
CS208 (Semester 1) Topic 5 :
Specification and Verification

Dr. Robert Atkey
Computer & Information Sciences

Atkey CS208 - Topic 5 - page 1 of 45



Specification and Verification, Part 1

Validation and Verification

Atkey CS208 - Topic 5 - page 2 of 45



https://twitter.com/jessiedotjs/status/667118579075141632

Atkey CS208 - Topic 5 - page 3 of 45

https://twitter.com/jessiedotjs/status/667118579075141632


Specification and Verification, Part 1: Validation and Verification

From the birth of programming…

By June 1949 people had begun to realize that it was not
so easy to get programs right as at one time appeared. I well
remember when this realization first came on me with full
force.

…

Atkey CS208 - Topic 5 - page 4 of 45



Specification and Verification, Part 1: Validation and Verification

From the birth of programming…
…
The EDSAC was on the top floor of the building and the

tape-punching and editing equipment one floor below. […] It
was on one of my journeys between the EDSAC room and the
punching equipment that “hesitating at the angles of stairs”
the realization came over me with full force that a good part
of the remainder of my life was going to be spent in
finding errors in my own programs.

Maurice Wilkes
Memoirs of a Computer Pioneer, MIT Press, 1985, p. 145.

(The EDSAC was an early “stored program” computers, and first ran in May 1949)

Atkey CS208 - Topic 5 - page 5 of 45



Specification and Verification, Part 1: Validation and Verification

Validation and Verification

The two big questions for any software system:

1. Validation: Are we building the right thing?
2. Verification: Are we building the thing right?

Atkey CS208 - Topic 5 - page 6 of 45



Specification and Verification, Part 1: Validation and Verification

Validation: What should it do?
A question answered by interaction with stakeholders:
▶ Users
▶ Purchasers (not necessarily the users!)
▶ Data subjects (may not be the above!)
▶ Regulatory bodies (e.g., ICO)
▶ Maintaince and deployment engineers
▶ …

Validation is hard, and beyond the scope of this course.

Atkey CS208 - Topic 5 - page 7 of 45



Specification and Verification, Part 1: Validation and Verification

Validation: What should it do?
A question answered by interaction with stakeholders:
▶ Users
▶ Purchasers (not necessarily the users!)
▶ Data subjects (may not be the above!)
▶ Regulatory bodies (e.g., ICO)
▶ Maintaince and deployment engineers
▶ …

Validation is hard, and beyond the scope of this course.

Atkey CS208 - Topic 5 - page 7 of 45



Specification and Verification, Part 1: Validation and Verification

Verification: Are we doing it right?

Answered by examining the system and the way it is built:

▶ Good coding practices
▶ Code review
▶ Testing
▶ Constructing arguments, formally or informally

Atkey CS208 - Topic 5 - page 8 of 45



Specification and Verification, Part 1: Validation and Verification

Specification

Validation & Verification meet at Specification.

A Specification is the description of what the system ought and
ought not to do.

Validation : what is the specification?
Verification : do we meet the specification?

Atkey CS208 - Topic 5 - page 9 of 45



Specification and Verification, Part 1: Validation and Verification

Specification

Validation & Verification meet at Specification.

A Specification is the description of what the system ought and
ought not to do.

Validation : what is the specification?
Verification : do we meet the specification?

Atkey CS208 - Topic 5 - page 9 of 45



Specification and Verification, Part 1: Validation and Verification

Specifying a Game

Technical specifications:

Must work on platform X, Y, …

▶ Must work on platform X last updated in 2010, …
▶ Must work with version 1.0.23.92 of library Z, because we

won’t pay for the newer one

Must have framerate of over 60fps.

Atkey CS208 - Topic 5 - page 10 of 45



Specification and Verification, Part 1: Validation and Verification

Specifying a Game

Technical specifications:

Must work on platform X, Y, …
▶ Must work on platform X last updated in 2010, …

▶ Must work with version 1.0.23.92 of library Z, because we
won’t pay for the newer one

Must have framerate of over 60fps.

Atkey CS208 - Topic 5 - page 10 of 45



Specification and Verification, Part 1: Validation and Verification

Specifying a Game

Technical specifications:

Must work on platform X, Y, …
▶ Must work on platform X last updated in 2010, …
▶ Must work with version 1.0.23.92 of library Z, because we

won’t pay for the newer one

Must have framerate of over 60fps.

