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Semantics of Predicate Logic, Part 1

Models
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Semantics of Predicate Logic, Part 1: Models

So far: Syntax and Proof

1. Topic 3: The syntax of predicate logic
What sequences of symbols are well formed?

2. Topic 4: Proofs for predicate logic
When are formulas consequences of other formulas?

3. Topics 5-7: Hoare Logic
An Application of Predicate Logic
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Semantics of Predicate Logic, Part 1: Models

Missing so far: semantics

1. For Propositional Logic, we defined the semantics (“meaning”)
of a formula P:

▶ For every valuation v,
the formula P is assigned a meaning JPK v which is either T or F.

2. This definition enabled us to give a definition of entailment:

P1, . . . , Pn |= Q

which defines consequence without using proofs.
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Semantics of Predicate Logic, Part 1: Models

Semantics for Predicate Logic

The plan:
1. Fix vocabularies V
2. Define models M for V
3. Interpret formulas P using vocabulary V in models M
4. Find uses for models (databases, generation, …)
5. …
6. Profit!
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Semantics of Predicate Logic, Part 1: Models

Fixing a Vocabulary

The function symbols we will use, and their arities (number of
arguments):

Function name(s) Arity
socrates 0

dayAfter 1

+,− 2

We write “func/n” for function symbol func with arity n
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Semantics of Predicate Logic, Part 1: Models

Fixing a Vocabulary

The predicates / relation symbols we will use, and their arities:

Predicate name(s) Arity
human,mortal 1

<,≤,= 2

between 3

We write “pred/n” for predicate symbol pred with arity n
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A simplification

To keep things simple, I’m going to assume that we don’t have any
function symbols in our vocabulary.
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Example: Orderings
▶ ≤/2 “less than”

Example: Places
▶ city/1 “is a city”
▶ within/2 “is within”
▶ country/1 “is a country”

Example: Forestry and Birdwatching
▶ tree/1 “is a tree”
▶ green/1 “is green”
▶ bird/1 “is a bird”
▶ satIn/2 “has sat in”
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Semantics of Predicate Logic, Part 1: Models

Models

With a fixed vocabulary, a model M is:
1. A universe U, which is a set of individuals:

U = {1, 2, socrates, hypatia, noether, alexandria, glasgow, . . . }

2. For each predicate pred/n, an n-ary relation on the set U.
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Semantics of Predicate Logic, Part 1: Models

Relations
Several ways of understanding what a relation is:
1. For every n elements from U, the interpretation of pred/n

assigns the value T or F.

2. The interpretation of pred/n is a (possibly infinite) table of
elements of U with n columns.

3. The interpretation of pred/n is a subset of the n-fold cartesian
product U × · · · × U︸ ︷︷ ︸

n times
.
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Example: Places, interpretation 1

U = {aberdeen, edinburgh, glasgow, scotland, birmingham, england}
city = {aberdeen, edinburgh, glasgow, birmingham}

country = {england, scotland}
within = {(aberdeen, scotland), (edinburgh, scotland),

(glasgow, scotland), (birmingham, england)}
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Example: Places, interpretation 1

U = {aberdeen, edinburgh, glasgow, scotland, birmingham, england}

As tables:

city
aberdeen
edinburgh
glasgow

birmingham

country
england
scotland

within
aberdeen scotland
edinburgh scotland
glasgow scotland

birmingham england
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Example: Places, interpretation 2

U = {loopland}
city = {loopland}
country = {loopland}
within = {(loopland, loopland)}

The names are only there to separate the predicates. Models do not
have to match our intuition for the names.
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Example: Interpreting ordering with natural numbers
1. U = {0, 1, 2, . . . } = N (all positive whole numbers)
2. The interpretation of ≤/2 is all pairs (x, y) such that x ≤ y
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Example: Interpreting ordering with rational numbers
1. U = {0,−1, 1,−1

2
, 1
2
,−2, 2, . . . } = Q

2. The interpretation of ≤/2 is all pairs (x, y) such that x ≤ y
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Example: Interpreting ordering with a small set
1. U = {a, b, c}
2. The interpretation of ≤/2 is the set:

{(a, b), (a, c)}

Note! not necessarily what we might think of as ≤! Need to
add axioms.
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Semantics of Predicate Logic, Part 1: Models

Important Points

Every model M has
1. a universe; and
2. a relation for each predicate symbol pred/n,

but the domain can be empty, or the predicate symbols’
interpretations may be empty!

