
CS208 (Semester 1) Topic 3 :
Predicate Logic

Dr. Robert Atkey
Computer & Information Sciences

Atkey CS208 - Topic 3 - page 1 of 59

Predicate Logic, Part 1

Introduction

Atkey CS208 - Topic 3 - page 2 of 59

So far:

Propositional Logic

We can say things like:

“If it is raining or sunny, and it is not sunny, then it is raining”

((R∨ S)∧ ¬S) → R

“version 1 is installed, or version 2 is installed, or version 3 is installed”

p1 ∨ p2 ∨ p3

Atkey CS208 - Topic 3 - page 3 of 59

Predicate Logic, Part 1: Introduction

What we can’t say
“Every day is sunny or rainy, today is not sunny, so today is rainy”
▶ No way to make universal statements (“Every day”)

“Some version of the package is installed”
▶ No way to make existential statements (“Some version”)

Best we can do is list the possibilities

(Smonday ∨ Rmonday)∧ (Stuesday ∨ Rtuesday)∧ ...

Atkey CS208 - Topic 3 - page 4 of 59

Predicate Logic, Part 1: Introduction

What we can’t say
“Every day is sunny or rainy, today is not sunny, so today is rainy”
▶ No way to make universal statements (“Every day”)

“Some version of the package is installed”
▶ No way to make existential statements (“Some version”)

Best we can do is list the possibilities

(Smonday ∨ Rmonday)∧ (Stuesday ∨ Rtuesday)∧ ...

Atkey CS208 - Topic 3 - page 4 of 59

Predicate Logic, Part 1: Introduction

Universal statements
“Classical” examples: (due to Aristole)

1. All human are mortal
2. Socrates is a human
3. Therefore Socrates is mortal

(from the universal to the specific)

1. No bird can fly in space
2. Owls are birds
3. Therefore owls cannot fly in space

Atkey CS208 - Topic 3 - page 5 of 59

Universal and Existential statements are common

Database queries:

“Does there exist a customer that has not paid their invoice?”

“Does there exist a player who is within 10 metres of player 1?”

“Are all players logged off?”

“Do we have any customers?”

Atkey CS208 - Topic 3 - page 6 of 59

Universal and Existential statements are common

The semantics of Propositional Logic:

“P is satisfiable if there exists a valuation that makes it true.”

“P is valid if all valuations make it true.”

“P entails Q if for all valuations, P is true implies Q is true.”

Atkey CS208 - Topic 3 - page 7 of 59

Predicate Logic upgrades Propositional Logic
1. Add individuals:

▶ Specific individuals (e.g., socrates, today, player1, 1, 2, 3)
(these “name” specific entities in the world)

▶ General individuals (x, y, z, …)
(like variables in programming, they stand for “some” individual)

2. Add function symbols:
▶ x+ y, dayAfter(today), dayAfter(x)

3. Add properties and relations:
▶ Properties: canFlyInSpace(owl), paid(i)
▶ Relations: x = y, x ≤ 10, custInvoice(c, i).

4. Add Quantifiers:
▶ Universal quantification: ∀x.P (“for all” x, it is the case that P)
▶ Existential quantification: ∃x.P (“there exists” x, such that P)

Atkey CS208 - Topic 3 - page 8 of 59

Layered Syntax
The syntax of Predicate Logic comes in two layers:

Terms Built from individuals and function symbols:

x socrates player1 dayAfter(today) 2x+ 3y

nameOf(cust) dayAfter(dayAfter(d))

Formulas Built from properties and relations, connectives and
quantifiers.

∃x. customer(x)∧ loggedOff(x)

∀x. human(x) → mortal(x)

∀d. raining(d) → raining(dayAfter(d))

∀n.∃k.(n = k+ k)∨ (n = k+ k+ 1)

Atkey CS208 - Topic 3 - page 9 of 59

Predicate Logic, Part 1: Introduction

Anatomy of a Formula

“All humans are mortal”

∀x. human (x)→ mortal (x)

1. Variables, standing for general individuals
2. Properties (“Predicates”) of those individuals
3. Connectives, as in Propositional Logic
4. Quantifiers, telling us how to interpret the general individual x

Atkey CS208 - Topic 3 - page 10 of 59

Predicate Logic, Part 1: Introduction

Anatomy of a Formula

“All humans are mortal”

