&2
Strathclyde

CS208 (Semester 1) Topic 9:
Automating Logic

Dr. Robert Atkey

Computer & Information Sciences

Atkey CS208 - Topic 9 - page 1 of 72

University of
Strathclyde
Science

Automating Logic, Part 1

Automating Logic

Atkey CS208 - Topic 9 - page 2 of 72

Automating Logic, Part 1: Automating Logic

University of
What to Automate? Sirathelyde

Given a formula P, we can ask:

1. Does P have a proof?

Is P valid?

Is P satisfiable?

For a model M, do we have M |= P?
Can we generate M, such that M = P?
How many models does P have?

S oA WN

Given the expressiveness of Predicate Logic, this covers a large
range of questions.

Atkey CS208 - Topic 9 - page 3 of 72

Automating Logic, Part 1: Automating Logic

[T ——
The Bad News Sirathatyde

Lots of things are undecidable:
1. Validity in Predicate Logic
2. Entailment in Predicate Logic
3. Checking models of Predicate Logic
4. Model generation for Predicate Logic

Undecidable: No program that can perfectly say “yes” or “no”.

Atkey CS208 - Topic 9 - page 4 of 72

Automating Logic, Part 1: Automating Logic

University of
More Bad News Sirathelyde

Or theoretically intractable:
1. Validity / Satisfiability checking in Propositional Logic
2. Synthesis of finite models
3. Checking of finite models

Intractable: there is no (known) program to solve it that runs in
better than O(2™) on inputs of size n.

Atkey CS208 - Topic 9 - page 5 of 72

Automating Logic, Part 1: Automating Logic

University of %
The Good News Sirathelyde

For undecidable problems, there are good semi-decision procedures.
Semi-decision: says “yes” exactly when the problem is solved. No
guarantees otherwise.

For intractable problems, there are heuristics that solve common
cases quickly.

Atkey CS208 - Topic 9 - page 6 of 72

Atkey

Automating Logic, Part 1: Automating Logic

Many Algorithms Sirathelyde

1.

Proof Search
Try all possible proof rules, under some strategy

. Resolution Provers

A proof system specialised to proof search

. Specific tools for sub-languages of Predicate Logic

E.g., “Horn” clause provers

SAT / SMT Solvers
SATisfiabilty solvers
SATisfiabilty Modulo Theory solvers

CS208 - Topic 9 - page 7 of 72

Automating Logic, Part 1: Automating Logic

o University of
Many Algorithms Sirathetyde

1. Proof Search
Try all possible proof rules, under some strategy

2. Resolution Provers
A proof system specialised to proof search
3. Specific tools for sub-languages of Predicate Logic
E.g., “Horn” clause provers
4. SAT / SMT Solvers
SATisfiabilty solvers
SATisfiabilty Modulo Theory solvers

We will look at SAT / SMT solvers here.

Atkey CS208 - Topic 9 - page 7 of 72

Automating Logic, Part 1: Automating Logic

SAT / SMT Sisiine

SAT solvers work on Propositional Logic.
SMT solvers work on a quantifier-free fragment of Predicate Logic.
Lots of industrial strength tools: Z3, CVC5, Yices, ...

Used by (e.g.) Amazon Web Services to check access control rules,
Microsoft to verify software, ...

Atkey CS208 - Topic 9 - page 8 of 72

Universityof
Strathclyde
Science

Automating Logic, Part 2

SAT Solvers

Atkey CS208 - Topic 9 - page 9 of 72

Automating Logic, Part 2: SAT Solvers

University of
SAT solvers Shem e

SATisfiability solvers.

The problem they solve:

» Given a formula P (in conjunctive normal form), find a
valuation v that makes it T and return SAT(v), or if there is
no such valuation, return UNSAT.

Atkey CS208 - Topic 9 - page 10 of 72

Automating Logic, Part 2: SAT Solvers —
University of
Strathclyde

Solving SAT

» |n the worst case, there are 2™ cases to check, where n is the

number of atomic propositions.
» Checking each case is quick ... but there are a lot of cases.

» This is the archetypal NP problem:
» If we knew the answer, it would be easy to check

(Polynomial time)
» But there are exponentially many to check

(Nondeterminism)
» It is unknown if there is a better way. Does P = NP?

Atkey CS208 - Topic 9 - page 11 of 72

Automating Logic, Part 2: SAT Solvers

* o University of
Encoding Problems into SAT Stratiictyde

S

In general, if we want to prove that P is valid, then it suffices to
show that —P is not satisifable:

1. Take P
2. Put —P into a SAT solver:

2.1 if —P is satisfiable, then we have a counter example to P
2.2 if =P is not satisfiable, then P is valid

Also, there are many problems that can be encoded as
Propositional Logic formulas.