The model needn’t match our intuition about the symbols!
▶ Will assume formulas that will restrict the possible models.

Atkey CS208 - Topic 8 - page 18 of 56



Semantics of Predicate Logic, Part 1: Models

Relationship to Valuations

If all our predicate symbols have arity 0 (take no arguments), then
a model consists of:
1. A universe U; and
2. An assignment of T or F to each predicate symbol pred/0.

Apart from the universe, this is the same as a valuation in
Propositional Logic (Topic 0).
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Semantics of Predicate Logic, Part 1: Models

Summary

We interpret Predicate Logic formulas in a model M.
▶ A universe U – the set of all “things”.
▶ A relation between elements of U for every predicate.

Useful intuition: models are (possibly infinite) databases.
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Semantics of Predicate Logic, Part 2

Interpreting Formulas
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Semantics of Predicate Logic, Part 2: Interpreting Formulas

Meaning of free variables

Assume a vocabulary V and model M are fixed.

Consider the formula:

city(x)∧ within(x, y)

we can’t give it a truth value until we know what x and y mean.
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Semantics of Predicate Logic, Part 2: Interpreting Formulas

Cities Model

U = {aberdeen, edinburgh, glasgow, scotland, birmingham, england}

As tables:

city
aberdeen
edinburgh
glasgow

birmingham

country
england
scotland

within
aberdeen scotland
edinburgh scotland
glasgow scotland

birmingham england
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Semantics of Predicate Logic, Part 2: Interpreting Formulas

Meaning of free variables
With the cities model, if we set:

x = glasgow y = scotland

then city(x)∧ within(x, y) should be assigned the truth value T.

If we set:

x = scotland y = edinburgh

then city(x)∧ within(x, y) should be assigned the truth value F.
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Semantics of Predicate Logic, Part 2: Interpreting Formulas
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Semantics of Predicate Logic, Part 2: Interpreting Formulas

Interpreting Formulas

If we fix:
1. a vocabulary V ;
2. a model M of that vocabulary;
3. an assignment v of elements of U to free variables of P.

then we can give a truth value JPK(M, v) to P.
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Semantics of Predicate Logic, Part 2: Interpreting Formulas

Interpreting Formulas
Relations:

JR(x1, . . . , xn)K(M, v) = T if (v(x1), . . . , v(xn)) ∈ R
= F otherwise

Jx = yK(M, v) = T if v(x) = v(y)

= F otherwise

where R is one of the relations in M.
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Semantics of Predicate Logic, Part 2: Interpreting Formulas

Interpreting Formulas (Example)

With the cities model M:

Jwithin(x, y)K(M, [x 7→ edinburgh, y 7→ scotland]) = T

Jwithin(x, y)K(M, [x 7→ edinburgh, y 7→ england]) = F
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Semantics of Predicate Logic, Part 2: Interpreting Formulas

Interpreting Formulas
Quantifiers:

J∀x.PK(M, v) = T if for all a ∈ U, JPK(M, v[x 7→ a]) = T
= F otherwiseJ∃x.PK(M, v) = T if exists a ∈ U, with JPK(M, v[x 7→ a]) = T
= F otherwise

Notation v[x 7→ a] means the assignment that maps x to a and
any other variable to whatever v mapped it to.
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Semantics of Predicate Logic, Part 2: Interpreting Formulas

Interpreting Formulas (Example)

J∀x.city(x)K(M, []) = F
because all of the following would need to be T:Jcity(x)K(M, [x 7→ aberdeen]) = TJcity(x)K(M, [x 7→ edinburgh]) = TJcity(x)K(M, [x 7→ glasgow]) = TJcity(x)K(M, [x 7→ birmingham]) = TJcity(x)K(M, [x 7→ scotland]) = FJcity(x)K(M, [x 7→ england]) = F
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Semantics of Predicate Logic, Part 2: Interpreting Formulas

Interpreting Formulas (Example)

J∃x.city(x)K(M, []) = T
because only one of the following needs to be T:Jcity(x)K(M, [x 7→ aberdeen]) = TJcity(x)K(M, [x 7→ edinburgh]) = TJcity(x)K(M, [x 7→ glasgow]) = TJcity(x)K(M, [x 7→ birmingham]) = TJcity(x)K(M, [x 7→ scotland]) = FJcity(x)K(M, [x 7→ england]) = F
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Semantics of Predicate Logic, Part 2: Interpreting Formulas

