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Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Tracking free variables

We are going to prove things like:

` ∀x.(p(x)∧ q(x))→ p(x)

This will mean we will have proof states like:

· · · ` (p(x)∧ q(x))→ p(x)

We need to keep track of variables as well as assumed formulas to
the left of the ` “turnstile”.
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Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Judgements
Proving:

P1, x1, . . . , xi, Pj, . . . , xm, Pn︸ ︷︷ ︸
assumptions and variables

` Q︸︷︷︸
conclusion

Focused:

P1, x1, . . . , xi, Pj, . . . , xm, Pn︸ ︷︷ ︸
assumptions and variables

[ P︸︷︷︸
focus

] ` Q︸︷︷︸
conclusion

Note:
1. We never focus on a variable, only formulas
2. Each Pj only contains free variables that appear to the left of it

Atkey CS208 - Topic 4 - page 4 of 46



Well-scoped terms and formulas
If we have a list of variables and assumptions (a “context”):

Γ = P1, x1, . . . , xi, Pj, . . . , xm, Pn

Γ is the name we’re giving to the list

▶ A formula P is well-scoped in Γ if all the free variables of P
appear in Γ .

▶ A term t is well-scoped in Γ if all the variables of t appear in Γ .

▶ All formulas in Γ must be well-scoped by the variables to their
left (same condition as previous slide).

▶ The focus and conclusion must always be well-scoped in Γ .
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Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped terms and formulas

Are the following well-scoped?

1. Context: x Formula: ∀y.P(y)→ Q(y)

Yes. The variable y is bound in the formula.
2. Context: x Formula: ∀y.P(y)→ Q(x, y)

Yes. The variable y is bound in the formula, and the free
variable x is in the context.
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Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped terms and formulas

Are the following well-scoped?

1. Context: empty Formula: ∀y.P(y)→ Q(x, y)

No. The variable y is bound in the formula, but the free
variable x is not in the context.

2. Context: empty Term: x+ 1

No. The variable x is free in the term but is not in the context.
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Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

x, y [P(x, y)] ` Q(x)

Yes. The free variables of the focus and conclusion are x, y,
which are in the context.
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Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

x,Q(x), y [P(x, y)] ` Q(y)

Yes. Each variable appears before (reading left to right) it is
used.
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Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

∀x.Q(x), y [P(x, y)] ` Q(y)

No. The x in the first Q(x) is OK, but the x in P(x, y) has not
been declared in scope.
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Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Summary

1. We started to upgrade Natural Deduction to Predicate Logic
2. We need to manage the scope of variables
3. To do so, we add them to the context
4. Variables may only be used by formulas to their right
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Proof for Predicate Logic, Part 2

Rules for “Forall”
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What does ∀x.P mean?
(assuming a domain of discourse)

Answer 1 : it means for all individuals “a”, P[x := a] is true.
(we think of “for all” as an infinite conjunction)

Answer 2 : thinking about proofs:

To prove a ∀x.P:
▶ We must prove P[x := x0] for a general x0.
▶ The x0 stands in for any “a” that might be chosen.

To use a proof of ∀x.P:
▶ We can choose any t we like for x, and get P[x := t]
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Introduction rule

Γ, x0 ` Q[x := x0]

Γ ` ∀x.Q
IntRoduce∀

“To prove ∀x.Q, we prove Q[x := x0], assuming an arbitrary x0.”
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x,P(x)∧ Q(x) [P(x)] ` P(x)
Done

x,P(x)∧ Q(x) [P(x)∧ Q(x)] ` P(x)
FiRst

x,P(x)∧ Q(x) ` P(x)
Use

x ` (P(x)∧ Q(x))→ P(x)
IntRoduce

` ∀x.(P(x)∧ Q(x))→ P(x)
IntRoduce

Atkey CS208 - Topic 4 - page 16 of 46



Elimination

Γ [P[x := t]] ` Q

Γ [∀x.P] ` Q
Instantiate

(side condition: t is well-scoped in Γ )

“If we have P for all x, then we can pick any well-scoped t we like
to stand in for it.”
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Γ [h(s())] ` h(s()) Done

