
CS208 (Semester 1) Topic 4 : Proof
for Predicate Logic

Dr. Robert Atkey
Computer & Information Sciences

Atkey CS208 - Topic 4 - page 1 of 46

Proof for Predicate Logic, Part 1

Upgrading Natural
Deduction

Atkey CS208 - Topic 4 - page 2 of 46

Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Tracking free variables

We are going to prove things like:

` ∀x.(p(x)∧ q(x))→ p(x)

This will mean we will have proof states like:

· · · ` (p(x)∧ q(x))→ p(x)

We need to keep track of variables as well as assumed formulas to
the left of the ` “turnstile”.

Atkey CS208 - Topic 4 - page 3 of 46

Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Judgements
Proving:

P1, x1, . . . , xi, Pj, . . . , xm, Pn︸ ︷︷ ︸
assumptions and variables

` Q︸︷︷︸
conclusion

Focused:

P1, x1, . . . , xi, Pj, . . . , xm, Pn︸ ︷︷ ︸
assumptions and variables

[P︸︷︷︸
focus

] ` Q︸︷︷︸
conclusion

Note:
1. We never focus on a variable, only formulas
2. Each Pj only contains free variables that appear to the left of it

Atkey CS208 - Topic 4 - page 4 of 46

Well-scoped terms and formulas
If we have a list of variables and assumptions (a “context”):

Γ = P1, x1, . . . , xi, Pj, . . . , xm, Pn

Γ is the name we’re giving to the list

▶ A formula P is well-scoped in Γ if all the free variables of P
appear in Γ .

▶ A term t is well-scoped in Γ if all the variables of t appear in Γ .

▶ All formulas in Γ must be well-scoped by the variables to their
left (same condition as previous slide).

▶ The focus and conclusion must always be well-scoped in Γ .
Atkey CS208 - Topic 4 - page 5 of 46

Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped terms and formulas

Are the following well-scoped?

1. Context: x Formula: ∀y.P(y)→ Q(y)

Yes. The variable y is bound in the formula.
2. Context: x Formula: ∀y.P(y)→ Q(x, y)

Yes. The variable y is bound in the formula, and the free
variable x is in the context.

Atkey CS208 - Topic 4 - page 6 of 46

Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped terms and formulas

Are the following well-scoped?

1. Context: x Formula: ∀y.P(y)→ Q(y)
Yes. The variable y is bound in the formula.

2. Context: x Formula: ∀y.P(y)→ Q(x, y)
Yes. The variable y is bound in the formula, and the free
variable x is in the context.

Atkey CS208 - Topic 4 - page 6 of 46

Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped terms and formulas

Are the following well-scoped?

1. Context: x Formula: ∀y.P(y)→ Q(y)
Yes. The variable y is bound in the formula.

2. Context: x Formula: ∀y.P(y)→ Q(x, y)

Yes. The variable y is bound in the formula, and the free
variable x is in the context.

Atkey CS208 - Topic 4 - page 6 of 46

Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped terms and formulas

Are the following well-scoped?

1. Context: x Formula: ∀y.P(y)→ Q(y)
Yes. The variable y is bound in the formula.

2. Context: x Formula: ∀y.P(y)→ Q(x, y)
Yes. The variable y is bound in the formula, and the free
variable x is in the context.

Atkey CS208 - Topic 4 - page 6 of 46

Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped terms and formulas

Are the following well-scoped?

1. Context: empty Formula: ∀y.P(y)→ Q(x, y)

No. The variable y is bound in the formula, but the free
variable x is not in the context.

2. Context: empty Term: x+ 1

No. The variable x is free in the term but is not in the context.

Atkey CS208 - Topic 4 - page 7 of 46

Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped terms and formulas

Are the following well-scoped?

1. Context: empty Formula: ∀y.P(y)→ Q(x, y)
No. The variable y is bound in the formula, but the free
variable x is not in the context.

2. Context: empty Term: x+ 1

No. The variable x is free in the term but is not in the context.

Atkey CS208 - Topic 4 - page 7 of 46

Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped terms and formulas

Are the following well-scoped?

1. Context: empty Formula: ∀y.P(y)→ Q(x, y)
No. The variable y is bound in the formula, but the free
variable x is not in the context.

2. Context: empty Term: x+ 1

No. The variable x is free in the term but is not in the context.

Atkey CS208 - Topic 4 - page 7 of 46

Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped terms and formulas

Are the following well-scoped?

