

CS208 (Semester 1) Topic 3 : Predicate Logic

Dr. Robert Atkey

Computer & Information Sciences

Predicate Logic, Part 1 Introduction

So far:

Propositional Logic

We can say things like:

"If it is raining or sunny, and it is not sunny, then it is raining"

$$((R \lor S) \land \neg S) \rightarrow R$$

"version 1 is installed, or version 2 is installed, or version 3 is installed"

$$p_1 \lor p_2 \lor p_3$$

What we can't say

"Every day is sunny or rainy, today is not sunny, so today is rainy"

► No way to make *universal* statements ("Every day")

"Some version of the package is installed"

► No way to make *existential* statements ("Some version")

What we can't say

"Every day is sunny or rainy, today is not sunny, so today is rainy"

No way to make *universal* statements ("Every day")

"Some version of the package is installed"

► No way to make *existential* statements ("Some version")

Best we can do is list the possibilities

 $(S_{\mathrm{monday}} \vee R_{\mathrm{monday}}) \wedge (S_{\mathrm{tuesday}} \vee R_{\mathrm{tuesday}}) \wedge ...$

Universal statements

"Classical" examples: (due to Aristole)

- 1. All human are mortal
- 2. Socrates is a human
- 3. Therefore Socrates is mortal

(from the universal to the specific)

- 1. No bird can fly in space
- 2. Owls are birds
- 3. Therefore owls cannot fly in space

Universal and Existential statements are common

Database queries:

"Does there exist a customer that has not paid their invoice?"

"Does there exist a player who is within 10 metres of player 1?"

"Are all players logged off?"

"Do we have any customers?"

Universal and Existential statements are common

The semantics of Propositional Logic:

"P is satisfiable if there exists a valuation that makes it true."

"P is valid if all valuations make it true."

"P entails Q if for all valuations, P is true implies Q is true."

Predicate Logic upgrades Propositional Logic

- 1. Add individuals:
 - ► Specific individuals (e.g., socrates, today, player1, 1, 2, 3)
 - (these "name" specific entities in the world)
 - \triangleright General individuals (x, y, z, ...)

(like variables in programming, they stand for "some" individual)

- **2.** Add *function symbols*:
 - \times x + y, dayAfter(today), dayAfter(x)
- **3.** Add *properties* and *relations*:
 - Properties: canFlyInSpace(owl), paid(i)
 - Relations: x = u, x < 10, custInvoice(c, i).
- **4.** Add *Quantifiers*:
 - ▶ Universal quantification: $\forall x.P$
 - ("for all" x, it is the case that P)
 - Existential quantification: $\exists x.P$ ("there exists" x, such that P)

Layered Syntax

The syntax of Predicate Logic comes in two layers:

2x + 3u

Terms Built from individuals and function symbols:

davAfter(todav) plaver1 socrates χ

> nameOf(cust) davAfter(davAfter(d))

Formulas Built from properties and relations, connectives and quantifiers.

 $\exists x. \operatorname{customer}(x) \land \operatorname{loggedOff}(x)$

 $\forall x. \text{ human}(x) \rightarrow \text{mortal}(x)$

"All humans are mortal"

 $\forall x. \text{ human } (x) \rightarrow \text{mortal } (x)$

"All humans are mortal"

$$\forall x. \text{ human } (x) \rightarrow \text{mortal } (x)$$

1. Variables, standing for general individuals

"All humans are mortal"

$$\forall x. \text{ human } (x) \rightarrow \text{mortal } (x)$$

- 1. Variables, standing for general individuals
- 2. Properties ("Predicates") of those individuals

"All humans are mortal"

$$\forall x. \text{ human } (x) \rightarrow \text{mortal } (x)$$

- 1. Variables, standing for general individuals
- 2. Properties ("Predicates") of those individuals
- 3. Connectives, as in Propositional Logic

"All humans are mortal"

$$\forall x. \text{ human } (x) \rightarrow \text{mortal } (x)$$

- 1. Variables, standing for general individuals
- 2. Properties ("Predicates") of those individuals
- 3. Connectives, as in Propositional Logic
- **4.** Quantifiers, telling us how to interpret the general individual x

