

CS208 (Semester 1) Topic 4 : Proof for Predicate Logic

Dr. Robert Atkey

Computer & Information Sciences

Proof for Predicate Logic, Part 1

Upgrading Natural Deduction

Tracking free variables

We are going to prove things like:

$$\vdash \forall x. (p(x) \land q(x)) \rightarrow p(x)$$

This will mean we will have proof states like:

$$\cdots \vdash (p(x) \land q(x)) \rightarrow p(x)$$

We need to keep track of variables as well as assumed formulas to the left of the \vdash "turnstile".

Judgements

Proving:

$$\underbrace{P_1, x_1, \dots, x_i, P_j, \dots, x_m, P_n}_{assumptions \ and \ variables} \vdash \underbrace{Q}_{conclusion}$$

Focused:

$$\underbrace{P_1, x_1, \dots, x_i, P_j, \dots, x_m, P_n}_{assumptions \ and \ variables} \underbrace{P_p, x_1, \dots, x_i, P_j, \dots, x_m, P_n}_{focus} \vdash \underbrace{Q}_{conclusion}$$

Note:

- 1. We never focus on a variable, only formulas
- 2. Each P_i only contains free variables that appear to the *left* of it

If we have a list of variables and assumptions (a "context") University of Strather

$$\Gamma = P_1, x_1, \dots, x_i, P_j, \dots, x_m, P_n$$

 Γ is the name we're giving to the list

- A formula P is *well-scoped in* Γ if all the free variables of P appear in Γ.
- \triangleright A term t is well-scoped in Γ if all the variables of t appear in Γ.
- All formulas in Γ must be well-scoped by the variables to their left (same condition as previous slide).
- \triangleright The focus and conclusion must always be well-scoped in Γ .

Are the following well-scoped?

1. Context: x Formula: $\forall y.P(y) \rightarrow Q(y)$

Are the following well-scoped?

1. Context: x Formula: $\forall y.P(y) \rightarrow Q(y)$ Yes. The variable y is bound in the formula.

- **1.** Context: x Formula: $\forall y.P(y) \rightarrow Q(y)$ Yes. The variable y is bound in the formula.
- **2.** Context: x Formula: $\forall y.P(y) \rightarrow Q(x,y)$

- **1.** Context: x Formula: $\forall y.P(y) \rightarrow Q(y)$ Yes. The variable y is bound in the formula.
- 2. Context: x Formula: $\forall y.P(y) \rightarrow Q(x,y)$ Yes. The variable y is bound in the formula, and the free variable x is in the context.

Are the following well-scoped?

1. Context: *empty* Formula: $\forall y.P(y) \rightarrow Q(x,y)$

Are the following well-scoped?

1. Context: *empty* Formula: $\forall y.P(y) \rightarrow Q(x,y)$ No. The variable y is bound in the formula, but the free variable x is not in the context

- **1.** Context: *empty* Formula: $\forall y.P(y) \rightarrow Q(x,y)$ No. The variable y is bound in the formula, but the free variable x is not in the context.
- **2.** Context: *empty* Term: x + 1

- **1.** Context: *empty* Formula: $\forall y.P(y) \rightarrow Q(x,y)$ No. The variable y is bound in the formula, but the free variable x is not in the context.
- **2.** Context: *empty* Term: x + 1 No. The variable x is free in the term but is not in the context.

- **1.** Context: *empty* Formula: $\forall y.P(y) \rightarrow Q(x,y)$ No. The variable y is bound in the formula, but the free variable x is not in the context.
- **2.** Context: *empty* Term: x + 1 No. The variable x is free in the term but is not in the context.

Is the following well-scoped?

1. Is this judgement well-scoped:

$$x, y [P(x, y)] \vdash Q(x)$$

Is the following well-scoped?

1. Is this judgement well-scoped:

$$x, y [P(x, y)] \vdash Q(x)$$

Yes. The free variables of the focus and conclusion are x, y, which are in the context.

Is the following well-scoped?

1. Is this judgement well-scoped:

$$x [P(x,y)] \vdash Q(x)$$

Is the following well-scoped?

1. Is this judgement well-scoped:

$$x [P(x,y)] \vdash Q(x)$$

No. The free variables of the focus and conclusion are x, y, but y is not in the context.

Is the following well-scoped?

1. Is this judgement well-scoped:

$$x$$
, $Q(x)$, y [$P(x,y)$] $\vdash Q(y)$

Is the following well-scoped?

1. Is this judgement well-scoped:

$$x, Q(x), y [P(x,y)] \vdash Q(y)$$

Yes. Each variable appears before (reading left to right) it is used.

Is the following well-scoped?

1. Is this judgement well-scoped:

$$\forall x.Q(x), y [P(x,y)] \vdash Q(y)$$

Is the following well-scoped?