∀x. human (x)→ mortal (x)

1. Variables, standing for general individuals

2. Properties (“Predicates”) of those individuals
3. Connectives, as in Propositional Logic
4. Quantifiers, telling us how to interpret the general individual x

Atkey CS208 - Topic 3 - page 10 of 59

Predicate Logic, Part 1: Introduction

Anatomy of a Formula

“All humans are mortal”

∀x. human (x)→ mortal (x)

1. Variables, standing for general individuals
2. Properties (“Predicates”) of those individuals

3. Connectives, as in Propositional Logic
4. Quantifiers, telling us how to interpret the general individual x

Atkey CS208 - Topic 3 - page 10 of 59

Predicate Logic, Part 1: Introduction

Anatomy of a Formula

“All humans are mortal”

∀x. human (x)→ mortal (x)

1. Variables, standing for general individuals
2. Properties (“Predicates”) of those individuals
3. Connectives, as in Propositional Logic

4. Quantifiers, telling us how to interpret the general individual x

Atkey CS208 - Topic 3 - page 10 of 59

Predicate Logic, Part 1: Introduction

Anatomy of a Formula

“All humans are mortal”

∀x. human (x)→ mortal (x)

1. Variables, standing for general individuals
2. Properties (“Predicates”) of those individuals
3. Connectives, as in Propositional Logic
4. Quantifiers, telling us how to interpret the general individual x

Atkey CS208 - Topic 3 - page 10 of 59

Anatomy of a Formula
“Socrates is a human”

human (socrates)

1. A specific individual
2. Property of that individual

Atkey CS208 - Topic 3 - page 11 of 59

Anatomy of a Formula
“Socrates is a human”

human (socrates)

1. A specific individual

2. Property of that individual

Atkey CS208 - Topic 3 - page 11 of 59

Anatomy of a Formula
“Socrates is a human”

human (socrates)

1. A specific individual
2. Property of that individual

Atkey CS208 - Topic 3 - page 11 of 59

Anatomy of a Formula

“No bird can fly in space”

¬ (∃x. bird (x)∧ canFlyInSpace (x))

1. Variables, standing for general individuals
2. Properties (“Predicates”) of those individuals
3. Connectives, as in Propositional Logic
4. Quantifiers, telling us how to interpret the general individual x

Atkey CS208 - Topic 3 - page 12 of 59

Anatomy of a Formula

“No bird can fly in space”

¬ (∃x. bird (x)∧ canFlyInSpace (x))

1. Variables, standing for general individuals

2. Properties (“Predicates”) of those individuals
3. Connectives, as in Propositional Logic
4. Quantifiers, telling us how to interpret the general individual x

Atkey CS208 - Topic 3 - page 12 of 59

Anatomy of a Formula

“No bird can fly in space”

¬ (∃x. bird (x)∧ canFlyInSpace (x))

1. Variables, standing for general individuals
2. Properties (“Predicates”) of those individuals

3. Connectives, as in Propositional Logic
4. Quantifiers, telling us how to interpret the general individual x

Atkey CS208 - Topic 3 - page 12 of 59

Anatomy of a Formula

“No bird can fly in space”

¬ (∃x. bird (x)∧ canFlyInSpace (x))

1. Variables, standing for general individuals
2. Properties (“Predicates”) of those individuals
3. Connectives, as in Propositional Logic

4. Quantifiers, telling us how to interpret the general individual x

Atkey CS208 - Topic 3 - page 12 of 59

Anatomy of a Formula

“No bird can fly in space”

¬ (∃x. bird (x)∧ canFlyInSpace (x))

1. Variables, standing for general individuals
2. Properties (“Predicates”) of those individuals
3. Connectives, as in Propositional Logic
4. Quantifiers, telling us how to interpret the general individual x

Atkey CS208 - Topic 3 - page 12 of 59

Anatomy of a Formula

“If it is raining on a day, it is raining the day after”

∀d. raining (d)→ raining (dayAfter (d))

1. Variables, standing for general individuals
2. Function symbols, performing operations on individuals
3. Properties (“Predicates”) of those individuals
4. Connectives, as in Propositional Logic
5. Quantifiers,telling us how to interpret the general individual d

Atkey CS208 - Topic 3 - page 13 of 59

Anatomy of a Formula

“If it is raining on a day, it is raining the day after”