"Socrates is a human"

human (socrates)

"Socrates is a human"

human (socrates)

1. A specific individual

"Socrates is a human"

human (socrates)

- 1. A specific individual
- 2. Property of that individual

"No bird can fly in space"

 $\neg (\exists x. \text{ bird } (x) \land \text{ canFlyInSpace } (x))$

"No bird can fly in space"

$$\neg (\exists x. \text{ bird } (x) \land \text{ canFlyInSpace } (x))$$

1. Variables, standing for general individuals

"No bird can fly in space"

$$\neg (\exists x. \text{ bird } (\underline{x}) \land \text{ canFlyInSpace } (\underline{x}))$$

- 1. Variables, standing for general individuals
- 2. Properties ("Predicates") of those individuals

"No bird can fly in space"

$$\neg (\exists x. \text{ bird } (x) \land \text{ canFlyInSpace } (x))$$

- 1. Variables, standing for general individuals
- 2. Properties ("Predicates") of those individuals
- 3. Connectives, as in Propositional Logic

"No bird can fly in space"

$$\neg (\exists x. \text{ bird } (x) \land \text{ canFlyInSpace } (x))$$

- 1. Variables, standing for general individuals
- 2. Properties ("Predicates") of those individuals
- 3. Connectives, as in Propositional Logic
- **4.** Quantifiers, telling us how to interpret the general individual x

"If it is raining on a day, it is raining the day after"

 $\forall d. \text{ raining } (d) \rightarrow \text{ raining } (\text{ dayAfter } (d))$

"If it is raining on a day, it is raining the day after"

$$\forall d. \text{ raining } (d) \rightarrow \text{ raining } (dayAfter (d))$$

1. Variables, standing for general individuals

$$\forall \mathbf{d}. \text{ raining } (\mathbf{d}) \rightarrow \text{ raining } (\mathbf{dayAfter} (\mathbf{d}))$$

- 1. Variables, standing for general individuals
- 2. Function symbols, performing operations on individuals

$$\forall d. \text{ raining } (d) \rightarrow \text{ raining } (dayAfter (d))$$

- 1. Variables, standing for general individuals
- 2. Function symbols, performing operations on individuals
- **3.** Properties ("Predicates") of those individuals

$$\forall d. \text{ raining } (d) \rightarrow \text{ raining } (dayAfter (d))$$

- 1. Variables, standing for general individuals
- 2. Function symbols, performing operations on individuals
- 3. Properties ("Predicates") of those individuals
- 4. Connectives, as in Propositional Logic

$$\forall d. \text{ raining } (d) \rightarrow \text{ raining } (dayAfter (d))$$

- 1. Variables, standing for general individuals
- 2. Function symbols, performing operations on individuals
- 3. Properties ("Predicates") of those individuals
- 4. Connectives, as in Propositional Logic
- 5. Quantifiers, telling us how to interpret the general individual d

University of Strathclyde Science

$$\forall n. \ \exists k. \ (n = k + k) \lor (n = k + k + 1)$$

"Every number is even or odd"

$$\forall n. \ \exists k. \ (n = k + k) \lor (n = k + k + 1)$$

1. General (n, k) and specific (1) individuals

University of Strathclyde Science

$$\forall n. \exists k. (n = k + k) \lor (n = k + k + 1)$$

- 1. General (n, k) and specific (1) individuals
- 2. Function symbols, performing operations on individuals

University of Strathclyde Science

$$\forall n. \exists k. (n = k + k) \lor (n = k + k + 1)$$

- 1. General (n, k) and specific (1) individuals
- 2. Function symbols, performing operations on individuals
- 3. Relations between individuals (here: equality)

University of Strathclyde Science

$$\forall n. \exists k. (n = k + k) \lor (n = k + k + 1)$$

- 1. General (n, k) and specific (1) individuals
- 2. Function symbols, performing operations on individuals
- 3. Relations between individuals (here: equality)
- 4. Connectives, as in Propositional Logic

University of Strathclyde Science

$$\forall n. \exists k. (n = k + k) \lor (n = k + k + 1)$$

- 1. General (n, k) and specific (1) individuals
- 2. Function symbols, performing operations on individuals
- 3. Relations between individuals (here: equality)
- 4. Connectives, as in Propositional Logic
- 5. Quantifiers, telling us how to interpret the general individuals n and k

More examples

"Every day is raining or sunny"

$$\forall d. \text{raining}(d) \lor \text{sunny}(d)$$

"Does there exist a player within 10 metres of player 1?"