1. Context: empty Formula: ∀y.P(y)→ Q(x, y)
No. The variable y is bound in the formula, but the free
variable x is not in the context.

2. Context: empty Term: x+ 1

No. The variable x is free in the term but is not in the context.

Atkey CS208 - Topic 4 - page 7 of 46

Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped terms and formulas

Are the following well-scoped?

1. Context: empty Formula: ∀y.P(y)→ Q(x, y)
No. The variable y is bound in the formula, but the free
variable x is not in the context.

2. Context: empty Term: x+ 1

No. The variable x is free in the term but is not in the context.

Atkey CS208 - Topic 4 - page 7 of 46

Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

x, y [P(x, y)] ` Q(x)

Yes. The free variables of the focus and conclusion are x, y,
which are in the context.

Atkey CS208 - Topic 4 - page 8 of 46

Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

x, y [P(x, y)] ` Q(x)

Yes. The free variables of the focus and conclusion are x, y,
which are in the context.

Atkey CS208 - Topic 4 - page 8 of 46

Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

x [P(x, y)] ` Q(x)

No. The free variables of the focus and conclusion are x, y, but
y is not in the context.

Atkey CS208 - Topic 4 - page 9 of 46

Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

x [P(x, y)] ` Q(x)

No. The free variables of the focus and conclusion are x, y, but
y is not in the context.

Atkey CS208 - Topic 4 - page 9 of 46

Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

x,Q(x), y [P(x, y)] ` Q(y)

Yes. Each variable appears before (reading left to right) it is
used.

Atkey CS208 - Topic 4 - page 10 of 46

Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

x,Q(x), y [P(x, y)] ` Q(y)

Yes. Each variable appears before (reading left to right) it is
used.

Atkey CS208 - Topic 4 - page 10 of 46

Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

∀x.Q(x), y [P(x, y)] ` Q(y)

No. The x in the first Q(x) is OK, but the x in P(x, y) has not
been declared in scope.

Atkey CS208 - Topic 4 - page 11 of 46

Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

∀x.Q(x), y [P(x, y)] ` Q(y)

No. The x in the first Q(x) is OK, but the x in P(x, y) has not
been declared in scope.

Atkey CS208 - Topic 4 - page 11 of 46

Proof for Predicate Logic, Part 1: Upgrading Natural Deduction

Summary

1. We started to upgrade Natural Deduction to Predicate Logic
2. We need to manage the scope of variables
3. To do so, we add them to the context
4. Variables may only be used by formulas to their right

Atkey CS208 - Topic 4 - page 12 of 46

Proof for Predicate Logic, Part 2

Rules for “Forall”

Atkey CS208 - Topic 4 - page 13 of 46

What does ∀x.P mean?
(assuming a domain of discourse)

Answer 1 : it means for all individuals “a”, P[x := a] is true.
(we think of “for all” as an infinite conjunction)

Answer 2 : thinking about proofs:

To prove a ∀x.P:
▶ We must prove P[x := x0] for a general x0.
▶ The x0 stands in for any “a” that might be chosen.

To use a proof of ∀x.P:
▶ We can choose any t we like for x, and get P[x := t]

Atkey CS208 - Topic 4 - page 14 of 46

What does ∀x.P mean?
(assuming a domain of discourse)

Answer 1 : it means for all individuals “a”, P[x := a] is true.
(we think of “for all” as an infinite conjunction)

Answer 2 : thinking about proofs:

To prove a ∀x.P:
▶ We must prove P[x := x0] for a general x0.
▶ The x0 stands in for any “a” that might be chosen.

To use a proof of ∀x.P:
▶ We can choose any t we like for x, and get P[x := t]

Atkey CS208 - Topic 4 - page 14 of 46

Introduction rule

Γ, x0 ` Q[x := x0]

Γ ` ∀x.Q
IntRoduce∀

“To prove ∀x.Q, we prove Q[x := x0], assuming an arbitrary x0.”

Atkey CS208 - Topic 4 - page 15 of 46

Introduction rule

Γ, x0 ` Q[x := x0]

Γ ` ∀x.Q
IntRoduce∀

“To prove ∀x.Q, we prove Q[x := x0], assuming an arbitrary x0.”