1. Is this judgement well-scoped:

$$\forall x.Q(x), y [P(x,y)] \vdash Q(y)$$

No. The x in the first Q(x) is OK, but the x in P(x, y) has not been declared in scope.

Summary

- 1. We started to upgrade Natural Deduction to Predicate Logic
- 2. We need to manage the *scope* of variables
- 3. To do so, we add them to the context
- 4. Variables may only be used by formulas to their right

Proof for Predicate Logic, Part 2

Rules for "Forall"

What does $\forall x.P$ mean?

(assuming a domain of discourse)

Answer 1: it means for all individuals "a", P[x := a] is true.

(we think of "for all" as an infinite conjunction)

What does $\forall x.P$ mean?

(assuming a domain of discourse)

Answer 1: it means for all individuals "a", P[x := a] is true.

(we think of "for all" as an infinite conjunction)

Answer 2: thinking about proofs:

To *prove* a $\forall x.P$:

- ▶ We must prove $P[x := x_0]$ for a *general* x_0 .
- ▶ The x_0 stands in for any "a" that might be chosen.

To *use* a proof of $\forall x.P$:

▶ We can *choose* any t we like for x, and get P[x := t]

Introduction rule

$$\frac{\Gamma\!, x_0 \vdash Q[x := x_0]}{\Gamma \vdash \forall x.Q} \text{ Introduce} \forall$$

Introduction rule

$$\frac{\Gamma\!, x_0 \vdash Q[x := x_0]}{\Gamma \vdash \forall x.Q} \text{ Introduce} \forall$$

"To prove $\forall x.Q$, we prove $Q[x := x_0]$, assuming an arbitrary x_0 ."

CS208 - Topic 4 page 15 of 46 Atkey

$$\frac{\frac{x, P(x) \land Q(x) \ [P(x)] \vdash P(x)}{x, P(x) \land Q(x) \ [P(x) \land Q(x)] \vdash P(x)}}{\frac{x, P(x) \land Q(x) \vdash P(x)}{x, P(x) \land Q(x) \vdash P(x)}} \underset{\text{Introduce}}{\text{Introduce}}$$

$$\frac{x \vdash (P(x) \land Q(x)) \rightarrow P(x)}{\vdash \forall x. (P(x) \land Q(x)) \rightarrow P(x)}$$

Elimination

$$\frac{\Gamma\left[P[x:=t]\right] \vdash Q}{\Gamma\left[\forall x.P\right] \vdash Q} \text{ Instantiate}$$

(side condition: t is well-scoped in Γ)

Elimination

$$\frac{\Gamma\left[P[x:=t]\right] \vdash Q}{\Gamma\left[\forall x.P\right] \vdash Q} \text{ Instantiate}$$

(side condition: t is well-scoped in Γ)

"If we have P for all x, then we can pick any well-scoped t we like to stand in for it."

$$\frac{\Gamma\left[h(s())\right] \vdash h(s())}{\Gamma \vdash h(s())} \xrightarrow{\text{Use}} \frac{\Gamma\left[m(s())\right] \vdash m(s())}{\Gamma\left[m(s())\right] \vdash m(s())} \xrightarrow{\text{Apply}} \\ \frac{\Gamma\left[h(s()) \to m(s())\right] \vdash m(s())}{\Gamma\left[\forall x.h(x) \to m(x)\right] \vdash m(s())} \xrightarrow{\text{Instantiate}} \\ \frac{\Gamma \vdash m(s())}{\Gamma \vdash m(s())} \xrightarrow{\text{Use}} \\ \frac{\forall x.h(x) \to m(x) \vdash h(s()) \to m(s())}{\vdash (\forall x.h(x) \to m(x)) \to h(s())} \xrightarrow{\text{Introduce}} \\ \vdash (\forall x.h(x) \to m(x)) \to h(s()) \to m(s())$$

where $\Gamma = \forall x.h(x) \rightarrow m(x), h(s())$

Summary

- ▶ To prove $\forall x.P(x)$, we must prove $P(x_0)$ for a general x_0 .
- ▶ To use $\forall x.P(X)$, we get to choose the t we use for x.

Proof for Predicate Logic, Part 3

Rules for "Exists"

What does $\exists x.P$ mean?

(assuming a domain of discourse)

Answer 1: there is at least one "a" such that P[x := a] is true.

(we think of "exists" as an infinite disjunction)

What does $\exists x.P$ mean?

(assuming a domain of discourse)

Answer 1: there is at least one "a" such that P[x := a] is true.

(we think of "exists" as an infinite disjunction)

Answer 2: thinking about proofs:

To *prove* a $\exists x.P$:

▶ We must provide a *witness* term t such that P[x := t].

To *use* a proof of $\exists x.P$:

We have to work with an arbitrary x_0 and all we know is $P[x := x_0]$.