Γ ` h(s()) Use
Γ [m(s())] ` m(s()) Done

Γ [h(s())→ m(s())] ` m(s()) Apply

Γ [∀x.h(x)→ m(x)] ` m(s()) Instantiate

Γ ` m(s()) Use

∀x.h(x)→ m(x) ` h(s())→ m(s()) IntRoduce

` (∀x.h(x)→ m(x))→ h(s())→ m(s()) IntRoduce

where Γ = ∀x.h(x)→ m(x), h(s())
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Proof for Predicate Logic, Part 2: Rules for “Forall”

Summary

▶ To prove ∀x.P(x), we must prove P(x0) for a fresh x0.
▶ To use ∀x.P(x), we get to choose the t we use for x.
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Proof for Predicate Logic, Part 3

Rules for “Exists”
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What does ∃x.P mean?
(assuming a domain of discourse)

Answer 1 : there is at least one “a” such that P[x := a] is true.
(we think of “exists” as an infinite disjunction)

Answer 2 : thinking about proofs:

To prove a ∃x.P:
▶ We must provide a witness term t such that P[x := t].

To use a proof of ∃x.P:
▶ We have to work with an arbitrary x0 and all we know is

P[x := x0].
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Introduction

Γ ` P[x := t]

Γ ` ∃x.P
Exists

(side condition: t is well-scoped in Γ )

“To prove ∃x.P, we have to provide a witness t for x, and show that
P[x := t]”
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human(socrates()) [human(socrates())] ` human(socrates()) Done

human(socrates()) ` human(socrates()) Use

human(socrates()) ` ∃x.human(x)
Exists

` human(socrates())→ (∃x.human(x))
IntRoduce
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Elimination

Γ, x0, P[x := x0] ` Q

Γ [∃x.P] ` Q
UnpacK

“To use ∃x.P, we get some arbitrary x0 that we know P[x := x0]
about.”
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∃x.h(x)∧ m(x), ali, h(ali)∧ m(ali) [h(ali)] ` h(ali)
Done

∃x.h(x)∧ m(x), ali, h(ali)∧ m(ali) [h(ali)∧ m(ali)] ` h(ali)
FiRst

∃x.h(x)∧ m(x), ali, h(ali)∧ m(ali) ` h(ali)
Use

∃x.h(x)∧ m(x), ali, h(ali)∧ m(ali) ` ∃x.h(x)
Exists

∃x.h(x)∧ m(x) [∃x.h(x)∧ m(x)] ` ∃x.h(x)
UnpacK

∃x.h(x)∧ m(x) ` ∃x.h(x)
Use

` (∃x.h(x)∧ m(x))→ (∃x.h(x))
IntRoduce
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Proof for Predicate Logic, Part 3: Rules for “Exists”

Comparing ∧ and ∀

Introduction

Γ ` P1 Γ ` P2

Γ ` P1 ∧ P2

Split
Γ, x0 ` P[x := x0]

Γ ` ∀x.P
∀-I

For ∧, we have to prove Pi, no matter what i is. For ∀, we have to
prove P[x := x0], no matter what x0 is.
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Proof for Predicate Logic, Part 3: Rules for “Exists”

Comparing ∧ and ∀
Elimination

Γ [P1] ` Q

Γ [P1 ∧ P2] ` Q
FiRst

Γ [P2] ` Q

Γ [P1 ∧ P2] ` Q
Second

Γ [P[x := t]] ` Q

Γ [∀x.P] ` Q
Instantiate

For ∧, we choose 1 or 2. For ∀, we choose t.
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Proof for Predicate Logic, Part 3: Rules for “Exists”

Comparing ∨ and ∃

Introduction

Γ ` P1

Γ ` P1 ∨ P2

Left
Γ ` P2

Γ ` P1 ∨ P2

Right
Γ ` P[x := t]

Γ ` ∃x.P
Exists

For ∨, we choose which of 1 or 2 we want. For ∃, we choose the
witnessing term t.
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Proof for Predicate Logic, Part 3: Rules for “Exists”

Comparing ∨ and ∃

Elimination

Γ, P1 ` Q Γ, P2 ` Q

Γ [P1 ∨ P2] ` Q
Cases

Γ, x0, P[x := x0] ` Q

Γ [∃x.P] ` Q
UnpacK

For ∨, we must deal with 1 or 2. For ∃, we must cope with any x0.
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Proof for Predicate Logic, Part 3: Rules for “Exists”

Summary

▶ To prove ∃x.P(x) we must give a witness t and prove P(t).
▶ To use ∃x.P(X) we get to assume there is some y and P(y).
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Proof for Predicate Logic, Part 4

Rules for Equality
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Proof for Predicate Logic, Part 4: Rules for Equality

What is Equality?

t1 = t2
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Proof for Predicate Logic, Part 4: Rules for Equality

What is Equality?