∀d. raining (d)→ raining (dayAfter (d))

1. Variables, standing for general individuals

2. Function symbols, performing operations on individuals
3. Properties (“Predicates”) of those individuals
4. Connectives, as in Propositional Logic
5. Quantifiers,telling us how to interpret the general individual d

Atkey CS208 - Topic 3 - page 13 of 59

Anatomy of a Formula

“If it is raining on a day, it is raining the day after”

∀d. raining (d)→ raining (dayAfter (d))

1. Variables, standing for general individuals
2. Function symbols, performing operations on individuals

3. Properties (“Predicates”) of those individuals
4. Connectives, as in Propositional Logic
5. Quantifiers,telling us how to interpret the general individual d

Atkey CS208 - Topic 3 - page 13 of 59

Anatomy of a Formula

“If it is raining on a day, it is raining the day after”

∀d. raining (d)→ raining (dayAfter (d))

1. Variables, standing for general individuals
2. Function symbols, performing operations on individuals
3. Properties (“Predicates”) of those individuals

4. Connectives, as in Propositional Logic
5. Quantifiers,telling us how to interpret the general individual d

Atkey CS208 - Topic 3 - page 13 of 59

Anatomy of a Formula

“If it is raining on a day, it is raining the day after”

∀d. raining (d)→ raining (dayAfter (d))

1. Variables, standing for general individuals
2. Function symbols, performing operations on individuals
3. Properties (“Predicates”) of those individuals
4. Connectives, as in Propositional Logic

5. Quantifiers,telling us how to interpret the general individual d

Atkey CS208 - Topic 3 - page 13 of 59

Anatomy of a Formula

“If it is raining on a day, it is raining the day after”

∀d. raining (d)→ raining (dayAfter (d))

1. Variables, standing for general individuals
2. Function symbols, performing operations on individuals
3. Properties (“Predicates”) of those individuals
4. Connectives, as in Propositional Logic
5. Quantifiers,telling us how to interpret the general individual d

Atkey CS208 - Topic 3 - page 13 of 59

Anatomy of a Formula

“Every number is even or odd”

∀n. ∃k. (n = k + k)∨ (n = k + k + 1)

1. General (n, k) and specific (1) individuals
2. Function symbols, performing operations on individuals
3. Relations between individuals (here: equality)
4. Connectives, as in Propositional Logic
5. Quantifiers, telling us how to interpret the general individuals

n and k

Atkey CS208 - Topic 3 - page 14 of 59

Anatomy of a Formula

“Every number is even or odd”

∀n. ∃k. (n = k + k)∨ (n = k + k + 1)

1. General (n, k) and specific (1) individuals

2. Function symbols, performing operations on individuals
3. Relations between individuals (here: equality)
4. Connectives, as in Propositional Logic
5. Quantifiers, telling us how to interpret the general individuals

n and k

Atkey CS208 - Topic 3 - page 14 of 59

Anatomy of a Formula

“Every number is even or odd”

∀n. ∃k. (n = k + k)∨ (n = k + k + 1)

1. General (n, k) and specific (1) individuals
2. Function symbols, performing operations on individuals

3. Relations between individuals (here: equality)
4. Connectives, as in Propositional Logic
5. Quantifiers, telling us how to interpret the general individuals

n and k

Atkey CS208 - Topic 3 - page 14 of 59

Anatomy of a Formula

“Every number is even or odd”

∀n. ∃k. (n = k + k)∨ (n = k + k + 1)

1. General (n, k) and specific (1) individuals
2. Function symbols, performing operations on individuals
3. Relations between individuals (here: equality)

4. Connectives, as in Propositional Logic
5. Quantifiers, telling us how to interpret the general individuals

n and k

Atkey CS208 - Topic 3 - page 14 of 59

Anatomy of a Formula

“Every number is even or odd”

∀n. ∃k. (n = k + k)∨ (n = k + k + 1)

1. General (n, k) and specific (1) individuals
2. Function symbols, performing operations on individuals
3. Relations between individuals (here: equality)
4. Connectives, as in Propositional Logic

5. Quantifiers, telling us how to interpret the general individuals
n and k

Atkey CS208 - Topic 3 - page 14 of 59

Anatomy of a Formula

“Every number is even or odd”

∀n. ∃k. (n = k + k)∨ (n = k + k + 1)

1. General (n, k) and specific (1) individuals
2. Function symbols, performing operations on individuals
3. Relations between individuals (here: equality)
4. Connectives, as in Propositional Logic
5. Quantifiers, telling us how to interpret the general individuals

n and k

Atkey CS208 - Topic 3 - page 14 of 59

More examples
“Every day is raining or sunny”

∀d.raining(d)∨ sunny(d)

“Does there exist a player within 10 metres of player 1?”