CS208 - Topic 9 - page 12 of 72

Automating Logic, Part 2: SAT Solvers

° . University of %
But SAT is useful: Solving Problems 2t

1. Package installations

(satisfying valuation = good package installation)

2. Solving Sudoku

(satisfying valuation = correct solution)

3. Solving Resource allocations

(satisfying valuation = feasible resource allocation)

Atkey CS208 - Topic 9 - page 13 of 72

Automating Logic, Part 2: SAT Solvers

SAT is Useful: Finding Bugs Strathclyde

1. Finding faults in systems
(satisfying valuation = path to a bad state)

2. Finding flaws in Access Control rules

(satisfying valuation = unexpectedly permitted request)

3. Verifying hardware

(satisfying valuation = counterexample to correctness)

Atkey CS208 - Topic 9 - page 14 of 72

Automating Logic, Part 2: SAT Solvers

: o 0 University of
An alluring proposition Strathclyde

Instead of writing custom solvers for all these problems, we:
1. translate into propositional logic; and
2. use an off the shelf SAT solver.

Atkey CS208 - Topic 9 - page 15 of 72

Automating Logic, Part 2: SAT Solvers

M o ° University of
Solving the problem in practice Strathctyde

Despite the 2™ worst case time, practical SAT solvers are possible:
1. Solvers don’t blindly check all cases:

» Use the formula to guide the search;
» Analyse dead ends to avoid finding them more than once;
» Very efficient data structures.

2. Human-made problems tend to be quite regular.
3. Modern SAT solvers can handle

> 10s of thousands of variables
» millions of clauses

4. Practical tools for solving real-world problems.

Atkey CS208 - Topic 9 - page 16 of 72

Automating Logic, Part 2: SAT Solvers

Input for SAT solvers :s“.i'FS?”ﬁ"c
SAT solvers take input in Conjunctive Normal Form (CNF):
(—aV—=bV —c)
A (—bV —cV—d)
A (—aV—-bVc)
AN b

1. Entire formula is a conjunction C; A Cy /A -+ A Cy
2. where each clause C; = L1 V Lip V-V Lk
3. where each literal Li; = x;j or Li; = =y

Every formula can be put into CNF (later)

Atkey CS208 - Topic 9 - page 17 of 72

Automating Logic, Part 2: SAT Solvers

s ° University of
Conjunctive Normal Form Strathclyde

The restriction to CNF may seem like a massive restriction.

Every Propositional Logic formula can be translated into CNF.

1. Slow way: “multiply out the brackets”
Resulting formula might be exponentially larger
2. Fast way: “Tseytin translation”
Resulting formulas is at most 3 times larger
We'll just assume this can be done for now.
Atkey

CS208 - Topic 9 - page 18 of 72

Automating Logic, Part 2: SAT Solvers

. University of
A SAT Solver’s job Strathctyde

Given clauses that look like:

(—aV—=bV —c)
A (—7bV —cV—d)
A (—maV—-bVc)
A b

To find a valuation v for the q, ... such that at least one literal in
every clause is true.

Returns either: SAT(v) or UNSAT.

Atkey CS208 - Topic 9 - page 19 of 72

Automating Logic, Part 2: SAT Solvers

: ° . University of
Basic idea of the algorithm Sirathclyde

1. The clauses Cy,..., C, to be satisfied are fixed;
2. The state is a partial valuation (next slide);

3. At each step we pick a way to modify the current partial
valuation by choosing from a collection of rules;

4. Algorithm terminates when either a satisfying valuation is
constructed, or it is clear that this is not possible.

This is known as the DPLL Algorithm.

Atkey CS208 - Topic 9 - page 20 of 72

Automating Logic, Part 2: SAT Solvers

° ° University of
Partial Valuations Strathclyde

To describe what a SAT solver does, we need partial valuations.

. . ? .
A partial valuation v’ is a:

» sequence of assignments to atoms; with each one marked

1. decision point, if we guessed this value.
2. forced, if we were forced to have this value.

Examples: v

Atkey CS208 - Topic 9 - page 21 of 72

Automating Logic, Part 2: SAT Solvers

M . . University of %
Differences with Valuations Strathclyde

1. The order matters

(we keep track of what decisions we make during the search)

2. Not all atoms need an assignment

(we want to represent partial solutions during the search)

3. We mark decision points and forced decisions.

Atkey CS208 - Topic 9 - page 22 of 72

Automating Logic, Part 2: SAT Solvers

M University of %
Notation Strathctyde

We write
? . ?
Vi, @ g X, V)

for a partial valuation with a :y x somewhere in the middle.

We write
decisionfree(V')

if none of the assignments in v are marked d

. R . ?
(i.e., all decisions in v* are forced)

Atkey CS208 - Topic 9 - page 23 of 72

Automating Logic, Part 2: SAT Solvers

°g . M University of %
1. Initialisation Sirathelyde

We start with the empty partial valuation v’ = |].

(We make no commitments)

We must extend this guess to a valuation that satisfies all the
clauses.

Atkey CS208 - Topic 9 - page 24 of 72

Automating Logic, Part 2: SAT Solvers

University of @
2. Guessing suathcfde

Science

If there is an atom a in the clauses that is not in the current partial
valuation v/, then we can make a guess. We pick one of:

? ?
vi,a:g T or vi,a:qqF

(Note: we have marked this as a decision point)

Atkey CS208 - Topic 9 - page 25 of 72

Automating Logic, Part 2: SAT Solvers

Universityof %
3 . S uccess Strathclyde

Science

If the current v’ makes all the clauses true (for all i, [C;]v' = T),
then stop with SAT (V).