Some properties:
1. Reflexivity: for all x, x = x

2. Symmetry: for all x and y, if x = y then y = x

3. Transitivity: for all x, y and z, if x = y and y = z, then x = z

Any binary relation that satisfies these properties is called an
equivalence relation.
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Proof for Predicate Logic, Part 4: Rules for Equality

What is Equality?

The special property of equality is the following:

If s = t, then everything that is true about s is true about t.

(and vice versa. but do we need to say this?)

Gottfried Leibniz (co-inventor of Calculus) took this as the
definition of equality.
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Proof for Predicate Logic, Part 4: Rules for Equality

What is Equality?

With more symbols:

If t1 = t2, then for all P, if P[x 7→ t1] then P[x 7→ t2]
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Proof for Predicate Logic, Part 4: Rules for Equality

What is Equality?

All we will need is:
1. Reflexivity: for every term t, t = t

2. Substitution: t1 = t2 and P[x 7→ t1] implies P[x 7→ t2]

Amazingly, this is enough!
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Proof for Predicate Logic, Part 4: Rules for Equality

Symmetry

To prove that x = y implies y = x:
1. We know that x = x by reflexivity
2. So we use our assumption to replace the first x by y to get

y = x.
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Proof for Predicate Logic, Part 4: Rules for Equality

Transitivity

To prove that x = y and y = z implies x = z:
1. Substitute the second assumption in the first to get x = z.
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Proof for Predicate Logic, Part 4: Rules for Equality

Rules for Equality: Introduction

Γ ` t = t
Reflexivity

Every term is equal to itself.
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Proof for Predicate Logic, Part 4: Rules for Equality

Rules for Equality: Elimination

Γ ` P[x 7→ t2]

Γ [t1 = t2] ` P[x 7→ t1]
Subst

If we know that t1 = t2 then we can replace t1 with t2 in the goal.
This is substitution backwards: if we know P[x 7→ t2] and t1 = t2,
then we know P[x 7→ t1].
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Proof for Predicate Logic, Part 4: Rules for Equality

Example: Symmetry

x, y, x = y ` y = y
Reflexivity

x, y, x = y [x = y] ` y = x
Subst

x, y, x = y ` y = x
Use

x, y ` x = y→ y = x
IntRoduce

x ` ∀y.x = y→ y = x
IntRoduce

` ∀x.∀y.x = y→ y = x
IntRoduce
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Proof for Predicate Logic, Part 4: Rules for Equality

Example: Transitivity

x, y, z, x = y, y = z [y = z] ` y = z
Done

x, y, z, x = y, y = z ` y = z
Use

x, y, z, x = y, y = z [x = y] ` x = z
Subst

x, y, z, x = y, y = z ` x = z
Use

x, y, z, x = y ` y = z→ x = z
IntRoduce

x, y, z ` x = y→ y = z→ x = z
IntRoduce

x, y ` ∀z.x = y→ y = z→ x = z
IntRoduce

x ` ∀y.∀z.x = y→ y = z→ x = z
IntRoduce

` ∀x.∀y.∀z.x = y→ y = z→ x = z
IntRoduce
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Proof for Predicate Logic, Part 4: Rules for Equality

Rewriting

1. Subst can be quite tricky to use because we have to give a
formula P such that P[x 7→ t1] is the one we start with, and
P[x 7→ t2] is the one we end up with.

2. Usually, we want to replace every occurrence of t1 with t2. We
write this as:

P{t1 7→ t2}
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Proof for Predicate Logic, Part 4: Rules for Equality

Rewriting

Γ ` P{t1 7→ t2}

Γ [t1 = t2] ` P
RewRite→

If we have t1 = t2 then we can replace t1 with t2 everywhere.
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Proof for Predicate Logic, Part 4: Rules for Equality

Rewriting

For convenience:

Γ ` P{t2 7→ t1}

Γ [t1 = t2] ` P
RewRite←

If we have t1 = t2 then we can replace t1 with t2 everywhere.
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Proof for Predicate Logic, Part 4: Rules for Equality

Summary

Equality is characterised by two principles:
1. Everything is equal to itself (reflexivity)
2. If s = t, then everything that is true about s is true about t.
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