∃p.player(p)∧ distance(locationOf(p), locationOf(player1)) ≤ 10

Atkey CS208 - Topic 3 - page 15 of 59

Examples from Mathematics

Fermat’s Last Theorem

∀n.n > 2 → ¬(∃a.∃b.∃c.an + bn = cn)

(stated in 1637, not proved until 1994)

Goldbach’s Conjecture
(Every even number greater than 2 is the sum of two primes)

∀n.n > 2 → even(n) → ∃p.∃q.prime(p)∧ prime(q)∧ p+ q = n

Atkey CS208 - Topic 3 - page 16 of 59

Predicate Logic, Part 1: Introduction

Summary

Predicate Logic upgrades Propositional Logic, adding:
▶ Individuals x, y, z
▶ Functions +, dayAfter
▶ Predicates =, even, odd
▶ Quantifiers ∀, ∃

Atkey CS208 - Topic 3 - page 17 of 59

Predicate Logic, Part 2

Saying what you mean

Atkey CS208 - Topic 3 - page 18 of 59

How to say “x is a P”

P(x)

For example:
human(x)
mortal(x)
swan(x)

golden(x)

Atkey CS208 - Topic 3 - page 19 of 59

How to say “x and y are related by R”

R(x, y)

for example:
colour(x, gold)

species(x, swan)
connected(x, y)

knows(pooh, piglet)

Atkey CS208 - Topic 3 - page 20 of 59

“Everything is P”

everything is boring
everything is wet

∀x.boring(x)
∀x.wet(x)

∀x.P(x)

Usually not very useful if P is atomic, but things like

∀x.even(x)∨ odd(x)

are useful.
Atkey CS208 - Topic 3 - page 21 of 59

“There exists an P”

there is a human
there is a swan
there is an insect

∃x.human(x)
∃x.swan(x)

∃x.class(x, insecta)

∃x.P(x)

there is at least one thing with property P
Atkey CS208 - Topic 3 - page 22 of 59

“All P are Q”

all humans are mortal
all swans are white

all insects have 6 legs

∀x.human(x) → mortal(x)
∀x.swan(x) → white(x)

∀x.insect(x) → numLegs(x, 6)

∀x.P(x) → Q(x)

for all x, if x is P, then x is Q

Atkey CS208 - Topic 3 - page 23 of 59

“Some P is Q”

some human is mortal
some swan is black

some insect has 6 legs

∃x.human(x)∧ mortal(x)
∃x.swan(x)∧ colour(x, black)
∃x.insect(x)∧ numLegs(x, 6)

∃x.P(x)∧Q(x)

exists x, such that x is a P and x is a Q

Atkey CS208 - Topic 3 - page 24 of 59

“All P are Q” vs “Some P are Q”

∀x.P(x) → Q(x)

uses →, but
∃x.P(x)∧Q(x)

uses ∧.

Tempting to write:

∀x.P(x)∧Q(x) everything is both P and Q

or

∃x.P(x) → Q(x) there is some x, such that if P then Q

but almost always not what you want.

Atkey CS208 - Topic 3 - page 25 of 59

“All P are Q” vs “Some P are Q”

∀x.P(x) → Q(x)

uses →, but
∃x.P(x)∧Q(x)

uses ∧.

