) → R

“version 1 is installed, or version 2 is installed, or version 3 is installed”

p1 ∨ p2 ∨ p3
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Predicate Logic, Part 1: Introduction

What we can’t say
“Every day is sunny or rainy, today is not sunny, so today is rainy”
▶ No way to make universal statements (“Every day”)

“Some version of the package is installed”
▶ No way to make existential statements (“Some version”)

Best we can do is list the possibilities

(Smonday ∨ Rmonday)∧ (Stuesday ∨ Rtuesday)∧ ...
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Predicate Logic, Part 1: Introduction

Universal statements
“Classical” examples: (due to Aristole)

1. All human are mortal
2. Socrates is a human
3. Therefore Socrates is mortal

(from the universal to the specific)

1. No bird can fly in space
2. Owls are birds
3. Therefore owls cannot fly in space
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Universal and Existential statements are common

Database queries:

“Does there exist a customer that has not paid their invoice?”

“Does there exist a player who is within 10 metres of player 1?”

“Are all players logged off?”

“Do we have any customers?”
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Universal and Existential statements are common

The semantics of Propositional Logic:

“P is satisfiable if there exists a valuation that makes it true.”

“P is valid if all valuations make it true.”

“P entails Q if for all valuations, P is true implies Q is true.”
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Predicate Logic upgrades Propositional Logic
1. Add individuals:

▶ Specific individuals (e.g., socrates, today, player1, 1, 2, 3)
(these “name” specific entities in the world)

▶ General individuals (x, y, z, …)
(like variables in programming, they stand for “some” individual)

2. Add function symbols:
▶ x+ y, dayAfter(today), dayAfter(x)

3. Add properties and relations:
▶ Properties: canFlyInSpace(owl), paid(i)
▶ Relations: x = y, x ≤ 10, custInvoice(c, i).

4. Add Quantifiers:
▶ Universal quantification: ∀x.P (“for all” x, it is the case that P)
▶ Existential quantification: ∃x.P (“there exists” x, such that P)

Atkey CS208 - Topic 3 - page 8 of 59



Layered Syntax
The syntax of Predicate Logic comes in two layers:

Terms Built from individuals and function symbols:

x socrates player1 dayAfter(today) 2x+ 3y

nameOf(cust) dayAfter(dayAfter(d))

Formulas Built from properties and relations, connectives and
quantifiers.

∃x. customer(x)∧ loggedOff(x)

∀x. human(x) → mortal(x)

∀d. raining(d) → raining(dayAfter(d))

∀n.∃k.(n = k+ k)∨ (n = k+ k+ 1)
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Predicate Logic, Part 1: Introduction

Anatomy of a Formula

“All humans are mortal”

∀x. human ( x )→ mortal ( x )

1. Variables, standing for general individuals
2. Properties (“Predicates”) of those individuals
3. Connectives, as in Propositional Logic
4. Quantifiers, telling us how to interpret the general individual x
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Anatomy of a Formula
“Socrates is a human”

human ( socrates )

1. A specific individual
2. Property of that individual
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Anatomy of a Formula

“No bird can fly in space”

¬ ( ∃x. bird ( x )∧ canFlyInSpace ( x ))

1. Variables, standing for general individuals
2. Properties (“Predicates”) of those individuals
3. Connectives, as in Propositional Logic
4. Quantifiers, telling us how to interpret the general individual x
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Anatomy of a Formula

“If it is raining on a day, it is raining the day after”

∀d. raining ( d )→ raining ( dayAfter ( d ))

1. Variables, standing for general individuals
2. Function symbols, performing operations on individuals
3. Properties (“Predicates”) of those individuals
4. Connectives, as in Propositional Logic
5. Quantifiers,telling us how to interpret the general individual d
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Anatomy of a Formula

“Every number is even or odd”

∀n. ∃k. ( n = k + k )∨ ( n = k + k + 1 )

1. General (n, k) and specific (1) individuals
2. Function symbols, performing operations on individuals
3. Relations between individuals (here: equality)
4. Connectives, as in Propositional Logic
5. Quantifiers, telling us how to interpret the general individuals

n and k
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More examples
“Every day is raining or sunny”

∀d.raining(d)∨ sunny(d)

“Does there exist a player within 10 metres of player 1?”