Atkey CS208 - Topic 9 - page 26 of 72

Automating Logic, Part 2: SAT Solvers

Example S

Science

(maV=-DbV ¢c)A(bV ¢V —d)A(—ma V =b V c)A Db

(Need at least one cyan in every clause)

Sequence of (lucky) guesses

1. [l

Atkey CS208 - Topic 9 - page 27 of 72

Automating Logic, Part 2: SAT Solvers

Example snh

v v
(maV —=bV —¢c)A(=bV —cV —d)A(aV —b Vc)ADb

(Need at least one cyan in every clause)

Sequence of (lucky) guesses
1.]
2. [(1 d F]

Atkey CS208 - Topic 9 - page 27 of 72

Automating Logic, Part 2: SAT Solvers

Example

X

v X v X v
(=a VEER YV —c AEE Y —c vV -d)A=a VES YV c)ADb

(Need at least one cyan in every clause)

Sequence of (lucky) guesses

1. []
2. [(1 d F]
3. [Cl d F, b d T]

Atkey CS208 - Topic 9 - page 27 of 72

Automating Logic, Part 2: SAT Solvers

Example Siraihelyde

v X v a v v X X
(=a VEED YV EOAERE Y =V -d)A=a VEES Y @A Db

(Need at least one cyan in every clause)
Sequence of (lucky) guesses
1. [l
2. [a:qF]
3. [a ‘d F b:q TI
4. [adechdF]

Atkey CS208 - Topic 9 - page 27 of 72

Atkey

Automating Logic, Part 2: SAT Solvers

Example snh

v X v X v v v X X v
(=a VvV EES YV EOAERE Y =e VvV iEd) AE=ae vVEE Y @A Db

(Need at least one cyan in every clause)

Sequence of (lucky) guesses
1. []
2. [(1 d F]
3. [Cl d F,b d T]
4. [Cl d F,b d T,C d F]
5. l[a:q F,b:q T,c:q F,d :q Fl, a satisfying valuation.

CS208 - Topic 9 - page 27 of 72

/3 0\
Strathclyde

Science

Universityof

But we can’t program “luck”!

Atkey CS208 - Topic 9 - page 28 of 72

Automating Logic, Part 2: SAT Solvers

. University of
4. Backtracking Strathclyde

If we have a partial valuation:
? . ?
V], a -d X, VZ

. . ?
and decisionfree(v5) (so a : x was our most recent guess).

Then we backtrack (throw away Vv5) and change our mind:
?
Vi, @i X
marking the assignment as forced.

Atkey CS208 - Topic 9 - page 29 of 72

Automating Logic, Part 2: SAT Solvers

University of @
5. Failure stramcfde

Science

If all decisions are forced (decisionfree(V’)), and there is at least
one clause C; such that [C]v’ = F, then return UNSAT.

Atkey CS208 - Topic 9 - page 30 of 72

Automating Logic, Part 2: SAT Solvers

University!

(ma V =b V =) A(=b V =c V ~d)A(=a V =b V c)A b e

Atkey CS208 - Topic 9 - page 31 of 72

Automating Logic, Part 2: SAT Solvers

Universityof

X X

(WY bV —c)A(=b V = V ~d)A(REY ~b V c)A b SEmV
1. [
2. [a:dT]

Atkey CS208 - Topic 9 - page 31 of 72

Automating Logic, Part 2: SAT Solvers

Universityof

X X X % X v
EVEIV - ARV v -OAEEVEEY oA STRCRIES

1. [I

2. [a:dT]

3. [Cl d T,b d T]

Atkey CS208 - Topic 9 - page 31 of 72

Automating Logic, Part 2: SAT Solvers

/3 0\
Strathclyde

Science

Universityof

X X X X X X X v v
EVEIVEY A B VEaY) A EEVESY @A b

1. [

2. [(1 d T]

3. [Cl d T, b d T]

4. [a:q T,b:q T,c:q T] clause 1 failed, backtrack...

Atkey CS208 - Topic 9 - page 31 of 72

Automating Logic, Part 2: SAT Solvers

R - Sy N SR S
EaVEIVE AEBEVEeY -d)A(EaYVESVEA b

1.
2. [a d T]

3. [Cl d T,b d T]

4. [a:q T,b:q T,c:q T] clause 1 failed, backtrack...
5. [a:q T,b:q T,c:¢ F] clause 3 failed, backtrack...

Atkey CS208 - Topic 9 - page 31 of 72

Automating Logic, Part 2: SAT Solvers

npn
X Universityof %

v v v
EaVERY -)AEEY - v - AEaEvELY N[Strathclyde
1. [
2. [a d T]
3. [a d T,b d T]
4. [a:q T,b:q T,c:q T] clause 1 failed, backtrack...
5. [a:q T,b:q T,c:¢ F] clause 3 failed, backtrack...
6. [a:q T,b: Fl clause 4 failed, backtrack...