 $\exists p. player(p) \land distance(locationOf(p), locationOf(player1)) \leq 10$

Examples from Mathematics

Fermat's Last Theorem

$$\forall n.n > 2 \rightarrow \neg (\exists a. \exists b. \exists c. a^n + b^n = c^n)$$

(stated in 1637, not proved until 1994)

Goldbach's Conjecture

(Every even number greater than 2 is the sum of two primes)

$$\forall n.n > 2 \rightarrow \text{even}(n) \rightarrow \exists p.\exists q. \text{prime}(p) \land \text{prime}(q) \land p + q = n$$

Summary

Predicate Logic upgrades Propositional Logic, adding:

- ightharpoonup Individuals x, y, z
- ► Functions +, dayAfter
- ▶ Predicates =, even, odd
- ightharpoonup Quantifiers \forall , \exists

Predicate Logic, Part 2

Saying what you mean

How to say "x is a P"

P(x)

For example:

 $\begin{aligned} \text{human}(\mathbf{x}) \\ \text{mortal}(\mathbf{x}) \\ \text{swan}(\mathbf{x}) \\ \text{golden}(\mathbf{x}) \end{aligned}$

How to say "x and y are related by R"

R(x, y)

for example:

colour(x, gold) species(x, swan) connected(x, y)knows(pooh, piglet)

"Everything is P"

everything is boring everything is wet

$$\forall x. \text{boring}(x)$$

 $\forall x. \text{wet}(x)$

$$\forall x.P(x)$$

Usually not very *useful* if P is atomic, but things like

$$\forall x. \text{even}(x) \lor \text{odd}(x)$$

"There exists an P"

University of Strathclyde Science

there is a human there is a swan there is an insect

 $\exists x. \text{human}(x)$

 $\exists x.swan(x)$

 $\exists x. class(x, insecta)$

 $\exists x.P(x)$

there is at least one thing with property P

"All P are Q"

all humans are mortal all swans are white all insects have 6 legs

$$\forall x. \text{human}(x) \rightarrow \text{mortal}(x)$$

$$\forall x.\operatorname{swan}(x) \to \operatorname{white}(x)$$

$$\forall x.\operatorname{insect}(x) \to \operatorname{numLegs}(x,6)$$

$$\forall x. P(x) \to Q(x)$$

for all x, if x is P, then x is Q

"Some P is Q"

some human is mortal some swan is black some insect has 6 legs

$$\exists x. \text{human}(x) \land \text{mortal}(x)$$

$$\exists x. swan(x) \land colour(x, black)$$

$$\exists x. \text{insect}(x) \land \text{numLegs}(x, 6)$$

$$\exists x. P(x) \land Q(x)$$

exists x, such that x is a P and x is a Q

"All P are Q" vs "Some P are Q"

$$\forall x. P(x) \to Q(x)$$

uses \rightarrow , but

$$\exists x. P(x) \land Q(x)$$

uses \wedge .

"All P are Q" vs "Some P are Q"

$$\forall x. P(x) \to Q(x)$$

uses \rightarrow , but

$$\exists x. P(x) \land Q(x)$$

uses \wedge .

Tempting to write:

$$\forall x.P(x) \land Q(x)$$
 everything is both P and Q

or

$$\exists x.P(x) \rightarrow Q(x)$$
 there is some x, such that if P then Q

but almost always not what you want.