Tempting to write:

∀x.P(x)∧Q(x) everything is both P and Q

or

∃x.P(x) → Q(x) there is some x, such that if P then Q

but almost always not what you want.
Atkey CS208 - Topic 3 - page 25 of 59

“No P is Q”

no swans are blue
no bird can fly in space

no program works

∀x.swan(x) → ¬blue(x)
¬(∃x.bird(x)∧ canFlyInSpace(x))

∀x.program(x) → ¬works(x)

¬(∃x.P(x)∧Q(x)) or ∀x.P(x) → ¬Q(x)

The two statements are equivalent.
Atkey CS208 - Topic 3 - page 26 of 59

“For every P, there exists a related Q”
every farmer owns a donkey
every day has a next day

every list has a sorted version
every position has a nearby safe position

∀f.farmer(f) → (∃d.donkey(d)∧ owns(f, d))
∀d.day(d) → (∃d ′.day(d ′)∧ next(d, d ′))

∀x.list(x) → (∃y.list(y)∧ sorted(y)∧ sameElements(x, y))
∀p1.∃p2.nearby(p1, p2)∧ safe(p2)

In steps:
1. For every x (they choose),
2. There is a y (we choose),
3. such that x and y are related.Atkey CS208 - Topic 3 - page 27 of 59

“There exists an P such that every Q is related”

every farmer owns a donkey (‼!)
there is someone that everyone loves
there is someone that loves everyone

∃d.donkey(d)∧ (∀f.farmer(f) → owns(f, d))
∃x.∀y.loves(y, x)
∃x.∀y.loves(x, y)

In steps:
1. there exists an x (we choose), such that
2. forall y (they choose),
3. it is the case that x and y are related.

Atkey CS208 - Topic 3 - page 28 of 59

“For all P, there is a related Q, related to all R”

everyone knows someone who knows everyone

∀x.∃y.knows(x, y)∧ (∀z.knows(y, z))

∀x.P(x) → (∃y.Q(x, y)∧ (∀z.R(x, y, z))

In steps:
1. for all x (they choose),
2. there exists a y (we choose),
3. for all z (they choose),
4. such that x, y, z are related.

Atkey CS208 - Topic 3 - page 29 of 59

“There exists exactly one X”

there’s only one moon

“Any other individual with the same property is equal”

∃x.moon(x)∧ (∀y.moon(y) → x = y)

not quite the same, but similar:

∀x.∀y.(moon(x)∧ moon(y)) → x = y

this says: at most one moon, but doesn’t say one exists.

Atkey CS208 - Topic 3 - page 30 of 59

“For every X, there exists exactly one Y”

every train has one driver

∀t.train(t) → (∃d.driver(d, t)∧ (∀d ′.driver(d ′, t) → d = d ′))

Atkey CS208 - Topic 3 - page 31 of 59

There exists an X such that for all Y there exists a Z

there is a node, such that for all reachable nodes,
there is a safe node in one step

∃a.∀b.reachable(a, b) → (∃c.safe(c)∧ step(b, c))
Not the same as:

∃a.∃c.∀b.reachable(a, b) → (safe(c)∧ step(b, c))

1. First one: c can be different for each b.
2. Second: the same c for all b.

Atkey CS208 - Topic 3 - page 32 of 59

Predicate Logic, Part 2: Saying what you mean

Summary

▶ Many of the things you want to say in Predicate Logic fall into
one of several predefined templates.

▶ It helps to think of quantifiers as a game
▶ ∀ means “they choose”
▶ ∃ means “I choose”

(but they switch places under a negation or on the left of an
implication!)

Atkey CS208 - Topic 3 - page 33 of 59

Predicate Logic, Part 3

Syntax Details

Atkey CS208 - Topic 3 - page 34 of 59

Predicate Logic, Part 3: Syntax Details

Predicate Logic

Predicate Logic upgrades Propositional Logic, adding:
▶ Individuals x, y, z
▶ Functions +, dayAfter
▶ Predicates =, even, odd
▶ Quantifiers ∀, ∃

Atkey CS208 - Topic 3 - page 35 of 59

Predicate Logic, Part 3: Syntax Details

Predicate Logic is for Modelling
To state properties of some situation we want to model, we choose:
1. Names of specific individuals

(socrates, 1, 2, 10000, localhost,www.strath.ac.uk)
2. Function symbols

(+, ×, nameOf)
3. Relation symbols

(human(x), x = y, linksTo(x, y))

4. Some axioms
(later …)

Usually, we build a vocabulary based on what we want to do.
Atkey CS208 - Topic 3 - page 36 of 59

Predicate Logic, Part 3: Syntax Details

Vocabulary for Arithmetic
Individuals:

0 1 2 3 . . .

Functions:

t1 + t2 t1 − t2 . . .

Predicates:

t1 = t2 t1 < t2 . . .