Atkey CS208 - Topic 4 - page 15 of 46

x,P(x)∧ Q(x) [P(x)] ` P(x)
Done

x,P(x)∧ Q(x) [P(x)∧ Q(x)] ` P(x)
FiRst

x,P(x)∧ Q(x) ` P(x)
Use

x ` (P(x)∧ Q(x))→ P(x)
IntRoduce

` ∀x.(P(x)∧ Q(x))→ P(x)
IntRoduce

Atkey CS208 - Topic 4 - page 16 of 46

Elimination

Γ [P[x := t]] ` Q

Γ [∀x.P] ` Q
Instantiate

(side condition: t is well-scoped in Γ)

“If we have P for all x, then we can pick any well-scoped t we like
to stand in for it.”

Atkey CS208 - Topic 4 - page 17 of 46

Elimination

Γ [P[x := t]] ` Q

Γ [∀x.P] ` Q
Instantiate

(side condition: t is well-scoped in Γ)

“If we have P for all x, then we can pick any well-scoped t we like
to stand in for it.”

Atkey CS208 - Topic 4 - page 17 of 46

Γ [h(s())] ` h(s()) Done

Γ ` h(s()) Use
Γ [m(s())] ` m(s()) Done

Γ [h(s())→ m(s())] ` m(s()) Apply

Γ [∀x.h(x)→ m(x)] ` m(s()) Instantiate

Γ ` m(s()) Use

∀x.h(x)→ m(x) ` h(s())→ m(s()) IntRoduce

` (∀x.h(x)→ m(x))→ h(s())→ m(s()) IntRoduce

where Γ = ∀x.h(x)→ m(x), h(s())

Atkey CS208 - Topic 4 - page 18 of 46

Proof for Predicate Logic, Part 2: Rules for “Forall”

Summary

▶ To prove ∀x.P(x), we must prove P(x0) for a fresh x0.
▶ To use ∀x.P(x), we get to choose the t we use for x.

Atkey CS208 - Topic 4 - page 19 of 46

Proof for Predicate Logic, Part 3

Rules for “Exists”

Atkey CS208 - Topic 4 - page 20 of 46

What does ∃x.P mean?
(assuming a domain of discourse)

Answer 1 : there is at least one “a” such that P[x := a] is true.
(we think of “exists” as an infinite disjunction)

Answer 2 : thinking about proofs:

To prove a ∃x.P:
▶ We must provide a witness term t such that P[x := t].

To use a proof of ∃x.P:
▶ We have to work with an arbitrary x0 and all we know is

P[x := x0].

Atkey CS208 - Topic 4 - page 21 of 46

What does ∃x.P mean?
(assuming a domain of discourse)

Answer 1 : there is at least one “a” such that P[x := a] is true.
(we think of “exists” as an infinite disjunction)

Answer 2 : thinking about proofs:

To prove a ∃x.P:
▶ We must provide a witness term t such that P[x := t].

To use a proof of ∃x.P:
▶ We have to work with an arbitrary x0 and all we know is

P[x := x0].

Atkey CS208 - Topic 4 - page 21 of 46

Introduction

Γ ` P[x := t]

Γ ` ∃x.P
Exists

(side condition: t is well-scoped in Γ)

“To prove ∃x.P, we have to provide a witness t for x, and show that
P[x := t]”

Atkey CS208 - Topic 4 - page 22 of 46

human(socrates()) [human(socrates())] ` human(socrates()) Done

human(socrates()) ` human(socrates()) Use

human(socrates()) ` ∃x.human(x)
Exists

` human(socrates())→ (∃x.human(x))
IntRoduce

Atkey CS208 - Topic 4 - page 23 of 46

Elimination

Γ, x0, P[x := x0] ` Q

Γ [∃x.P] ` Q
UnpacK

“To use ∃x.P, we get some arbitrary x0 that we know P[x := x0]
about.”

Atkey CS208 - Topic 4 - page 24 of 46

∃x.h(x)∧ m(x), ali, h(ali)∧ m(ali) [h(ali)] ` h(ali)
Done

∃x.h(x)∧ m(x), ali, h(ali)∧ m(ali) [h(ali)∧ m(ali)] ` h(ali)
FiRst

∃x.h(x)∧ m(x), ali, h(ali)∧ m(ali) ` h(ali)
Use

∃x.h(x)∧ m(x), ali, h(ali)∧ m(ali) ` ∃x.h(x)
Exists

∃x.h(x)∧ m(x) [∃x.h(x)∧ m(x)] ` ∃x.h(x)
UnpacK

∃x.h(x)∧ m(x) ` ∃x.h(x)
Use

` (∃x.h(x)∧ m(x))→ (∃x.h(x))
IntRoduce

Atkey CS208 - Topic 4 - page 25 of 46

Proof for Predicate Logic, Part 3: Rules for “Exists”

Comparing ∧ and ∀

Introduction

Γ ` P1 Γ ` P2

Γ ` P1 ∧ P2

Split
Γ, x0 ` P[x := x0]

Γ ` ∀x.P
∀-I

For ∧, we have to prove Pi, no matter what i is. For ∀, we have to
prove P[x := x0], no matter what x0 is.