"No P is Q"

no swans are blue no bird can fly in space no program works

$$\forall x.swan(x) \rightarrow \neg blue(x)$$
$$\neg(\exists x.bird(x) \land canFlyInSpace(x))$$
$$\forall x.program(x) \rightarrow \neg works(x)$$

$$\neg(\exists x.P(x) \land Q(x))$$

or

$$\forall x.P(x) \rightarrow \neg Q(x)$$

The two statements are equivalent.

"For every P, there exists a related Q"

every farmer owns a donkey
every day has a next day
every list has a sorted version
every position has a nearby safe position

$$\forall f. farmer(f) \rightarrow (\exists d. donkey(d) \land owns(f, d))$$

$$\forall \mathbf{d}. \mathrm{day}(\mathbf{d}) \rightarrow (\exists \mathbf{d}'. \mathrm{day}(\mathbf{d}') \land \mathrm{next}(\mathbf{d}, \mathbf{d}'))$$

$$\forall x. \mathrm{list}(x) \rightarrow (\exists y. \mathrm{list}(y) \land \mathrm{sorted}(y) \land \mathrm{sameElements}(x,y))$$

$$\forall p_1.\exists p_2.\text{nearby}(p_1,p_2) \land \text{safe}(p_2)$$

In steps:

- 1. For every x (they choose),
 - 2. There is a y (we choose),
 - 3. such that x and y are related $q_{\text{opic}3}$.

"There exists an P such that every Q is related"

every farmer owns a donkey (!!!) there is someone that everyone loves there is someone that loves everyone

In steps:

- 1. there exists an x (we choose), such that
- 2. forall y (they choose),
- 3. it is the case that x and y are related.

"For all P, there is a related Q, related to all R"

University of Strathclyde Science

everyone knows someone who knows everyone

$$\forall x. \exists y. \text{knows}(x, y) \land (\forall z. \text{knows}(y, z))$$

$$\forall x. P(x) \rightarrow (\exists y. Q(x, y) \land (\forall z. R(x, y, z))$$

In steps:

- 1. for all x (they choose),
- 2. there exists a y (we choose),
- **3.** for all *z* (they choose),
- 4. such that x, y, z are related.

"There exists exactly one X"

there's only one moon

"Any other individual with the same property is equal"

$$\exists x. moon(x) \land (\forall y. moon(y) \rightarrow x = y)$$

not quite the same, but similar:

$$\forall x. \forall y. (\text{moon}(x) \land \text{moon}(y)) \rightarrow x = y$$

this says: at most one moon, but doesn't say one exists.

"For every X, there exists exactly one Y"

every train has one driver

$$\forall t. train(t) \rightarrow (\exists d. driver(d, t) \land (\forall d'. driver(d', t) \rightarrow d = d'))$$

There exists an X such that for all Y there exists a Z

there is a node, such that for all reachable nodes, there is a safe node in one step

$$\exists a. \forall b. \text{reachable}(a, b) \rightarrow (\exists c. \text{safe}(c) \land \text{step}(b, c))$$

Not the same as:

$$\exists a. \exists c. \forall b. \text{reachable}(a, b) \rightarrow (\text{safe}(c) \land \text{step}(b, c))$$

- 1. First one: c can be different for each b.
- 2. Second: the same c for all b.

Summary

- Many of the things you want to say in Predicate Logic fall into one of several predefined templates.
- It helps to think of quantifiers as a game
 - ▶ ∀ means "they choose"
 - ► ∃ means "I choose"

(but they switch places under a negation or on the left of an implication!)

Syntax Details

Predicate Logic

Predicate Logic upgrades Propositional Logic, adding:

- lndividuals x, y, z
- ► Functions +, dayAfter
- ▶ Predicates =, even, odd
- ightharpoonup Quantifiers \forall , \exists

Predicate Logic is for Modelling

To state properties of some situation we want to model, we choose:

1. Names of specific individuals

(socrates, 1, 2, 10000, localhost, www.strath.ac.uk)

2. Function symbols

 $(+, \times, nameOf)$

3. Relation symbols

$$(human(x), x = y, linksTo(x, y))$$

4. Some axioms

(later ...)

Usually, we build a vocabulary based on what we want to do.