Introduction

$$\frac{\Gamma \vdash P[x := t]}{\Gamma \vdash \exists x.P} \text{ Exists}$$

(side condition: t is well-scoped in Γ)

"To prove $\exists x.P$, we have to provide a witness t for x, and show that P[x := t]"

human (cocratec()) human (cocratec()) human (cocratec())	Done
	Use
$\mathrm{human}(socrates()) \vdash \mathrm{human}(socrates())$	– Exists
$human(socrates()) \vdash \exists x.human(x)$	
$\vdash \operatorname{human}(\operatorname{socrates}()) \to (\exists x.\operatorname{human}(x))$	— Introduce

Elimination

$$\frac{\Gamma\!,x_0,P[x:=x_0]\vdash Q}{\Gamma\left[\exists x.P\right]\vdash Q} \text{ Unpack }$$

"To use $\exists x.P$, we get some arbitrary x_0 that we know $P[x := x_0]$ about."

$\exists x.h(x) \land m(x), ali, h(ali) \land m(ali) [h(ali)] \vdash h(ali)$ Don	E
$\frac{\exists x.h(x) \land m(x), cm, h(cm) \land m(cm) \mid h(cm) \mid}{\exists x.h(x) \land m(x), ali, h(ali) \land m(ali) \mid [h(ali) \land m(ali)] \vdash h(ali)}$	First
$\frac{\exists x.h(x) \land m(x), an, h(an) \land m(an) \land m(an)}{\exists x.h(x) \land m(x), ali, h(ali) \land m(ali) \vdash h(ali)}$	- Use
$\frac{\exists x.h(x) \land m(x), \text{cal}, h(\text{cal}) \land m(\text{cal}) \vdash \exists x.h(x)}{\exists x.h(x) \land m(x), \text{ali}, h(\text{ali}) \land m(\text{ali}) \vdash \exists x.h(x)}$	– Exists
$\frac{\exists x.h(x) \land m(x), \exists x.h(x) \land m(x)] \vdash \exists x.h(x)}{\exists x.h(x) \land m(x) [\exists x.h(x) \land m(x)] \vdash \exists x.h(x)}$	— Ипраск
$\frac{\exists x.h(x) \land m(x) \mid \exists x.h(x)}{\exists x.h(x) \land m(x) \vdash \exists x.h(x)}$	— Use
$\frac{\exists \operatorname{Hi}(h) \land \operatorname{Hi}(h) \land \exists \operatorname{Hi}(h)}{\vdash (\exists x.h(x) \land \operatorname{m}(x)) \rightarrow (\exists x.h(x))}$	— Introduce

Atkey CS208 - Topic 4 - page 25 of 46

Comparing \wedge and \forall

Introduction

$$\frac{\Gamma \vdash P_1 \qquad \Gamma \vdash P_2}{\Gamma \vdash P_1 \land P_2} \text{ Split}$$

$$\frac{\Gamma, x_0 \vdash P[x := x_0]}{\Gamma \vdash \forall x.P} \ \forall -1$$

For \land , we have to prove P_i , no matter what i is. For \forall , we have to prove $P[x := x_0]$, no matter what x_0 is.

Comparing \wedge and \forall

Elimination

$$\frac{\Gamma\left[P_{1}\right] \vdash Q}{\Gamma\left[P_{1} \land P_{2}\right] \vdash Q} \text{ first } \frac{\Gamma\left[P_{2}\right] \vdash Q}{\Gamma\left[P_{1} \land P_{2}\right] \vdash Q} \text{ Second}$$

$$\frac{\Gamma\left[P[x:=t]\right] \vdash Q}{\Gamma\left[\forall x.P\right] \vdash Q} \text{ Instantiate}$$

For \land , we choose 1 or 2. For \forall , we choose t.

Comparing \vee and \exists

Introduction

$$\frac{\Gamma \vdash P_1}{\Gamma \vdash P_1 \lor P_2} \text{ Left} \qquad \frac{\Gamma \vdash P_2}{\Gamma \vdash P_1 \lor P_2} \text{ Right} \qquad \frac{\Gamma \vdash P[x := t]}{\Gamma \vdash \exists x.P} \text{ Exists}$$

For \vee , we choose which of 1 or 2 we want. For \exists , we choose the witnessing term t.

University of Strathclyde Science

Comparing \vee and \exists

Elimination

$$\frac{\Gamma, P_1 \vdash Q \qquad \Gamma, P_2 \vdash Q}{\Gamma \left[P_1 \lor P_2\right] \vdash Q} \text{ Cases}$$

$$\frac{\Gamma, x_0, P[x := x_0] \vdash Q}{\Gamma \left[\exists x. P\right] \vdash Q} \text{ Unpack}$$

For \vee , we must deal with 1 or 2. For \exists , we must cope with any x_0 .