∃p.player(p)∧ distance(locationOf(p), locationOf(player1)) ≤ 10
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Examples from Mathematics

Fermat’s Last Theorem

∀n.n > 2 → ¬(∃a.∃b.∃c.an + bn = cn)

(stated in 1637, not proved until 1994)

Goldbach’s Conjecture
(Every even number greater than 2 is the sum of two primes)

∀n.n > 2 → even(n) → ∃p.∃q.prime(p)∧ prime(q)∧ p+ q = n
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Predicate Logic, Part 1: Introduction

Summary

Predicate Logic upgrades Propositional Logic, adding:
▶ Individuals x, y, z
▶ Functions +, dayAfter
▶ Predicates =, even, odd
▶ Quantifiers ∀, ∃
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Predicate Logic, Part 2

Saying what you mean
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How to say “x is a P”

P(x)

For example:
human(x)
mortal(x)
swan(x)

golden(x)
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How to say “x and y are related by R”

R(x, y)

for example:
colour(x, gold)

species(x, swan)
connected(x, y)

knows(pooh, piglet)

Atkey CS208 - Topic 3 - page 20 of 59



“Everything is P”

everything is boring
everything is wet

∀x.boring(x)
∀x.wet(x)

∀x.P(x)

Usually not very useful if P is atomic, but things like

∀x.even(x)∨ odd(x)

are useful.
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“There exists an P”

there is a human
there is a swan
there is an insect

∃x.human(x)
∃x.swan(x)

∃x.class(x, insecta)

∃x.P(x)

there is at least one thing with property P
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“All P are Q”

all humans are mortal
all swans are white

all insects have 6 legs

∀x.human(x) → mortal(x)
∀x.swan(x) → white(x)

∀x.insect(x) → numLegs(x, 6)

∀x.P(x) → Q(x)

for all x, if x is P, then x is Q
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“Some P is Q”

some human is mortal
some swan is black

some insect has 6 legs

∃x.human(x)∧ mortal(x)
∃x.swan(x)∧ colour(x, black)
∃x.insect(x)∧ numLegs(x, 6)

∃x.P(x)∧Q(x)

exists x, such that x is a P and x is a Q
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“All P are Q” vs “Some P are Q”

∀x.P(x) → Q(x)

uses →, but
∃x.P(x)∧Q(x)

uses ∧.

Tempting to write:

∀x.P(x)∧Q(x) everything is both P and Q

or

∃x.P(x) → Q(x) there is some x, such that if P then Q

but almost always not what you want.
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“No P is Q”

no swans are blue
no bird can fly in space

no program works

∀x.swan(x) → ¬blue(x)
¬(∃x.bird(x)∧ canFlyInSpace(x))

∀x.program(x) → ¬works(x)

¬(∃x.P(x)∧Q(x)) or ∀x.P(x) → ¬Q(x)

The two statements are equivalent.
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“For every P, there exists a related Q”
every farmer owns a donkey
every day has a next day

every list has a sorted version
every position has a nearby safe position

∀f.farmer(f) → (∃d.donkey(d)∧ owns(f, d))
∀d.day(d) → (∃d ′.day(d ′)∧ next(d, d ′))

∀x.list(x) → (∃y.list(y)∧ sorted(y)∧ sameElements(x, y))
∀p1.∃p2.nearby(p1, p2)∧ safe(p2)

In steps:
1. For every x (they choose),
2. There is a y (we choose),
3. such that x and y are related.Atkey CS208 - Topic 3 - page 27 of 59



“There exists an P such that every Q is related”

every farmer owns a donkey (‼!)
there is someone that everyone loves
there is someone that loves everyone

∃d.donkey(d)∧ (∀f.farmer(f) → owns(f, d))
∃x.∀y.loves(y, x)
∃x.∀y.loves(x, y)

In steps:
1. there exists an x (we choose), such that
2. forall y (they choose),
3. it is the case that x and y are related.
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“For all P, there is a related Q, related to all R”

everyone knows someone who knows everyone

∀x.∃y.knows(x, y)∧ (∀z.knows(y, z))