Interpreting Formulas

Propositional Connectives:

JP ∧QK(M, v) = JPK(M, v)∧ JQK(M, v)JP ∨QK(M, v) = JPK(M, v)∨ JQK(M, v)JP → QK(M, v) = JPK(M, v) → JQK(M, v)J¬PK(M, v) = ¬JPK(M, v)
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Semantics of Predicate Logic, Part 2: Interpreting Formulas

Interpreting Formulas (Example)

Jcity(x)∧ within(x, y)K(M, [x 7→ edinburgh, y 7→ scotland]) = T

and

Jcity(x)∧within(x, y)K(M, [x 7→ edinburgh, y 7→ birmingham]) = F

and

Jcity(x)∨within(x, y)K(M, [x 7→ edinburgh, y 7→ birmingham]) = T
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Semantics of Predicate Logic, Part 2: Interpreting Formulas

Some notation

We write
M |= P

when JPK(M, []) = T
meaning that M is a model of P.

We write M 6|= P if this is not the case.
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Semantics of Predicate Logic, Part 2: Interpreting Formulas

Examples
If M is the cities model, then

M |= ∃x.city(x) (there exists a city)

M 6|= ∀x.city(x) (not everything is a city)

M |= ∀x.city(x) → (∃y.within(x, y))
(every city is within something)
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Semantics of Predicate Logic, Part 2: Interpreting Formulas

Entailment
Relative to a model M:

M;P1, . . . , Pn |= Q

exactly when:

if all JPiK(M, []) = T, then JQK(M, []) = T.

If all the assumptions are true, then the conclusion must be true
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Semantics of Predicate Logic, Part 2: Interpreting Formulas

Entailment

P1, . . . , Pn |= Q

exactly when for all M, we have M;P1, . . . , Pn |= Q.

Checking this is infeasible (at least naively): there are infinitely
many models, and the models themselves may be infinite.

Which is one reason to use proof.
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Semantics of Predicate Logic, Part 2: Interpreting Formulas

Provability and Soundness
Recall that

P1, · · · , Pn ` Q

means that Q is provable from the assumptions P1, · · · , Pn.

The proof system we have used so far is sound:

P1, · · · , Pn ` Q implies P1, · · · , Pn |= Q

▶ If it is provable, then it is true in all models!
▶ Using proof means that we do not need to check infinitely

many models, some of which may be infinite themselves.
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Semantics of Predicate Logic, Part 2: Interpreting Formulas
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Semantics of Predicate Logic, Part 2: Interpreting Formulas

Completeness
If we add excluded middle, then the proof system is also complete:

P1, · · · , Pn |= Q implies P1, · · · , Pn ` Q

every true entailment has a proof

▶ This is a remarkable and non-trivial fact!
▶ First proved by Kurt Gödel: “Gödel’s Completeness Theorem”
▶ It also holds if we have infinitely many assumptions P1, · · · ,

which means (because a proof can only use finitely many
assumptions) that an entailment only depends on finitely
many assumptions: Predicate logic is “compact”.
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Semantics of Predicate Logic, Part 2: Interpreting Formulas

Summary
We have defined what it means for a Predicate Logic P formula to
be true in some model M, and entailment in all models.
▶ Just as with Propositional Logic, this is done by breaking

down the formula into its constituent parts
▶ Must ensure that all free variables have an interpretation.
▶ When a formula is true in some model, we write M |= P.
▶ Entailment (P1, ..., Pn |= Q) is defined with respect to all

models.
▶ Our proof system is sound and (with excluded middle)

complete for this definition of entailment.
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Semantics of Predicate Logic, Part 3

Using Models
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Semantics of Predicate Logic, Part 3: Using Models

Using Models
Some of the things we can do with models:
1. Fix M. Does M |= P?

Model checking
2. Fix M. For what P does M |= P?

What is true about this situation?
3. Fix M. For what a1, · · · , an does M |= P[a1, · · · , an]?

Database queries
4. Fix formulas P1, ..., Pn. Is there a model for them?