Summary

- ▶ To prove $\exists x.P(x)$ we must give a witness t and prove P(t).
- ▶ To use $\exists x.P(X)$ we get to assume there is some y and P(y).

Rules for Equality

University of Strathclyde Science

What is Equality?

$$t_1=t_2\\$$

Some properties:

- 1. *Reflexivity:* for all x, x = x
- **2.** *Symmetry:* for all x and y, if x = y then y = x
- **3.** Transitivity: for all x, y and z, if x = y and y = z, then x = z

Some properties:

- 1. *Reflexivity:* for all x, x = x
- **2.** *Symmetry:* for all x and y, if x = y then y = x
- **3.** *Transitivity:* for all x, y and z, if x = y and y = z, then x = z

Any binary relation that satisfies these properties is called an *equivalence relation*.

The **special** property of equality is the following:

If s = t, then everything that is true about s is true about t.

The **special** property of equality is the following:

If s = t, then everything that is true about s is true about t.

(and vice versa. but do we need to say this?)

The **special** property of equality is the following:

If s = t, then everything that is true about s is true about t.

(and vice versa. but do we need to say this?)

Gottfried Leibniz (co-inventor of Calculus) took this as the *definition* of equality.

With more symbols:

If
$$t_1 = t_2$$
, then for all P, if $P[x \mapsto t_1]$ then $P[x \mapsto t_2]$

All we will need is:

- **1.** Reflexivity: for every term t, t = t
- **2.** Substitution: $t_1 = t_2$ and $P[x \mapsto t_1]$ implies $P[x \mapsto t_2]$

Amazingly, this is enough!

Symmetry

To prove that x = y implies y = x:

- **1.** We know that x = x by reflexivity
- 2. So we use our assumption to replace the first x by y to get y = x.

Transitivity

To prove that x = y and y = z implies x = z:

1. Substitute the second assumption in the first to get x = z.

Rules for Equality: Introduction

$$\frac{1}{\Gamma \vdash t = t}$$
 Reflexivity

Every term is equal to itself.

Rules for Equality: Elimination

$$\frac{\Gamma \vdash P[x \mapsto t_2]}{\Gamma \left[t_1 = t_2\right] \vdash P[x \mapsto t_1]} \text{ Subst}$$

If we know that $t_1 = t_2$ then we can replace t_1 with t_2 in the goal. This is substitution backwards: if we know $P[x \mapsto t_2]$ and $t_1 = t_2$, then we know $P[x \mapsto t_1]$.

Example: Symmetry

Refli	LEXIVITY	
$x, y, x = y \vdash y = y$	Subst	
$x, y, x = y [x = y] \vdash y = x$		
$\overline{x, y, x = y \vdash y = x}$	Use	
	 Introduce 	
$x, y \vdash x = y \rightarrow y = x$	Introduce	
$x \vdash \forall y. x = y \rightarrow y = x$		
	— Introduce	

Example: Transitivity

D	ONE
$x, y, z, x = y, y = z [y = z] \vdash y = z$	Jse
$x, y, z, x = y, y = z \vdash y = z$	Subst
$x, y, z, x = y, y = z [x = y] \vdash x = z$	Use
$\overline{\qquad}$ x, y, z, $x = y, y = z \vdash x = z$	
$x, y, z, x = y \vdash y = z \rightarrow x = z$	- Introduce
$x, y, z \vdash x = y \rightarrow y = z \rightarrow x = z$	 Introduce
	— Introduce
$x, y \vdash \forall z. x = y \rightarrow y = z \rightarrow x = z$	— Introduce
$x \vdash \forall y. \forall z. x = y \rightarrow y = z \rightarrow x = z$	— Introduce
$\vdash \forall x. \forall y. \forall z. x = y \rightarrow y = z \rightarrow x = z$	

Rewriting

- 1. Subst can be quite tricky to use because we have to give a formula P such that $P[x \mapsto t_1]$ is the one we start with, and $P[x \mapsto t_2]$ is the one we end up with.
- 2. Usually, we want to replace *every* occurrence of t_1 with t_2 . We write this as:

$$P\{t_1 \mapsto t_2\}$$

Rewriting

$$\frac{\Gamma \vdash P\{t_1 \mapsto t_2\}}{\Gamma \left[t_1 = t_2\right] \vdash P} \; \text{Rewrite} {\rightarrow}$$

If we have $t_1 = t_2$ then we can replace t_1 with t_2 everywhere.

Rewriting

For convenience:

$$\frac{\Gamma \vdash P\{t_2 \mapsto t_1\}}{\Gamma \ [t_1 = t_2] \vdash P} \ \text{Rewrite} \leftarrow$$

If we have $t_1 = t_2$ then we can replace t_1 with t_2 everywhere.

Summary

Equality is characterised by two principles:

- **1**. Everything is equal to itself (*reflexivity*)
- **2.** If s = t, then everything that is true about s is true about t.