Atkey CS208 - Topic 3 - page 37 of 59

Predicate Logic, Part 3: Syntax Details

Vocabulary for Documents
Individuals:

“Frankenstein” “Dracula” “Bram Stoker” “Mary Shelley”

Predicates:

linksTo(doc1, doc2) authorOf(doc, person)

ownerOf(doc, person)

Atkey CS208 - Topic 3 - page 38 of 59

Predicate Logic, Part 3: Syntax Details

Vocabulary for Programs
Individuals

java.lang.Object j.l.String j.l.Runnable

String toString()

Relations

extends(class1, class2) implements(class, interface)

hasMethod(class,method) . . .

Atkey CS208 - Topic 3 - page 39 of 59

Predicate Logic, Part 3: Syntax Details

Equality

The equality predicate
t1 = t2

is treated specially:
▶ and in proofs (Topic 4)
▶ in the semantics (Topic 8)

Atkey CS208 - Topic 3 - page 40 of 59

Predicate Logic, Part 3: Syntax Details

Formal Grammar

t ::= x variables
| c constants
| f(t1, . . . , tn) function terms

P ::= R(t1, . . . , tn) predicates
| P ∧Q | P ∨Q | P → Q | ¬P connectives
| ∀x.P | ∃x.P quantifiers

Propositional Logic as special case: all relation symbols have arity 0.
Atkey CS208 - Topic 3 - page 41 of 59

Predicate Logic, Part 3: Syntax Details

When are two formulas the same?

Is there a difference in meaning between these two?

∀x.P(x) and ∀y.P(y)

No! They both mean the same thing.

So we treat them as identical formulas.

Atkey CS208 - Topic 3 - page 42 of 59

Predicate Logic, Part 3: Syntax Details

When are two formulas the same?

Is there a difference in meaning between these two?

∀x.P(x) and ∀y.P(y)

No! They both mean the same thing.

So we treat them as identical formulas.

Atkey CS208 - Topic 3 - page 42 of 59

Predicate Logic, Part 3: Syntax Details

When are two formulas the same?

Is there a difference in meaning between these two?

∀x.P(x) and ∀y.P(y)

No! They both mean the same thing.

So we treat them as identical formulas.

Atkey CS208 - Topic 3 - page 42 of 59

Predicate Logic, Part 3: Syntax Details

Free and Bound Variables

In the formula:
∃y.R(x, y)

1. The variable x is free
2. The variable y is bound (by the ∃ quantifier)

The quantifiers are binders.

Atkey CS208 - Topic 3 - page 43 of 59

Predicate Logic, Part 3: Syntax Details

Free and Bound Variables
Pay attention to the bracketing:

(∀x.P(x) → Q(x))∧ (∃y.R(x, y))

The xs to the left of the ∧ are bound (by the ∀)

The x to the right of the ∧ is free.

When a variable is bound by quantifier, we say that it is in that
quantifiers scope.

Atkey CS208 - Topic 3 - page 44 of 59

Predicate Logic, Part 3: Syntax Details

Identical Formulas, again
We can only rename bound variables

∃y.R(x, y) is identical to ∃z.R(x, z)

but

∃y.R(x, y) is not identical to ∃y.R(z, y)

because x and z do not have the same “global” meaning.

Atkey CS208 - Topic 3 - page 45 of 59

Predicate Logic, Part 3: Syntax Details

Summary

Vocabularies define the symbols we can use in our formulas.

The formal syntax of Predicate Logic is more complex than
Propositional Logic
▶ Free and Bound Variables
▶ Formulas are identical even when renaming bound variables.

Atkey CS208 - Topic 3 - page 46 of 59

Predicate Logic, Part 4

Substitution

Atkey CS208 - Topic 3 - page 47 of 59

Predicate Logic, Part 4: Substitution

From General to Specific

We will have general assumptions like:

∀x.human(x) → mortal(x)

And we want to specialise (or instantiate) to:

human(socrates()) → mortal(socrates())

Atkey CS208 - Topic 3 - page 48 of 59

Predicate Logic, Part 4: Substitution

Substitution
The notation

P[x := t]

means “replace all free occurrences of x in P with t”.
▶ x is a variable
▶ P is a formula
▶ t is a term