University of Strathclyde Science

Vocabulary for Arithmetic

Individuals:

0

1

2

J

• •

Functions:

$$t_1 + t_2$$

$$t_1 - t_2$$

Predicates:

$$t_1 = t_2$$

$$t_1 < t_2$$

Vocabulary for Documents

Individuals:

"Frankenstein" "Dracula" "Bram Stoker" "Mary Shelley"

Predicates:

 $linksTo(doc_1, doc_2)$ authorOf(doc, person)

ownerOf(doc, person)

Vocabulary for Programs

Individuals

```
java.lang.Object
```

```
String toString()
```

Relations

```
extends(class_1, class_2)
```

implements(class, interface)

. . .

University of Strathclyde Science

Equality

The equality predicate

$$t_1 = t_2$$

is treated specially:

- and in proofs (Topic 4)
- in the semantics (Topic 8)

Formal Grammar

$$\begin{array}{cccc} t & ::= & x & & \text{variables} \\ & \mid & c & & \text{constants} \\ & \mid & f(t_1, \dots, t_n) & & \text{function terms} \end{array}$$

Propositional Logic as special case: all relation symbols have arity 0.

When are two formulas the same?

Is there a difference in meaning between these two?

 $\forall x.P(x)$

and

 $\forall y.P(y)$

When are two formulas the same?

Is there a difference in meaning between these two?

 $\forall x.P(x)$

and

 $\forall y.P(y)$

No! They both mean the same thing.

When are two formulas the same?

Is there a difference in meaning between these two?

 $\forall x.P(x)$

and

 $\forall y.P(y)$

No! They both mean the same thing.

So we treat them as identical formulas.

Free and Bound Variables

In the formula:

$$\exists y.R(x,y)$$

- 1. The variable x is *free*
- **2.** The variable y is *bound* (by the \exists quantifier)

The quantifiers are binders.

Free and Bound Variables

Pay attention to the bracketing:

$$(\forall x.P(x) \to Q(x)) \land (\exists y.R(x,y))$$

The xs to the left of the \wedge are bound (by the \forall)

The x to the right of the \wedge is free.

When a variable is bound by quantifier, we say that it is in that quantifiers *scope*.

Identical Formulas, again

We can only rename bound variables

 $\exists y.R(x,y)$

is identical to

 $\exists z.R(x,z)$

but

 $\exists y.R(x,y)$

is not identical to

 \exists y.R(z, y)

because x and z do not have the same "global" meaning.

Summary

Vocabularies define the symbols we can use in our formulas.

The formal syntax of Predicate Logic is more complex than Propositional Logic

- Free and Bound Variables
- Formulas are identical even when renaming bound variables.

Substitution

From General to Specific

We will have general assumptions like:

$$\forall x. \text{human}(x) \rightarrow \text{mortal}(x)$$

And we want to *specialise* (or *instantiate*) to:

$$\operatorname{human}(\operatorname{socrates}()) \to \operatorname{mortal}(\operatorname{socrates}())$$

University of Strathclyde Science

Substitution

The notation

$$P[x := t]$$

means "replace all *free* occurrences of x in P with t".

- \triangleright x is a variable
- ▶ P is a *formula*
- ▶ t is a term

But there is a subtlety...

$$(mortal(x))[x := socrates()]$$

 $\implies mortal(socrates())$

$$\begin{split} &(\forall y. \mathrm{weatherIs}(d,y) \rightarrow \mathrm{weatherIs}(\mathsf{dayAfter}(d),y))[d := \mathsf{tuesday}] \\ \Longrightarrow & \forall y. \mathrm{weatherIs}(\mathsf{tuesday},y) \rightarrow \mathrm{weatherIs}(\mathsf{dayAfter}(\mathsf{tuesday}),y) \end{split}$$

Atkey CS208 - Topic 3 - page 51 of 59

$$(\exists y. same Elements(x, y) \land sorted(y))[x := cons(z_1, cons(z_2, nil))]$$

$$\Rightarrow \exists u. same Elements(cons(z_1, cons(z_2, nil)), u) \land sorted(u)$$