Atkey CS208 - Topic 9 - page 31 of 72

Automating Logic, Part 2: SAT Solvers

npn
Universityof %

v v
(FaV =bV = c)A(=bV —cV —d)A(FaV —bV c)ADb e

-

l[a:q T]

[a d T, b d T]

. lag T,b:g T,ciq T] clause 1 failed, backtrack...
l[a:q T,b:q Tyc:¢ F clause 3 failed, backtrack...
l[a:q T,b:¢ F] clause 4 failed, backtrack...
la:¢ F]

NG s W N

Atkey CS208 - Topic 9 - page 31 of 72

Automating Logic, Part 2: SAT Solvers

npn
Universityof %

v - = v = Y Strathclyde
=aVvEIY —c) A BV —c VvV —d)A(=avVEIY oAb e !

-
l[a:q T]

[a d T, b d T]

l[a:qT,b:q Tyc:qg T] clause 1 failed, backtrack...
. la:Qqg T,b:q Tyc:¢ F clause 3 failed, backtrack...
l[a:q T,b:¢ F] clause 4 failed, backtrack...

la:¢ F]

l[a:s F,b:q T]

® NG A WN

Atkey CS208 - Topic 9 - page 31 of 72

Automating Logic, Part 2: SAT Solvers

npn
v University of %

v X X X « v « ;
FavEIVED A BIVEAY —d)AEa v EYY @A b Strathclyde

-
l[a:q T]

[a d T, b d T]

l[a:qT,b:q Tyc:qg T] clause 1 failed, backtrack...
l[a:q T,b:q Tyc:¢ F clause 3 failed, backtrack...
l[a:q T,b:¢ F] clause 4 failed, backtrack...
la:¢ F]
l[a:s F,b:q T]
l[a: F,b:q Tyc:q T]

Y E NGO A WN

Atkey CS208 - Topic 9 - page 31 of 72

Automating Logic, Part 2: SAT Solvers

v = X x X a v = v
FeVEIVED EdVEEVED A EavEdY @A b

—
e

Atkey

Y E NGO A WN

v

-
l[a:q TI
[a d T, b d T]
l[a:qT,b:q Tyc:qg T] clause 1 failed, backtrack...
l[a:q T,b:q Tyc:¢ F clause 3 failed, backtrack...
. [a:
la
la
[a
[a

aT,b: F] clause 4 failed, backtrack...

it Fl

of F,b .d T]

o F,b d T,C ‘d T]

wFb:qT,ciq Tyd:g T] clause 2 failed, backtrack

CS208 - Topic 9 -

npn
Universityof %

Strathclyde

Science

page 31 of 72

Automating Logic, Part 2: SAT Solvers

npn
v University of %

v = o = X Y v = v Strathclyde
FavEIVED A EBEVEAY =) A (=a vEY Ve b Sena 1Y

1. [

2. [a d T]

3. [a d T,b d T]

4. [a:q T,b:q T,c:q T] clause 1 failed, backtrack...

5. [a:q T,b:q T,c:¢ F] clause 3 failed, backtrack...

6. [a:q T,b: Fl clause 4 failed, backtrack...

7. [a:f F]

8. [a:x F,b:q Tl

9. l[a;xF,b:q T,c:q T]
10. [a: F,b:q Tyc:q T,d:q T] clause 2 failed, backtrack
11. [a:; F,b:q Tyc:q T,d:q Fl SAT

Atkey CS208 - Topic 9 - page 31 of 72

Automating Logic, Part 2: SAT Solvers

Pl
Summary Sirathctyde

1. SAT solvers are tools that find satisfying valuations for
formulas in CNF.

2. Having a SAT solver enables solving of problems modelled
using logic.

3. The core algorithm is a backtracking search.

Atkey CS208 - Topic 9 - page 32 of 72

University of
Strathclyde

Automating Logic, Part 3

Faster SAT by Unit
Propagation

Automating Logic, Part 3: Faster SAT by Unit Propagation

M hd . . University of
Backtracking is Oblivious Strathetyde

The example:
(—aV-"DbV-=c)AN(bV—-cV—-d A(maV—-bVc)ADb
Backtracking tries the atoms in some order.

But we can see immediately that b must be true.

Other forced assignments occur during the search.

Atkey CS208 - Topic 9 - page 34 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

M ° University of
Making the Search less naive Strathctyde

If we are in a situation like:

EIVEEY —d)

then if the current valuation is to succeed in any way, it must be
the case that d : F.

(because we need at least one literal in every clause to be true.)

Using this, we can make the search a little less naive.

Atkey CS208 - Topic 9 - page 35 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

6. Unit Propagation Step Strathclyde

(a) If there is a clause C V aand [C]v’ = F, then we extend V' to:

?
viya:i T

(b) If there is a clause C \VV —a and [C]V’ = F, then we extend V' to:
viya i F

(Note: the a needn’t necessarily appear at the end of the clause)

Atkey CS208 - Topic 9 - page 36 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation
University of
Strathclyde

Science

(—aV =bV =c)A(=bV —cV -~d)A(=aV =bV c)Ab
1. [] do unit propagation...