But there is a subtlety…

Atkey CS208 - Topic 3 - page 49 of 59

Predicate Logic, Part 4: Substitution

Substitution Examples

(mortal(x))[x := socrates()]
=⇒ mortal(socrates())

Atkey CS208 - Topic 3 - page 50 of 59

Predicate Logic, Part 4: Substitution

Substitution Examples

(∀y.weatherIs(d, y) → weatherIs(dayAfter(d), y))[d := tuesday]
=⇒ ∀y.weatherIs(tuesday, y) → weatherIs(dayAfter(tuesday), y)

Atkey CS208 - Topic 3 - page 51 of 59

Predicate Logic, Part 4: Substitution

Substitution Examples

(∃y.sameElements(x, y)∧ sorted(y))[x := cons(z1, cons(z2, nil))]
=⇒ ∃y.sameElements(cons(z1, cons(z2, nil)), y)∧ sorted(y)

Atkey CS208 - Topic 3 - page 52 of 59

Predicate Logic, Part 4: Substitution

Substitution Examples

(∀y.x+ y = y+ x)[x := z− z]

=⇒ ∀y.(z− z) + y = y+ (z− z)

Atkey CS208 - Topic 3 - page 53 of 59

Predicate Logic, Part 4: Substitution

Accidental Name Capture
If we substitute naively, then we produce nonsense:
1. ∃y.sameElements(x, y)

“there exists a y that has the same elements as x”

2. (∃y.sameElements(x, y))[x := append(y, [1, 2])]
“replace x by the list append(y, [1, 2])”

3. ∃y.sameElements(append(y, [1, 2]), y)
“there exists a y that has the same elements as y+ [1, 2]?”

Atkey CS208 - Topic 3 - page 54 of 59

Predicate Logic, Part 4: Substitution

Capture Avoidance

Solution: Rename bound variables

(∃y.sameElements(x, y))[x := append(y, [1, 2])]
=⇒ (∃z.sameElements(x, z))[x := append(y, [1, 2])]
=⇒ ∃z.sameElements(append(y, [1, 2]), z)

Atkey CS208 - Topic 3 - page 55 of 59

Predicate Logic, Part 4: Substitution

Capture Avoiding Substitution

When working out
P[x := t]

If any of the variables in t are bound in P then rename them before
doing the substitution.

Atkey CS208 - Topic 3 - page 56 of 59

Predicate Logic, Part 4: Substitution

Substitution Examples

1. P(x, y)[x := y+ y]

= P(y+ y, y)

2. P(x, y)[y := y+ y] = P(x, y+ y)

3. (∀x.P(x, y))[x := y+ y] = ∀x.P(x, y)

Atkey CS208 - Topic 3 - page 57 of 59

Predicate Logic, Part 4: Substitution

Substitution Examples

1. P(x, y)[x := y+ y] = P(y+ y, y)

2. P(x, y)[y := y+ y] = P(x, y+ y)

3. (∀x.P(x, y))[x := y+ y] = ∀x.P(x, y)

Atkey CS208 - Topic 3 - page 57 of 59

Predicate Logic, Part 4: Substitution

Substitution Examples

1. P(x, y)[x := y+ y] = P(y+ y, y)

2. P(x, y)[y := y+ y]

= P(x, y+ y)

3. (∀x.P(x, y))[x := y+ y] = ∀x.P(x, y)

Atkey CS208 - Topic 3 - page 57 of 59

Predicate Logic, Part 4: Substitution

Substitution Examples

1. P(x, y)[x := y+ y] = P(y+ y, y)

2. P(x, y)[y := y+ y] = P(x, y+ y)

3. (∀x.P(x, y))[x := y+ y] = ∀x.P(x, y)

Atkey CS208 - Topic 3 - page 57 of 59

Predicate Logic, Part 4: Substitution

Substitution Examples

1. P(x, y)[x := y+ y] = P(y+ y, y)

2. P(x, y)[y := y+ y] = P(x, y+ y)

3. (∀x.P(x, y))[x := y+ y]

= ∀x.P(x, y)

Atkey CS208 - Topic 3 - page 57 of 59

Predicate Logic, Part 4: Substitution

Substitution Examples

1. P(x, y)[x := y+ y] = P(y+ y, y)

2. P(x, y)[y := y+ y] = P(x, y+ y)

3. (∀x.P(x, y))[x := y+ y] = ∀x.P(x, y)

Atkey CS208 - Topic 3 - page 57 of 59

Predicate Logic, Part 4: Substitution

Substitution Examples
1. (∀x.P(x, y))[y := x+ x]

= ∀z.P(z, x+ x)
Renaming!