 $\implies \exists y.\text{sameElements}(\text{cons}(z_1, \text{cons}(z_2, \text{nil})), y) \land \text{sorted}(y)$

$$(\forall y.x + y = y + x)[x := z - z]$$

$$\implies \forall y.(z - z) + y = y + (z - z)$$

Accidental Name Capture

If we substitute naively, then we produce nonsense:

- 1. $\exists y.sameElements(x, y)$ "there exists a y that has the same elements as x"
- 2. $(\exists y.sameElements(x,y))[x := append(y,[1,2])]$ "replace x by the list append(y,[1,2])"
- 3. $\exists y.sameElements(append(y, [1, 2]), y)$ "there exists a y that has the same elements as y + [1, 2]?"

Capture Avoidance

Solution: Rename bound variables

```
(\exists y.sameElements(x,y))[x := append(y,[1,2])]
```

$$\implies$$
 $(\exists z.sameElements(x, z))[x := append(y, [1, 2])]$

$$\implies \exists z.\text{sameElements}(\mathsf{append}(y,[1,2]),z)$$

Capture Avoiding Substitution

When working out

$$P[x := t]$$

If any of the variables in t are bound in P then rename them before doing the substitution.

University of Strathclyde Science

1.
$$P(x, y)[x := y + y]$$

1.
$$P(x,y)[x := y + y] = P(y + y,y)$$

1.
$$P(x,y)[x := y + y] = P(y + y,y)$$

2.
$$P(x,y)[y := y + y]$$

1.
$$P(x,y)[x := y + y] = P(y + y, y)$$

2.
$$P(x,y)[y := y + y] = P(x,y+y)$$

1.
$$P(x,y)[x := y + y] = P(y + y,y)$$

2.
$$P(x,y)[y := y + y] = P(x,y+y)$$

3.
$$(\forall x.P(x,y))[x := y + y]$$

1.
$$P(x,y)[x := y + y] = P(y + y,y)$$

2.
$$P(x,y)[y := y + y] = P(x,y+y)$$

3.
$$(\forall x.P(x,y))[x := y + y] = \forall x.P(x,y)$$

University of Strathclyde Science

Substitution Examples

1. $(\forall x.P(x,y))[y := x + x]$

1.
$$(\forall x.P(x,y))[y := x + x] = \forall z.P(z,x+x)$$

Renaming!

- 1. $(\forall x.P(x,y))[y := x + x] = \forall z.P(z, x + x)$ Renaming!
- 2. $(\forall x.P(x,y) \rightarrow (\exists z.Q(y,z)))[y := z + z]$

- 1. $(\forall x.P(x,y))[y := x + x] = \forall z.P(z, x + x)$ Renaming!
- 2. $(\forall x.P(x,y) \rightarrow (\exists z.Q(y,z)))[y := z + z]$ = $\forall x.P(x,z+z) \rightarrow (\exists w.Q(z+z,w))$ Renaming!

- 1. $(\forall x.P(x,y))[y := x + x] = \forall z.P(z,x + x)$ Renaming!
- 2. $(\forall x.P(x,y) \rightarrow (\exists z.Q(y,z)))[y := z + z]$ = $\forall x.P(x,z+z) \rightarrow (\exists w.Q(z+z,w))$ Renaming!
- 3. $(\forall x.P(x,z) \rightarrow (\exists z.Q(y,z)))[z := x + x]$

- 1. $(\forall x.P(x,y))[y := x + x] = \forall z.P(z, x + x)$ Renaming!
- 2. $(\forall x.P(x,y) \rightarrow (\exists z.Q(y,z)))[y := z + z]$ = $\forall x.P(x,z+z) \rightarrow (\exists w.Q(z+z,w))$ Renaming!
- 3. $(\forall x.P(x,z) \rightarrow (\exists z.Q(y,z)))[z := x + x]$ = $\forall w.P(w,x+x) \rightarrow (\exists z.Q(y,z))$ Renaming! and no substitution of the final z

University of Strathclyde Science

Summary

Substitution

$$P[x := t]$$

is how we go from the general x to the specific t.

We need to be careful to rename bound variables to avoid accidental name capture.