Generating worlds or counterexamples
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Semantics of Predicate Logic, Part 3: Using Models

Using Models: Model Checking
Given a model M, computing M |= P works by breaking down the
structure of P. For example:

Cities |= ∃x.city(x)∧ country(x)
= J∃x.city(x)∧ country(x)K(M, [ ])

= some a.Jcity(x)∧ country(x)K(M, [x 7→ a])

= some a.Jcity(x)K(M, [x 7→ a]) and Jcountry(x)K(M, [x 7→ a])

= some a.a ∈ city and a ∈ country
= F (because no such a exists, by checking them all)
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Semantics of Predicate Logic, Part 3: Using Models

Using Models: DatabaseQueries
The Relational Model is a system for organising data.
▶ Proposed by Edgar F. Codd in 1969.
▶ Implemented in PostgreSQL, MySQL, SQLite¹, MS SQL

Server, Oracle, IBM DB2, …
▶ Typically using the Structured Query Language (SQL)
▶ Built on a logical foundation:

1. Vocabulary ≈ schema
2. Predicates ≈ (finite) tables
3. Formulas ≈ queries
4. Models ≈ databases (collections of tables)

¹there are at least ≈ 1000 SQLite DBs in this room.
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Semantics of Predicate Logic, Part 3: Using Models

Using Models: DatabaseQueries
An SQL query:

SELECT City.X FROM City, Within
WHERE City.X = Within.X AND Within.Y = "scotland"

A formula, with free variable x:

city(x)∧ within(x, scotland)

The collection of xs that make this formula true in the model is the
result of the query². The second half of CS209 introduces SQL.

²terms and conditions apply
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Semantics of Predicate Logic, Part 3: Using Models

Models for Formulas

Given a collection of formulas P1, · · · , Pn, it is sometimes useful to
generate a model M for them.
1. Sometimes it is easier to think about concrete examples
2. Models can be used as counterexamples see later…
3. Can be used to generate interesting things “Generative AI”
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Semantics of Predicate Logic, Part 3: Using Models

Models for Formulas

With the following formulas:
1. ∃x.∃y.city(x)∧ city(y)∧ x 6= y

2. ∀x.city(x) → (∃y.country(y)∧ within(x, y))

3. ∀x.¬(city(x)∧ country(x))

Atkey CS208 - Topic 8 - page 46 of 56



Semantics of Predicate Logic, Part 3: Using Models

Models for Formulas

With the following formulas:
1. ∃x.∃y.city(x)∧ city(y)∧ x 6= y

there exist at least two cities
2. ∀x.city(x) → (∃y.country(y)∧ within(x, y))

3. ∀x.¬(city(x)∧ country(x))
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Semantics of Predicate Logic, Part 3: Using Models

Models for Formulas

With the following formulas:
1. ∃x.∃y.city(x)∧ city(y)∧ x 6= y

there exist at least two cities
2. ∀x.city(x) → (∃y.country(y)∧ within(x, y))

every city is in a country
3. ∀x.¬(city(x)∧ country(x))
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Semantics of Predicate Logic, Part 3: Using Models

Models for Formulas

With the following formulas:
1. ∃x.∃y.city(x)∧ city(y)∧ x 6= y

there exist at least two cities
2. ∀x.city(x) → (∃y.country(y)∧ within(x, y))

every city is in a country
3. ∀x.¬(city(x)∧ country(x))

nothing is both a city and a country
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Semantics of Predicate Logic, Part 3: Using Models

Models for Formulas
First attempt at a model (start minimal):

universe = {}

city = {}

country = {}

within = {}

Does not satisfy ∃x.∃y.city(x)∧ city(y)∧ x 6= y

Need at least two cities!
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Semantics of Predicate Logic, Part 3: Using Models

Models for Formulas
Second attempt at a model (the names are arbitrary!):

universe = {plockton, auchtermuchty}
city = {plockton, auchtermuchty}
country = {}

within = {}

Satisfies ∃x.∃y.city(x)∧ city(y)∧ x 6= y

Does not satisfy ∀x.city(x) → (∃y.country(y)∧ within(x, y))
Every city needs a country!
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Semantics of Predicate Logic, Part 3: Using Models

Models for Formulas
Third attempt at a model:

universe = {plockton, auchtermuchty}
city = {plockton, auchtermuchty}
country = {plockton}
within = {(auchtermuchty, plockton)}

Satisfies ∃x.∃y.city(x)∧ city(y)∧ x 6= y

Does not satisfy ∀x.city(x) → (∃y.country(y)∧ within(x, y))
plockton needs to be somewhere!
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Semantics of Predicate Logic, Part 3: Using Models