Atkey CS208 - Topic 4 - page 26 of 46

Proof for Predicate Logic, Part 3: Rules for “Exists”

Comparing ∧ and ∀
Elimination

Γ [P1] ` Q

Γ [P1 ∧ P2] ` Q
FiRst

Γ [P2] ` Q

Γ [P1 ∧ P2] ` Q
Second

Γ [P[x := t]] ` Q

Γ [∀x.P] ` Q
Instantiate

For ∧, we choose 1 or 2. For ∀, we choose t.

Atkey CS208 - Topic 4 - page 27 of 46

Proof for Predicate Logic, Part 3: Rules for “Exists”

Comparing ∨ and ∃

Introduction

Γ ` P1

Γ ` P1 ∨ P2

Left
Γ ` P2

Γ ` P1 ∨ P2

Right
Γ ` P[x := t]

Γ ` ∃x.P
Exists

For ∨, we choose which of 1 or 2 we want. For ∃, we choose the
witnessing term t.

Atkey CS208 - Topic 4 - page 28 of 46

Proof for Predicate Logic, Part 3: Rules for “Exists”

Comparing ∨ and ∃

Elimination

Γ, P1 ` Q Γ, P2 ` Q

Γ [P1 ∨ P2] ` Q
Cases

Γ, x0, P[x := x0] ` Q

Γ [∃x.P] ` Q
UnpacK

For ∨, we must deal with 1 or 2. For ∃, we must cope with any x0.

Atkey CS208 - Topic 4 - page 29 of 46

Proof for Predicate Logic, Part 3: Rules for “Exists”

Summary

▶ To prove ∃x.P(x) we must give a witness t and prove P(t).
▶ To use ∃x.P(X) we get to assume there is some y and P(y).

Atkey CS208 - Topic 4 - page 30 of 46

Proof for Predicate Logic, Part 4

Rules for Equality

Atkey CS208 - Topic 4 - page 31 of 46

Proof for Predicate Logic, Part 4: Rules for Equality

What is Equality?

t1 = t2

Atkey CS208 - Topic 4 - page 32 of 46

Proof for Predicate Logic, Part 4: Rules for Equality

What is Equality?

Some properties:
1. Reflexivity: for all x, x = x

2. Symmetry: for all x and y, if x = y then y = x

3. Transitivity: for all x, y and z, if x = y and y = z, then x = z

Any binary relation that satisfies these properties is called an
equivalence relation.

Atkey CS208 - Topic 4 - page 33 of 46

Proof for Predicate Logic, Part 4: Rules for Equality

What is Equality?

Some properties:
1. Reflexivity: for all x, x = x

2. Symmetry: for all x and y, if x = y then y = x

3. Transitivity: for all x, y and z, if x = y and y = z, then x = z

Any binary relation that satisfies these properties is called an
equivalence relation.

Atkey CS208 - Topic 4 - page 33 of 46

Proof for Predicate Logic, Part 4: Rules for Equality

What is Equality?

The special property of equality is the following:

If s = t, then everything that is true about s is true about t.

(and vice versa. but do we need to say this?)

Gottfried Leibniz (co-inventor of Calculus) took this as the
definition of equality.

Atkey CS208 - Topic 4 - page 34 of 46

Proof for Predicate Logic, Part 4: Rules for Equality

What is Equality?

The special property of equality is the following:

If s = t, then everything that is true about s is true about t.

(and vice versa. but do we need to say this?)

Gottfried Leibniz (co-inventor of Calculus) took this as the
definition of equality.

Atkey CS208 - Topic 4 - page 34 of 46

Proof for Predicate Logic, Part 4: Rules for Equality

What is Equality?

The special property of equality is the following:

If s = t, then everything that is true about s is true about t.

(and vice versa. but do we need to say this?)

Gottfried Leibniz (co-inventor of Calculus) took this as the
definition of equality.

Atkey CS208 - Topic 4 - page 34 of 46

Proof for Predicate Logic, Part 4: Rules for Equality

What is Equality?