Atkey CS208 - Topic 5 - page 10 of 45



Specification and Verification, Part 1: Validation and Verification

Specifying a Game

Technical specifications:

Must work on platform X, Y, …
▶ Must work on platform X last updated in 2010, …
▶ Must work with version 1.0.23.92 of library Z, because we

won’t pay for the newer one

Must have framerate of over 60fps.

Atkey CS208 - Topic 5 - page 10 of 45



Specification and Verification, Part 1: Validation and Verification

Specifying a Game

Feature specifications:
1. Must allow online multiplayer
2. Must not leak personal user data when online
3. Must have screenshot feature
4. Must have player chat
5. Must have blocking feature

Atkey CS208 - Topic 5 - page 11 of 45



Specification and Verification, Part 1: Validation and Verification

Specifying a Game
“Obvious things”
1. Must not crash
2. Must be installable
3. When controls say “go foward”, player’s character goes

forward
3.1 Unless there is an obstacle
3.2 Or the player is frozen
3.3 …

4. …

Atkey CS208 - Topic 5 - page 12 of 45



Specification and Verification, Part 1: Validation and Verification

Specifying a Game

1. Makes player feel happy
2. Makes player feel slightly frustrated, but the good kind of

frustrated, not the bad one…
3. Player must not get stuck behind fences
4. Game must be solvable
5. Game must get U rating
6. …

Atkey CS208 - Topic 5 - page 13 of 45



Specification and Verification, Part 1: Validation and Verification

Real Specifications

Specifying complete systems is hard.

Real-world requirements are:
▶ Fuzzy (the game must be “fun”)
▶ Involve other systems (e.g., the OS, the Internet)
▶ Involve people / physical reality
▶ Generally very complex

Atkey CS208 - Topic 5 - page 14 of 45



Specification and Verification, Part 1: Validation and Verification

Formal Specifications

Nevertheless, written down specification is important:

▶ To communicate clearly with other engineers and with
stakeholders

▶ To expose conflicting requirements and ambiguity
▶ To enable formal argumentation

Atkey CS208 - Topic 5 - page 15 of 45



Specification and Verification, Part 2

Formal Specification and
Verification

Atkey CS208 - Topic 5 - page 16 of 45



Specification and Verification, Part 2: Formal Specification and Verification

Formal Methods

The dream:

1. Stakeholders get together, come to agreement, and write
down a clear, complete, and unambiguous specification P;

2. Implementors are given P and produce an implementation C;
3. Implementation C is verified against P, formally, using proof.
4. Software is perfect. Everyone is happy.

Atkey CS208 - Topic 5 - page 17 of 45



Specification and Verification, Part 2: Formal Specification and Verification

Formal Methods

Clearly, that is only ever going to be a dream.

But, we can formally specify and sometimes verify:

▶ High-value, critical, aspects of a system
▶ Low-level, unambiguous aspects of components
▶ Simple but useful properties that apply “everywhere”

Atkey CS208 - Topic 5 - page 18 of 45



Specification and Verification, Part 2: Formal Specification and Verification

Formal Methods

Clearly, that is only ever going to be a dream.

But, we can formally specify and sometimes verify:

▶ High-value, critical, aspects of a system
▶ Low-level, unambiguous aspects of components
▶ Simple but useful properties that apply “everywhere”

Atkey CS208 - Topic 5 - page 18 of 45



Specification and Verification, Part 2: Formal Specification and Verification

Formal Specifications

Example:

If a transaction is acknowledged by the server, then it must have
already been logged in the journal and written to durable storage.

Specifying an aspect of behaviour that is critical to the system’s
operation.

Atkey CS208 - Topic 5 - page 19 of 45



Specification and Verification, Part 2: Formal Specification and Verification

Formal Specifications

Example:

This function must sort the input array in ascending order.

Specifying a (relatively) low-level aspect of part of a system that
other parts rely on.

Atkey CS208 - Topic 5 - page 20 of 45



Specification and Verification, Part 2: Formal Specification and Verification

Formal Specifications

Example:

If a function’s type says it returns an int, then it either returns an
int, or raises an exception, or does not return.

An example of a specification written in the type system of a
language, and enforced by the language implementation.