Atkey CS208 - Topic 9 - page 37 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

/3 0\
Strathclyde

Science

Universityof

X X X
(—a VBV —c)A BRIV —c V —d)A(~a VIV c)AB
A do unit propagation...

Atkey CS208 - Topic 9 - page 37 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

Atkey

1
2
3

-

.

[
[

b

b

npn
Universityof %

Strathclyde

Science

X X X X X
EAVEIY) AEBEY VvV -d)AEEVEIY oAb

of
of

do unit propagation...

T]
T, a:g T]

do unit propagation...

CS208 - Topic 9 -

page 37 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

npn
Universityof %

Strathclyde

Science

(B =\ fc)/\(vEaV ﬁd)/\(\/\/)/\ b
[do unit propagation...
[b ¢ T]
.[byT,a:q T] do unit propagation...

b T,a:q T,c: Fl clause 3 failed, backtrack...

W N =

.

Atkey CS208 - Topic 9 - page 37 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

Qe
Universityof %

Strathclyde

Science

/ x x v x v
([ma VY —c)AFEY —c V ~d)A(—a VgV c)A\ b
[do unit propagation...
[b: T]
b T,a:q T] do unit propagation...
[
[

by T,a:q T,c:Fl clause 3 failed, backtrack...
b T acr F]

Vs WN =

.

Atkey CS208 - Topic 9 - page 37 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

%T}f r[f%
University of

Strathclyde
Science

(Ba \/\/)/\(\/\/ ~a) A (B v =\ A l/)
1. [] do unit propagation...
2. by T]
3. b T,a:q T] do unit propagation...
4. b T,a:q T,c: Fl clause 3 failed, backtrack...
5. [b: T,a: F]
6. by T,a:;xFciqgT] do unit propagation...

Atkey CS208 - Topic 9 - page 37 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

University of

Strathclyde
Science

(B v b \/)/\(\/\/ :d)/\(:a vEY A b
[do unit propagation...
(b T]
b T,a:q T] do unit propagation...
b T,a:q T,c: Fl clause 3 failed, backtrack...
b T,a:F]
b T,a:F,c:q Tl do unit propagation...
b T,a:xF,c:qT,d:F] SAT

NSk wDb-H

Atkey CS208 - Topic 9 - page 37 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

f? LIm)
University of

Strathclyde
Science

v X x X x v v X v v
EavEdVYED A ESYEA VS A (=a v BE Y @b

1. [] do unit propagation...

2. by T]

3. b T,a:q T] do unit propagation...

4. b T,a:q T,c: Fl clause 3 failed, backtrack...
5. [b: T,a: F]

6. [b:T,a:F,c:q Tl do unit propagation...

7. by T,a:xF,c:q T,d ¢ F SAT

One backtrack vs. four without unit propagation.

Atkey CS208 - Topic 9 - page 37 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

2-SAT %“_E'Fs‘iyﬁ’c

If every clause has at most two literals, UP means less backtracking:

(—libD; V —libD;) A (—1libCy V —libCy)
A (—progA; V —progA,) A (—progA; V libCy)
A (—progA, V 1ibC;) A (—1libCy V 1ibD;)
A (—libC;y V 1libD,) A (progA; V progA,)
1

Atkey CS208 - Topic 9 - page 38 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation _
University of

2_S AT Strathclyde
Science

If every clause has at most two literals, UP means less backtracking:

(—libDy V =libD;) A (—libCy V —1ibC;)

X X
A (DD V' —progA,) A (\/ 1libC;)

A (—progA, V 1ibC;) A (—libCy V libD,)
v
A (—libC;y V 1libD,) /A (progA; V progA,)
[progA; :q T]

Atkey CS208 - Topic 9 - page 38 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation _
2_S AT Strathclyde
Science

If every clause has at most two literals, UP means less backtracking:

(—libD¢ VvV —libD,) A (—libCy V —libC;y)
X v X
A (BREDEE \V (=proghA,) A (\/ 1libC;)
v

A (—progh, V 1ibC;) A (—libCy V libD,)
v X
A (—libC;y V 1libD,) /A (progA; V [Reiey)
[progA; :q T, progA, :¢ F]

Atkey CS208 - Topic 9 - page 38 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation _
2_S AT Strathclyde
Science

If every clause has at most two literals, UP means less backtracking:

(—libDy V =libD;) A (IEEE V' —1ibC;)

X v X v

A (BREDES \V/ —progA,) \/ 1libCy)
v

A (—progh, V 1ibC;) \/ hsz

A (—libC;y V 1libD,) A\ (progA1 V plogAz

[progA; :q T, progA, :¢ F,1ibCy i T]

Atkey CS208 - Topic 9 - page 38 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation _
2_S AT Strathclyde
Science

If every clause has at most two literals, UP means less backtracking:

X v
(ﬁlibD1 V —libD,) A (BHEE \/ =libC;)
v X v
A\ ﬁprogA] V ﬁprogAz A\ (\/ 1libCy)

A\ (—'progAz V) A\ (V libD,)
v X
A\ (—'lleZ V libD,) /A (progA; V [Reiey)