With more symbols:

If t1 = t2, then for all P, if P[x 7→ t1] then P[x 7→ t2]

Atkey CS208 - Topic 4 - page 35 of 46

Proof for Predicate Logic, Part 4: Rules for Equality

What is Equality?

All we will need is:
1. Reflexivity: for every term t, t = t

2. Substitution: t1 = t2 and P[x 7→ t1] implies P[x 7→ t2]

Amazingly, this is enough!

Atkey CS208 - Topic 4 - page 36 of 46

Proof for Predicate Logic, Part 4: Rules for Equality

Symmetry

To prove that x = y implies y = x:
1. We know that x = x by reflexivity
2. So we use our assumption to replace the first x by y to get

y = x.

Atkey CS208 - Topic 4 - page 37 of 46

Proof for Predicate Logic, Part 4: Rules for Equality

Transitivity

To prove that x = y and y = z implies x = z:
1. Substitute the second assumption in the first to get x = z.

Atkey CS208 - Topic 4 - page 38 of 46

Proof for Predicate Logic, Part 4: Rules for Equality

Rules for Equality: Introduction

Γ ` t = t
Reflexivity

Every term is equal to itself.

Atkey CS208 - Topic 4 - page 39 of 46

Proof for Predicate Logic, Part 4: Rules for Equality

Rules for Equality: Elimination

Γ ` P[x 7→ t2]

Γ [t1 = t2] ` P[x 7→ t1]
Subst

If we know that t1 = t2 then we can replace t1 with t2 in the goal.
This is substitution backwards: if we know P[x 7→ t2] and t1 = t2,
then we know P[x 7→ t1].

Atkey CS208 - Topic 4 - page 40 of 46

Proof for Predicate Logic, Part 4: Rules for Equality

Example: Symmetry

x, y, x = y ` y = y
Reflexivity

x, y, x = y [x = y] ` y = x
Subst

x, y, x = y ` y = x
Use

x, y ` x = y→ y = x
IntRoduce

x ` ∀y.x = y→ y = x
IntRoduce

` ∀x.∀y.x = y→ y = x
IntRoduce

Atkey CS208 - Topic 4 - page 41 of 46

Proof for Predicate Logic, Part 4: Rules for Equality

Example: Transitivity

x, y, z, x = y, y = z [y = z] ` y = z
Done

x, y, z, x = y, y = z ` y = z
Use

x, y, z, x = y, y = z [x = y] ` x = z
Subst

x, y, z, x = y, y = z ` x = z
Use

x, y, z, x = y ` y = z→ x = z
IntRoduce

x, y, z ` x = y→ y = z→ x = z
IntRoduce

x, y ` ∀z.x = y→ y = z→ x = z
IntRoduce

x ` ∀y.∀z.x = y→ y = z→ x = z
IntRoduce

` ∀x.∀y.∀z.x = y→ y = z→ x = z
IntRoduce

Atkey CS208 - Topic 4 - page 42 of 46

Proof for Predicate Logic, Part 4: Rules for Equality

Rewriting

1. Subst can be quite tricky to use because we have to give a
formula P such that P[x 7→ t1] is the one we start with, and
P[x 7→ t2] is the one we end up with.

2. Usually, we want to replace every occurrence of t1 with t2. We
write this as:

P{t1 7→ t2}

Atkey CS208 - Topic 4 - page 43 of 46

Proof for Predicate Logic, Part 4: Rules for Equality

Rewriting

Γ ` P{t1 7→ t2}

Γ [t1 = t2] ` P
RewRite→

If we have t1 = t2 then we can replace t1 with t2 everywhere.

Atkey CS208 - Topic 4 - page 44 of 46

Proof for Predicate Logic, Part 4: Rules for Equality

Rewriting

For convenience:

Γ ` P{t2 7→ t1}

Γ [t1 = t2] ` P
RewRite←

If we have t1 = t2 then we can replace t1 with t2 everywhere.

Atkey CS208 - Topic 4 - page 45 of 46

Proof for Predicate Logic, Part 4: Rules for Equality

Summary

Equality is characterised by two principles:
1. Everything is equal to itself (reflexivity)
2. If s = t, then everything that is true about s is true about t.

Atkey CS208 - Topic 4 - page 46 of 46

	Proof for Predicate Logic, Part 1: Upgrading Natural Deduction
	Proof for Predicate Logic, Part 2: Rules for ``Forall''
	Proof for Predicate Logic, Part 3: Rules for ``Exists''
	Proof for Predicate Logic, Part 4: Rules for Equality