Atkey CS208 - Topic 5 - page 21 of 45



Specification and Verification, Part 2: Formal Specification and Verification

Logical Specifications

Formal logic can be used to write down a specification of a system,
assuming we have a formal model of how the system operates.

So the problem becomes:
1. Fix a formal model of how the system operates
2. Prove the formal model meets the specification

Atkey CS208 - Topic 5 - page 22 of 45



Specification and Verification, Part 2: Formal Specification and Verification

Logical Specifications

Formal logic can be used to write down a specification of a system,
assuming we have a formal model of how the system operates.

So the problem becomes:
1. Fix a formal model of how the system operates
2. Prove the formal model meets the specification

Atkey CS208 - Topic 5 - page 22 of 45



Specification and Verification, Part 2: Formal Specification and Verification

Formal Models of Programs
1. As functions, with behaviour specified by equations.

This is what you did in ask in CS106.

2. As logical proofs themselves, following the “evidence”
interpretation. See CS410.

3. Modelled as predicates in the logic.
We will do this here.

4. Many others…

Atkey CS208 - Topic 5 - page 23 of 45



Specification and Verification, Part 2: Formal Specification and Verification

A Simple Formal Model
A simple formal model of program execution can be defined in
terms of a single predicate:

exec(prog, initState, finalState)

meaning:
▶ the program prog,
▶ when started in initial state initState,
▶ can terminate with final state finalState.

Atkey CS208 - Topic 5 - page 24 of 45



Specification and Verification, Part 2: Formal Specification and Verification

A Simple Formal Model

We will flesh out what exec means by using axioms.

Even without knowing what the exact axioms are, we can make
some general definitions.

Atkey CS208 - Topic 5 - page 25 of 45



Specification and Verification, Part 2: Formal Specification and Verification

A Simple Formal Model
A program prog…

… terminates starting in state s if:

∃fs. exec(prog, s, fs)

… terminates on all inputs if:

∀s.∃fs. exec(prog, s, fs)

Atkey CS208 - Topic 5 - page 26 of 45



Specification and Verification, Part 2: Formal Specification and Verification

A Simple Formal Model

A program prog …

… is deterministic if:

∀s.∀s1.∀s2.exec(prog, s, s1) → exec(prog, s, s2) → s1 = s2

Atkey CS208 - Topic 5 - page 27 of 45



Specification and Verification, Part 2: Formal Specification and Verification

A Simple Formal Model

This model is very simple.

It does not include:
1. Resources, such as amount of time required
2. Interactive computation, input is provided all at once
3. Online computation, output is provided all at once
4. Errors or exceptions distinct from states

Atkey CS208 - Topic 5 - page 28 of 45



Specification and Verification, Part 2: Formal Specification and Verification

A Simple Formal Model

However, it is useful:

1. Partial and non-deterministic computation
2. Programs and data can be mixed
3. Enough to talk about specifications

Atkey CS208 - Topic 5 - page 29 of 45



Specification and Verification, Part 3

Hoare Logic

Atkey CS208 - Topic 5 - page 30 of 45



Specification and Verification, Part 3: Hoare Logic

Specifying Programs’ Behaviour

The classic specification of a program’s behaviour:

1. If the initial state s1 satisfies some predicate P(s1); and
2. the program starts in state s1 and finished in state s2, then
3. the final state s2 satisfies a predicate Q(s2).

P is the precondition; Q is the postcondition.

Atkey CS208 - Topic 5 - page 31 of 45



Specification and Verification, Part 3: Hoare Logic

Hoare Triples
This is often written like this:

{P} prog {Q}

which is called a Hoare triple.

The formal definition is:

∀s1.∀s2.P(s1) → exec(prog, s1, s2) → Q(s2)

In words: if P is true before executing prog, then Q is true
afterwards.

Atkey CS208 - Topic 5 - page 32 of 45



Specification and Verification, Part 3: Hoare Logic

Hoare Triples

Hoare triples
{P} prog {Q}

specify partial correctness.

Only says if the program finishes, then the postcondition Q holds.

Total correctness will be defined later…

Atkey CS208 - Topic 5 - page 33 of 45



Specification and Verification, Part 3: Hoare Logic

Hoare Logic

Hoare Logic is a deductive system for judgements of the form:

{P} prog {Q}

The “Big idea” is that (mostly) the structure of the proof follows
the structure of the program.