[progA; :q T, progA, :¢ F,1ibCy ¢ T,1ibC; i F]

Atkey CS208 - Topic 9 - page 38 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

-
2_S AT Strathc

If every clause has at most two literals, UP means less backtracking:

SR 0 N c. (e
v- (I i)
gy) (G v IS
-v- -v

[progA; :q T, progA, :¢ F,1ibCy i T,1ibC; ¢ F,1ibD; :¢ T]

Atkey CS208 - Topic 9 - page 38 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

-
2_S AT Strathc

If every clause has at most two literals, UP means less backtracking:

-v e MR
v- (I i)
gy) (G v IS
-v- -v

[progA; :q T, progA, :¢ F,1ibCy ¢ T,1libC; :¢ F,1ibD; :¢ T,1ibD; : F]

Atkey CS208 - Topic 9 - page 38 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

} A
2-SAT

If every clause has at most two literals,
» UP means at most one backtrack

» Means that we can solve the problem in polynomial time
» So for the n-SAT problem:

» If n < 2, there is a fast polynomial time algorithm
» If n > 3, no known general fast algorithm

Atkey CS208 - Topic 9 - page 39 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

University of

Summary of the Rules 1 Strathctyde
DecieTrue V' == Vi,a:qq T if a is not assigned inV’
DecioeFase V' = v,a: F if a is not assigned inV’

Success v = SAT(V) if v\ makes all the

clauses true.

Atkey CS208 - Topic 9 - page 40 of 72

Atkey

Automating Logic, Part 3: Faster SAT by Unit Propagation

Summary of the Rules 2

? ? ?
BACKTRACK Vi, d g X, V5 — V], QA X

FaIL Vv = UNSAT

CS208 - Topic 9 -

University of

Strathclyde

Science

. ? .)

if v is decision free

. ? . . .

if v is decision free, and

makes at least one clause

false.

page 41 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation —
University of

Strathclyde

Summary of the Rules 3 s

UnitPropTruE V' = Via i T if there is a clause C\V a
and [C](v') =F

UnitPropFaLse VvV = V', a i F if there is a clause C\V —a
and [C](v') =F

Atkey CS208 - Topic 9 - page 42 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

University of
Real SAT solvers Strathctyde

Use very efficient data structures. (Key is very fast unit propagation)

Use heuristics to guide the search:
» Which atom to try next? (not just a,b,c,...)
» Whether to try T or F first?

Incorporate additional rules:
» Non-chronological backjumping
(skip several decision points by analysing conflicts)
» Clause learning to avoid doing the same work over again.
» “CDCL” (Conflict Driven Clause Learning)
» Random walk between possible valuations “WalkSAT”.

Atkey CS208 - Topic 9 - page 43 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

Universityof
S umma ry Strathclyde

» Unit Propagation speeds up SAT Solving

(by using the structure of the problem)

» This makes 2-SAT very fast
» Real SAT Solvers are very sophisticated.

Atkey CS208 - Topic 9 - page 44 of 72

University of
Strathclyde
Science

Automating Logic, Part 4

Conversion to CNF

Atkey CS208 - Topic 9 - page 45 of 72

Automating Logic, Part 4: Conversion to CNF

Conjunctive Normal Form (CNF) Strathctyde

(—aV—bV —¢)
A (—bV —cV—d)
A (—maV—=bVc)
A Db

1. Entire formula is a conjunction C; A C, /A -+ A Cy
2. where each clause C; = L1 V Lip V---V L
3. where each literal Li; = x;j or Li; = —xy

Atkey CS208 - Topic 9 - page 46 of 72

Automating Logic, Part 4: Conversion to CNF

s ° ° University of
Disjunctive Normal Form (DNF) Sirathelyde

Disjunctive Normal Form (DNF) is similar, but swaps /\ and V.

(—a A—=b /A —¢c)
V (b A—c/A—d)
V (ma/AN—bAc)
V b

1. Entire formula is a disjunction D; V D, V -+ -V Dy
2. where each disjunct D; = Li7 A Lo A--- ALk
3. where each literal Li; = x;; or Li; = =y

Atkey CS208 - Topic 9 - page 47 of 72

Automating Logic, Part 4: Conversion to CNF

. ° ege Universi(yof
Normal Forms and Satisfiability Strathctyde

CNF
Each clause is a constraint and all constraints must be satisfied.

DNF
At least one of the disjuncts must be satisfied.

Exercise: How would you write a SAT Solver for formulas in DNF?
Why don’t we do this instead of CNF?

Atkey CS208 - Topic 9 - page 48 of 72

Automating Logic, Part 4: Conversion to CNF

° Universityof
Conversion to CNF Strathetyde

Not every formula is in CNF, e.g.,
(AAB) — (BAA)
What if we want to use a SAT solver to determine satisfiability?

Two ways to convert a formula to CNF that is “the same™
> “Multiplying out”
» Tseytin transformation

First we need to define what we mean by “the same”.