∀x.P(x) → (∃y.Q(x, y)∧ (∀z.R(x, y, z))

In steps:
1. for all x (they choose),
2. there exists a y (we choose),
3. for all z (they choose),
4. such that x, y, z are related.
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“There exists exactly one X”

there’s only one moon

“Any other individual with the same property is equal”

∃x.moon(x)∧ (∀y.moon(y) → x = y)

not quite the same, but similar:

∀x.∀y.(moon(x)∧ moon(y)) → x = y

this says: at most one moon, but doesn’t say one exists.
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“For every X, there exists exactly one Y”

every train has one driver

∀t.train(t) → (∃d.driver(d, t)∧ (∀d ′.driver(d ′, t) → d = d ′))
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There exists an X such that for all Y there exists a Z

there is a node, such that for all reachable nodes,
there is a safe node in one step

∃a.∀b.reachable(a, b) → (∃c.safe(c)∧ step(b, c))
Not the same as:

∃a.∃c.∀b.reachable(a, b) → (safe(c)∧ step(b, c))

1. First one: c can be different for each b.
2. Second: the same c for all b.
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Predicate Logic, Part 2: Saying what you mean

Summary

▶ Many of the things you want to say in Predicate Logic fall into
one of several predefined templates.

▶ It helps to think of quantifiers as a game
▶ ∀ means “they choose”
▶ ∃ means “I choose”

(but they switch places under a negation or on the left of an
implication!)
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Predicate Logic, Part 3

Syntax Details
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Predicate Logic, Part 3: Syntax Details

Predicate Logic

Predicate Logic upgrades Propositional Logic, adding:
▶ Individuals x, y, z
▶ Functions +, dayAfter
▶ Predicates =, even, odd
▶ Quantifiers ∀, ∃
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Predicate Logic, Part 3: Syntax Details

Predicate Logic is for Modelling
To state properties of some situation we want to model, we choose:
1. Names of specific individuals

(socrates, 1, 2, 10000, localhost,www.strath.ac.uk)
2. Function symbols

(+, ×, nameOf)
3. Relation symbols

(human(x), x = y, linksTo(x, y))

4. Some axioms
(later …)

Usually, we build a vocabulary based on what we want to do.
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Predicate Logic, Part 3: Syntax Details

Vocabulary for Arithmetic
Individuals:

0 1 2 3 . . .

Functions:

t1 + t2 t1 − t2 . . .

Predicates:

t1 = t2 t1 < t2 . . .
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Predicate Logic, Part 3: Syntax Details

Vocabulary for Documents
Individuals:

“Frankenstein” “Dracula” “Bram Stoker” “Mary Shelley”

Predicates:

linksTo(doc1, doc2) authorOf(doc, person)

ownerOf(doc, person)
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Predicate Logic, Part 3: Syntax Details

Vocabulary for Programs
Individuals

java.lang.Object j.l.String j.l.Runnable

String toString()

Relations

extends(class1, class2) implements(class, interface)

hasMethod(class,method) . . .
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Predicate Logic, Part 3: Syntax Details

Equality

The equality predicate
t1 = t2

is treated specially:
▶ and in proofs (Topic 4)
▶ in the semantics (Topic 8)

Atkey CS208 - Topic 3 - page 40 of 59



Predicate Logic, Part 3: Syntax Details

Formal Grammar

t ::= x variables
| c constants
| f(t1, . . . , tn) function terms

P ::= R(t1, . . . , tn) predicates
| P ∧Q | P ∨Q | P → Q | ¬P connectives
| ∀x.P | ∃x.P quantifiers

Propositional Logic as special case: all relation symbols have arity 0.
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Predicate Logic, Part 3: Syntax Details

When are two formulas the same?

Is there a difference in meaning between these two?

∀x.P(x) and ∀y.P(y)

No! They both mean the same thing.

So we treat them as identical formulas.
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Predicate Logic, Part 3: Syntax Details

Free and Bound Variables

In the formula:
∃y.R(x, y)

1. The variable x is free
2. The variable y is bound (by the ∃ quantifier)

The quantifiers are binders.
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Predicate Logic, Part 3: Syntax Details

Free and Bound Variables
Pay attention to the bracketing:

(∀x.P(x) → Q(x))∧ (∃y.R(x, y))

The xs to the left of the ∧ are bound (by the ∀)

The x to the right of the ∧ is free.