Topic 6 will use a specific tool for Hoare Logic.

Atkey CS208 - Topic 5 - page 34 of 45



Specification and Verification, Part 3: Hoare Logic

Hoare Logic: Rules

Let skip() be the program that does nothing, successfully.

Its rule:
{P} skip() {P}

SKip

skip() doesn’t alter the state: whatever was true before is true after.

Atkey CS208 - Topic 5 - page 35 of 45



Specification and Verification, Part 3: Hoare Logic

Hoare Logic: Rules

Let seq(p1, p2) be the program that first does p1 then does p2.

Its rule:
{P}p1 {R} {R}p2 {Q}

{P} seq(p1, p2) {Q}
Seq

If p1 gets us from P to R, and p2 gets us from R to Q, then doing
them in sequence gets us from P to Q.

Atkey CS208 - Topic 5 - page 36 of 45



Specification and Verification, Part 3: Hoare Logic

Hoare Logic: Rules

Let doUpdate(s) be some function on states, and update be the
program that performs that update.

There are two rules, depending on whether we are reasoning
“forwards” or “backwards”.

Atkey CS208 - Topic 5 - page 37 of 45



Specification and Verification, Part 3: Hoare Logic

Hoare Logic: Rules
Rule, variant 1 (weakest precondition):

{P[s := doUpdate(s)]} update() {P}
Update-Bwd

Rule, variant 2 (strongest postcondition):

{P} update() {∃s ′.s = doUpdate(s ′)∧ P[s := s ′]}
Update-Fwd

Atkey CS208 - Topic 5 - page 38 of 45



Specification and Verification, Part 3: Hoare Logic

Hoare Logic: Rules

Let ifC(p1, p2) be the program that runs p1 if C is true, and p2 if C
is not true.

{C∧ P}p1 {Q} {¬C∧ P}p2 {Q}

{P} ifC(p1, p2) {Q}
If

Atkey CS208 - Topic 5 - page 39 of 45



Specification and Verification, Part 3: Hoare Logic

Hoare Logic: Rules

Let whileC(p) be the program that runs p until condition C is false.

{C∧ P}p {P}

{P}whileC(p) {¬C∧ P}
While

In this case, P is the loop invariant.

Atkey CS208 - Topic 5 - page 40 of 45



Specification and Verification, Part 3: Hoare Logic

Hoare Logic: Rules

Consequence:

P ′ ⊢ P {P}p {Q} Q ⊢ Q ′

{P ′}p {Q ′}
Consequence

1. Strengthen the precondition: P ′ ⊢ P

2. Weaken the postcondition: Q ⊢ Q ′

Atkey CS208 - Topic 5 - page 41 of 45



Specification and Verification, Part 3: Hoare Logic

Hoare Logic

Each of these rules can be proved sound with respect to the partial
correctness property:

∀s1.∀s2.P(s1) → exec(prog, s1, s2) → Q(s2)

We need to assume some axioms for each of the different program
constructs; this is our trusted base. If we get these axioms wrong,
then a proof in Hoare logic means nothing.

Atkey CS208 - Topic 5 - page 42 of 45



Specification and Verification, Part 3: Hoare Logic

Hoare Logic: A Quirk

If C is the condition that is always true, then the program

whileC(skip())

satisfies any specification:

{P}whileC(skip()) {Q}

Why?

Atkey CS208 - Topic 5 - page 43 of 45



Specification and Verification, Part 3: Hoare Logic

Total Correctness
Total correctness is usually written as:

[P] prog [Q]

and is defined as:

∀s1.P(s1) → (∃s2.exec(prog, s1, s2)∧Q(s2))

All of the rules are the same as for the partial version, except for
the rule for whileC(p).

Atkey CS208 - Topic 5 - page 44 of 45



Specification and Verification, Part 3: Hoare Logic

Summary

▶ Formal Specification and Verification require a formal model
▶ The execution predicate is a simple but useful model
▶ Hoare logic is a deductive system for proving programs satisfy

specifications in this model
▶ It comes in partial and total variants.

Atkey CS208 - Topic 5 - page 45 of 45


	Specification and Verification, Part 1: Validation and Verification
	Specification and Verification, Part 2: Formal Specification and Verification
	Specification and Verification, Part 3: Hoare Logic