Atkey CS208 - Topic 9 - page 49 of 72

Automating Logic, Part 4: Conversion to CNF

° University of
Equivalent Formulas Siraticlyde

Define two formulas P and Q to be equivalent, written

P=Q

exactly when, for all valuations v,

[Plv = [Qlv
Equivalent to both P = Q and Q = P being valid

Atkey CS208 - Topic 9 - page 50 of 72

Atkey

Automating Logic, Part 4: Conversion to CNF

Simplifying Implication

A—-B=—AVB

University of
Strathclyde
Science

valuation P Q
A B |["TA|A—=B|—AVB
FF T T T
F T T T T
T F F F F
T T F T T

CS208 - Topic 9 -

page 51 of 72

Automating Logic, Part 4: Conversion to CNF

. University of
Double Negation Sirathelyde

Negating twice is the same as doing nothing:

A=—A
valuation Pl Q
A —AA| A
F T|F| F
T FIT] T

page 52 of 72

Atkey

Automating Logic, Part 4: Conversion to CNF

University of
de MO rgan ,S Iaws Strathclyde
Negation swaps /\ and V:

~(AAB)=—AV—B

valuation P Q

A B |-A B AAB|—-(AAB)|—-AV—B

F F T T F T T

F T T F F T T

T F F T F T T

T T F F T F F
Similar for -(AV B) = —-A A—B

CS208 - Topic 9 - page 53 of 72

Automating Logic, Part 4: Conversion to CNF

s University of
Negation Normal Form (NNF) Strathctyde

Using the equivalences:

A—B = —-AVB

A = —A
—-(AAB) = “AV—B
—-(AVB) = “AA—B

We can rewrite any formula into an equivalent one with
1. No implications (—s)
2. All negation signs on the atomic propositions

Atkey CS208 - Topic 9 - page 54 of 72

Automating Logic, Part 4: Conversion to CNF

Example stam

(aN(a—Db)) —c

—(a/N(a—b))Vc converted —
—(a/N\(—aVb))Vc converted —
—aV—=(—aVb)Vc converted /\ toV

—aV (—a/A—b)Vc converted V to/\

—aV (a/A—b)Vec converted double negation

Now in NNF, but not CNF.

Atkey CS208 - Topic 9 - page 55 of 72

Automating Logic, Part 4: Conversion to CNF

. Universityof
“Push” Vs into /\s Siathelyde

AV (BAC)=(AVB)A(AVC)

valuation P Q
A B C|BAC AVB AVC|AV((BAC)|(AVB)A(AVC(C)
F F F F F F F F
F F T F F T F F
F T F F T F F F
F T T T T T T T
T F F F T T T T
T F T F T T T T
T T F F T T T T
T T T T T T T T

Atkey CS208 - Topic 9 - page 56 of 72

Atkey

Automating Logic, Part 4: Conversion to CNF

Conversion to CNF

—aV (a/A—b)Vec
multiply out
—aV ((aVc)A(=bVc))
multiply out
(—raVaVe)A(—aV —bVc)

Now in CNF.

(Can further simplify to: (—a vV —b V ¢))

CS208 - Topic 9 -

University of
Strathclyde
Science

page 57 of 72

Automating Logic, Part 4: Conversion to CNF

s University of f
Exponential Blowup Sirathclyae

If we convert (aAbAc)V (dAeAf)V (g/AhA1)to CNF, we get:

(aVdVgIN(aVdVh)A(aVdVi)A(aVeVg)A(aVeVhA
(aVeVI)A(aVIVGANA(aVIVR)A(aVIViI)A(bV AV gIA
(bVAVRIA(BVAVI)IA(BVeVgIA(DbVeVh AbVeViA
(BVIVgGADVIVIIADBVIVIA(VAVg AlVdAdVhA
(ceVdVi)A(cVeVgIN(cVeVh)A(cVeVi)A(cVIVgA
(eVIVhR)A(cV Vi)

which has 27 clauses.

Atkey CS208 - Topic 9 - page 58 of 72

Automating Logic, Part 4: Conversion to CNF

Pl
Summary s

» SAT Solvers take their input in CNF

» Some problems are naturally in CNF

» Conversion by “multiplying out” can generate huge formulas
» We need something better

Atkey CS208 - Topic 9 - page 59 of 72

University of
Strathclyde
Science

Automating Logic, Part 5

Tseytin Transformation

Atkey CS208 - Topic 9 - page 60 of 72

Atkey

Automating Logic, Part 5: Tseytin Transformation

M o Universi(yof
Tseytin Transformation Strathclyde

The Tseytin transformation converts a formula into CNF with at
most 3 times as many clauses as connectives in the original formula
(versus potentially exponential for multiplying out the brackets).

1. Convert the formula into equations
One connective ~ one equation

2. Convert each equation into clauses
One equation ~» 2-3 clauses

Result is not equivalent, but equisatisfiable.

CS208 - Topic 9 - page 61 of 72

Atkey

Automating Logic, Part 5: Tseytin Transformation

University of
1. Name subformulas Sirathetyde

Take the formula and name all the non-atomic subformulas.