When a variable is bound by quantifier, we say that it is in that
quantifiers scope.
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Predicate Logic, Part 3: Syntax Details

Identical Formulas, again
We can only rename bound variables

∃y.R(x, y) is identical to ∃z.R(x, z)

but

∃y.R(x, y) is not identical to ∃y.R(z, y)

because x and z do not have the same “global” meaning.
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Predicate Logic, Part 3: Syntax Details

Summary

Vocabularies define the symbols we can use in our formulas.

The formal syntax of Predicate Logic is more complex than
Propositional Logic
▶ Free and Bound Variables
▶ Formulas are identical even when renaming bound variables.
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Predicate Logic, Part 4

Substitution
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Predicate Logic, Part 4: Substitution

From General to Specific

We will have general assumptions like:

∀x.human(x) → mortal(x)

And we want to specialise (or instantiate) to:

human(socrates()) → mortal(socrates())
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Predicate Logic, Part 4: Substitution

Substitution
The notation

P[x := t]

means “replace all free occurrences of x in P with t”.
▶ x is a variable
▶ P is a formula
▶ t is a term

But there is a subtlety…
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Predicate Logic, Part 4: Substitution

Substitution Examples

(mortal(x))[x := socrates()]
=⇒ mortal(socrates())
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Predicate Logic, Part 4: Substitution

Substitution Examples

(∀y.weatherIs(d, y) → weatherIs(dayAfter(d), y))[d := tuesday]
=⇒ ∀y.weatherIs(tuesday, y) → weatherIs(dayAfter(tuesday), y)
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Predicate Logic, Part 4: Substitution

Substitution Examples

(∃y.sameElements(x, y)∧ sorted(y))[x := cons(z1, cons(z2, nil))]
=⇒ ∃y.sameElements(cons(z1, cons(z2, nil)), y)∧ sorted(y)
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Predicate Logic, Part 4: Substitution

Substitution Examples

(∀y.x+ y = y+ x)[x := z− z]

=⇒ ∀y.(z− z) + y = y+ (z− z)
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Predicate Logic, Part 4: Substitution

Accidental Name Capture
If we substitute naively, then we produce nonsense:
1. ∃y.sameElements(x, y)

“there exists a y that has the same elements as x”

2. (∃y.sameElements(x, y))[x := append(y, [1, 2])]
“replace x by the list append(y, [1, 2])”

3. ∃y.sameElements(append(y, [1, 2]), y)
“there exists a y that has the same elements as y+ [1, 2]?”
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Predicate Logic, Part 4: Substitution

Capture Avoidance

Solution: Rename bound variables

(∃y.sameElements(x, y))[x := append(y, [1, 2])]
=⇒ (∃z.sameElements(x, z))[x := append(y, [1, 2])]
=⇒ ∃z.sameElements(append(y, [1, 2]), z)
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Capture Avoiding Substitution

When working out
P[x := t]

If any of the variables in t are bound in P then rename them before
doing the substitution.
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Predicate Logic, Part 4: Substitution

Substitution Examples

1. P(x, y)[x := y+ y]

= P(y+ y, y)

2. P(x, y)[y := y+ y] = P(x, y+ y)

3. (∀x.P(x, y))[x := y+ y] = ∀x.P(x, y)
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Predicate Logic, Part 4: Substitution

Substitution Examples
1. (∀x.P(x, y))[y := x+ x]

= ∀z.P(z, x+ x)
Renaming!

2. (∀x.P(x, y) → (∃z.Q(y, z)))[y := z+ z]
= ∀x.P(x, z+ z) → (∃w.Q(z+ z,w))

Renaming!

3. (∀x.P(x, z) → (∃z.Q(y, z)))[z := x+ x]
= ∀w.P(w, x+ x) → (∃z.Q(y, z))

Renaming! and no substitution of the final z
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Predicate Logic, Part 4: Substitution

Summary

▶ Substitution
P[x := t]

is how we go from the general x to the specific t.
▶ We need to be careful to rename bound variables to avoid

accidental name capture.
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