Models for Formulas
Fourth attempt at a model:

universe = {plockton, auchtermuchty}
city = {plockton, auchtermuchty}
country = {plockton}
within = {(auchtermuchty, plockton), (plockton, plockton)}

Satisfies ∃x.∃y.city(x)∧ city(y)∧ x 6= y

Satisfies ∀x.city(x) → (∃y.country(y)∧ within(x, y))
Does not satisfy ∀x.¬(city(x)∧ country(x))
Nothing can be a city and a country!
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Semantics of Predicate Logic, Part 3: Using Models

Models for Formulas
Fourth attempt at a model:
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Semantics of Predicate Logic, Part 3: Using Models

Models for Formulas
Fifth attempt at a model:

universe = {plockton, auchtermuchty, scotland}
city = {plockton, auchtermuchty}
country = {scotland}
within = {(auchtermuchty, plockton), (plockton, plockton),

(auchtermuchty, scotland), (plockton, scotland)}

Satisfies ∃x.∃y.city(x)∧ city(y)∧ x 6= y

Satisfies ∀x.city(x) → (∃y.country(y)∧ within(x, y))
Satisfies ∀x.¬(city(x)∧ country(x))
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Semantics of Predicate Logic, Part 3: Using Models

Models for Formulas
Sixth attempt at a model:

universe = {plockton, auchtermuchty}
city = {plockton, auchtermuchty}
country = {scotland}
within = {(auchtermuchty, scotland), (plockton, scotland)}

Satisfies ∃x.∃y.city(x)∧ city(y)∧ x 6= y

Satisfies ∀x.city(x) → (∃y.country(y)∧ within(x, y))
Satisfies ∀x.¬(city(x)∧ country(x))
and doesn’t have any extra stuff

Atkey CS208 - Topic 8 - page 52 of 56



Semantics of Predicate Logic, Part 3: Using Models

Models for Formulas
Sixth attempt at a model:

universe = {plockton, auchtermuchty}
city = {plockton, auchtermuchty}
country = {scotland}
within = {(auchtermuchty, scotland), (plockton, scotland)}

Satisfies ∃x.∃y.city(x)∧ city(y)∧ x 6= y

Satisfies ∀x.city(x) → (∃y.country(y)∧ within(x, y))
Satisfies ∀x.¬(city(x)∧ country(x))
and doesn’t have any extra stuff

Atkey CS208 - Topic 8 - page 52 of 56



Semantics of Predicate Logic, Part 3: Using Models

Models for Formulas
General strategy for formulas P1, ..., Pn:
1. See what is forced to exist without conditions

(e.g., at least two cities)
2. See what is then forced to exist by these things existing

(e.g., every city needs a country)
3. Disjointness axioms force non-overlap and more existence

(e.g., not a city and a country)
4. Try to keep the model minimal

(without the first formula, the empty model would work!)
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Proof and Counterexamples
Models can be used to show some formulas are unprovable.

Not the same as failing to prove it!

To show that there is no proof of P1, ..., Pn ` Q:
1. Find a model Mc that makes all of Mc |= P1, · · · , Pn, but

Mc 6|= Q. (Mc is the countermodel)
2. If we could prove P1, ..., Pn ` Q then (by soundness):

▶ every model M such that M |= P1, ..., Pn, then M |= Q

3. But we have Mc that supports P1, ..., Pn and not Q
4. So P1, ..., Pn ` Q is not provable.
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Semantics of Predicate Logic, Part 3: Using Models

Example
It is not possible to prove

¬(∃x.country(x))

from the assumptions:
1. ∃x.∃y.city(x)∧ city(y)∧ x 6= y

2. ∀x.city(x) → (∃y.country(y)∧ within(x, y))
3. ∀x.¬(city(x)∧ country(x))

The model above satisfies all these, but not ¬(∃x.country(x)).

Therefore, there is no proof of this formula from these assumptions.
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Semantics of Predicate Logic, Part 3: Using Models

Summary
Several useful questions can be asked using models:
1. Model checking: does M |= P?
2. Model checking for all values: for what x does M |= P[x]?

database queries!
3. Model generation for formulas P1, ..., Pn

can be used to show unprovable things

With sufficiently adapted ideas of “formula” and “model”, many
questions can be recast in terms of logic and implemented on a
computer.
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