2. (∀x.P(x, y) → (∃z.Q(y, z)))[y := z+ z]
= ∀x.P(x, z+ z) → (∃w.Q(z+ z,w))

Renaming!

3. (∀x.P(x, z) → (∃z.Q(y, z)))[z := x+ x]
= ∀w.P(w, x+ x) → (∃z.Q(y, z))

Renaming! and no substitution of the final z

Atkey CS208 - Topic 3 - page 58 of 59

Predicate Logic, Part 4: Substitution

Substitution Examples
1. (∀x.P(x, y))[y := x+ x] = ∀z.P(z, x+ x)

Renaming!

2. (∀x.P(x, y) → (∃z.Q(y, z)))[y := z+ z]
= ∀x.P(x, z+ z) → (∃w.Q(z+ z,w))

Renaming!

3. (∀x.P(x, z) → (∃z.Q(y, z)))[z := x+ x]
= ∀w.P(w, x+ x) → (∃z.Q(y, z))

Renaming! and no substitution of the final z

Atkey CS208 - Topic 3 - page 58 of 59

Predicate Logic, Part 4: Substitution

Substitution Examples
1. (∀x.P(x, y))[y := x+ x] = ∀z.P(z, x+ x)

Renaming!

2. (∀x.P(x, y) → (∃z.Q(y, z)))[y := z+ z]

= ∀x.P(x, z+ z) → (∃w.Q(z+ z,w))
Renaming!

3. (∀x.P(x, z) → (∃z.Q(y, z)))[z := x+ x]
= ∀w.P(w, x+ x) → (∃z.Q(y, z))

Renaming! and no substitution of the final z

Atkey CS208 - Topic 3 - page 58 of 59

Predicate Logic, Part 4: Substitution

Substitution Examples
1. (∀x.P(x, y))[y := x+ x] = ∀z.P(z, x+ x)

Renaming!

2. (∀x.P(x, y) → (∃z.Q(y, z)))[y := z+ z]
= ∀x.P(x, z+ z) → (∃w.Q(z+ z,w))

Renaming!

3. (∀x.P(x, z) → (∃z.Q(y, z)))[z := x+ x]
= ∀w.P(w, x+ x) → (∃z.Q(y, z))

Renaming! and no substitution of the final z

Atkey CS208 - Topic 3 - page 58 of 59

Predicate Logic, Part 4: Substitution

Substitution Examples
1. (∀x.P(x, y))[y := x+ x] = ∀z.P(z, x+ x)

Renaming!

2. (∀x.P(x, y) → (∃z.Q(y, z)))[y := z+ z]
= ∀x.P(x, z+ z) → (∃w.Q(z+ z,w))

Renaming!

3. (∀x.P(x, z) → (∃z.Q(y, z)))[z := x+ x]

= ∀w.P(w, x+ x) → (∃z.Q(y, z))
Renaming! and no substitution of the final z

Atkey CS208 - Topic 3 - page 58 of 59

Predicate Logic, Part 4: Substitution

Substitution Examples
1. (∀x.P(x, y))[y := x+ x] = ∀z.P(z, x+ x)

Renaming!

2. (∀x.P(x, y) → (∃z.Q(y, z)))[y := z+ z]
= ∀x.P(x, z+ z) → (∃w.Q(z+ z,w))

Renaming!

3. (∀x.P(x, z) → (∃z.Q(y, z)))[z := x+ x]
= ∀w.P(w, x+ x) → (∃z.Q(y, z))

Renaming! and no substitution of the final z

Atkey CS208 - Topic 3 - page 58 of 59

Predicate Logic, Part 4: Substitution

Summary

▶ Substitution
P[x := t]

is how we go from the general x to the specific t.
▶ We need to be careful to rename bound variables to avoid

accidental name capture.

Atkey CS208 - Topic 3 - page 59 of 59

	Predicate Logic, Part 1: Introduction
	Predicate Logic, Part 2: Saying what you mean
	Predicate Logic, Part 3: Syntax Details
	Predicate Logic, Part 4: Substitution