Example:
—(a/N(—aVb)) Ve

becomes:

X1 X, Ve

X2 = TX3

X3 = a A\ X4

X4 = ¥Xjp Vb

X5 —-a

CS208 - Topic 9 - page 62 of 72

Automating Logic, Part 5: Tseytin Transformation

° . University of
2. Converting Equations to Clauses [

Given an equation like x =y /A z, we want some clauses that are
true for every valuation that satisfies the equation.

Atkey CS208 - Topic 9 - page 63 of 72

Automating Logic, Part 5: Tseytin Transformation

° . Unive i(yf
2. Converting Equations to Clauses [E5i58

Given an equation like x =y /A z, we want some clauses that are
true for every valuation that satisfies the equation.

Derive by conversion to CNF:

x=yANz

(x = (YA2) A ([yANz) = x)

= ("xVyYAz)A(—yANz)Vx)
(xVyYy) A(—=xVz)A(—yV-zVx)

Atkey CS208 - Topic 9 - page 63 of 72

Atkey

Automating Logic, Part 5: Tseytin Transformation

° University of
2. Equations to Clauses Sirathctyde
Take each equation x =y [Jz and turn it into clauses:
1. If x =y /\z, add

(xVyYy) AN(—xVz)A(—yV-zVx)
2. Ifx=yVzadd
(yVzV-—x)A(—yVx) N (—zVx)

3. If x =—y, add
(FyV=x)A(yVx)

CS208 - Topic 9 - page 64 of 72

Automating Logic, Part 5: Tseytin Transformation

° University of
3. Assert the top level variable Stfathclyde

S

If x is the name of the whole formula, add a clause with just x:

equation 1

/\ equation 2
74\

/N X

This asserts that our original formula must be true.

Atkey CS208 - Topic 9 - page 65 of 72

Automating Logic, Part 5: Tseytin Transformation

Example: (A AB)V (BAA) Stath

1. Name the subformulas:

X1 = X2Vxy X2 = 7TX3
X3 = AANB X4 = BAA

Atkey CS208 - Topic 9 - page 66 of 72

Atkey

Automating Logic, Part 5: Tseytin Transformation

Example: (A AB)V (BAA) A

1. Name the subformulas:

X1 = X2Vxy X2 = 7TX3
X3 = AANB X4 = BAA

2+3. Generate clauses: (One line per equation)

(X2 VxaV—=x1) A (=x2Vx1) A (x4 V x1)
A (7x3V—x2) A (x3 V x2)

A (FAV-"BVx3) \N(AV —x3) A\ (BV—x3)
AN (FBV =AVx4) A BV —x4) A\ (AV —X4)
/\ X1

CS208 - Topic 9 - page 66 of 72

Automating Logic, Part 5: Tseytin Transformation

University of @
Effi C i en Cy ite:gthc?de

In small examples, we get many clauses.
But we always get < 3n clauses, where n number of connectives.
Multiplying out can result in exponential number of clauses.

Can also optimise (see the tutorial questions).

Atkey CS208 - Topic 9 - page 67 of 72

Automating Logic, Part 5: Tseytin Transformation

hd Universityof
Not Equivalent! Strathctyde

The formulas generated by the Tseytin transformation are not
equivalent to the original, because they have extra atomic
propositions.

Atkey CS208 - Topic 9 - page 68 of 72

Automating Logic, Part 5: Tseytin Transformation

Example stth

If the original formula is
—A

the Tseytin transformed version is: (assuming we don’t optimise)
(—AV —x) AN (AVXx)Ax

Then {A : F,x : F} satisfies the original, but not the transformed
formula.

Atkey CS208 - Topic 9 - page 69 of 72

Automating Logic, Part 5: Tseytin Transformation

M . hd University of
Equisatisfiable Sirathetyde

If we write Tseytin(P) for the Tseytin translation of P, then:

1. If there exists a valuation v; such that [P]v; = T, then there
exists a valuation v, such that [Tseytin(P)]v, = T;

2. If there exists a valuation v such that [Tseytin(P)]v = T, then
the valuation v/ = v without the additional x;s makes
[P]v' =T.

This is called “equisatisfiability”.

Atkey CS208 - Topic 9 - page 70 of 72

Automating Logic, Part 5: Tseytin Transformation

Example stam

v = {A : F} satisfies —A

The corresponding satisfying valuation for
(—AV —x) N (AVxXx)Ax

is{A:F,x:T}L

A corresponding satisfying assignment always exists for the
Tseytin transformation, because it is built from equations.

Atkey CS208 - Topic 9 - page 71 of 72

Automating Logic, Part 5: Tseytin Transformation

Pl
Summary Sirathctyde

» Tseytin transformation converts formulas to CNF

» Generates < 3n clauses, where n is the number of connectives
» Avoids exponential blowup

» Can be further optimised

» Result is equisatisfiable

Atkey CS208 - Topic 9 - page 72 of 72

	Automating Logic, Part 1: Automating Logic
	Automating Logic, Part 2: SAT Solvers
	Automating Logic, Part 3: Faster SAT by Unit Propagation
	Automating Logic, Part 4: Conversion to CNF
	Automating Logic, Part 5: Tseytin Transformation

