
CS208 (Semester 1) Topic 9 :
Automating Logic

Dr. Robert Atkey
Computer & Information Sciences

Atkey CS208 - Topic 9 - page 1 of 72

Automating Logic, Part 1

Automating Logic

Atkey CS208 - Topic 9 - page 2 of 72

Automating Logic, Part 1: Automating Logic

What to Automate?
Given a formula P, we can ask:
1. Does P have a proof?
2. Is P valid?
3. Is P satisfiable?
4. For a model M, do we have M |= P?
5. Can we generate M, such that M |= P?
6. How many models does P have?

Given the expressiveness of Predicate Logic, this covers a large
range of questions.

Atkey CS208 - Topic 9 - page 3 of 72

Automating Logic, Part 1: Automating Logic

The Bad News

Lots of things are undecidable:
1. Validity in Predicate Logic
2. Entailment in Predicate Logic
3. Checking models of Predicate Logic
4. Model generation for Predicate Logic

Undecidable: No program that can perfectly say “yes” or “no”.

Atkey CS208 - Topic 9 - page 4 of 72

Automating Logic, Part 1: Automating Logic

More Bad News

Or theoretically intractable:
1. Validity / Satisfiability checking in Propositional Logic
2. Synthesis of finite models
3. Checking of finite models

Intractable: there is no (known) program to solve it that runs in
better than O(2n) on inputs of size n.

Atkey CS208 - Topic 9 - page 5 of 72

Automating Logic, Part 1: Automating Logic

The Good News

For undecidable problems, there are good semi-decision procedures.
Semi-decision: says “yes” exactly when the problem is solved. No
guarantees otherwise.

For intractable problems, there are heuristics that solve common
cases quickly.

Atkey CS208 - Topic 9 - page 6 of 72

Automating Logic, Part 1: Automating Logic

Many Algorithms
1. Proof Search

Try all possible proof rules, under some strategy
2. Resolution Provers

A proof system specialised to proof search
3. Specific tools for sub-languages of Predicate Logic

E.g., “Horn” clause provers
4. SAT / SMT Solvers

SATisfiabilty solvers
SATisfiabilty Modulo Theory solvers

We will look at SAT / SMT solvers here.

Atkey CS208 - Topic 9 - page 7 of 72

Automating Logic, Part 1: Automating Logic

Many Algorithms
1. Proof Search

Try all possible proof rules, under some strategy
2. Resolution Provers

A proof system specialised to proof search
3. Specific tools for sub-languages of Predicate Logic

E.g., “Horn” clause provers
4. SAT / SMT Solvers

SATisfiabilty solvers
SATisfiabilty Modulo Theory solvers

We will look at SAT / SMT solvers here.
Atkey CS208 - Topic 9 - page 7 of 72

Automating Logic, Part 1: Automating Logic

SAT / SMT

SAT solvers work on Propositional Logic.

SMT solvers work on a quantifier-free fragment of Predicate Logic.

Lots of industrial strength tools: Z3, CVC5, Yices, …

Used by (e.g.) Amazon Web Services to check access control rules,
Microsoft to verify software, …

Atkey CS208 - Topic 9 - page 8 of 72

Automating Logic, Part 2

SAT Solvers

Atkey CS208 - Topic 9 - page 9 of 72

Automating Logic, Part 2: SAT Solvers

SAT solvers

SATisfiability solvers.

The problem they solve:
▶ Given a formula P (in conjunctive normal form), find a

valuation v that makes it T and return SAT(v), or if there is
no such valuation, return UNSAT.

Atkey CS208 - Topic 9 - page 10 of 72

Automating Logic, Part 2: SAT Solvers

Solving SAT
▶ In the worst case, there are 2n cases to check, where n is the

number of atomic propositions.
▶ Checking each case is quick … but there are a lot of cases.

▶ This is the archetypal NP problem:
▶ If we knew the answer, it would be easy to check

(Polynomial time)
▶ But there are exponentially many to check

(Nondeterminism)

▶ It is unknown if there is a better way. Does P = NP?

Atkey CS208 - Topic 9 - page 11 of 72

Automating Logic, Part 2: SAT Solvers

Encoding Problems into SAT
In general, if we want to prove that P is valid, then it suffices to
show that ¬P is not satisifable:

1. Take P
2. Put ¬P into a SAT solver:

2.1 if ¬P is satisfiable, then we have a counter example to P

2.2 if ¬P is not satisfiable, then P is valid

Also, there are many problems that can be encoded as
Propositional Logic formulas.

Atkey CS208 - Topic 9 - page 12 of 72

Automating Logic, Part 2: SAT Solvers

But SAT is useful: Solving Problems

1. Package installations
(satisfying valuation = good package installation)

2. Solving Sudoku
(satisfying valuation = correct solution)

3. Solving Resource allocations
(satisfying valuation = feasible resource allocation)

Atkey CS208 - Topic 9 - page 13 of 72

Automating Logic, Part 2: SAT Solvers

SAT is Useful: Finding Bugs

1. Finding faults in systems
(satisfying valuation = path to a bad state)

2. Finding flaws in Access Control rules
(satisfying valuation = unexpectedly permitted request)

3. Verifying hardware
(satisfying valuation = counterexample to correctness)

Atkey CS208 - Topic 9 - page 14 of 72

Automating Logic, Part 2: SAT Solvers

An alluring proposition

Instead of writing custom solvers for all these problems, we:
1. translate into propositional logic; and
2. use an off the shelf SAT solver.

Atkey CS208 - Topic 9 - page 15 of 72

Automating Logic, Part 2: SAT Solvers

Solving the problem in practice
Despite the 2n worst case time, practical SAT solvers are possible:
1. Solvers don’t blindly check all cases:

▶ Use the formula to guide the search;
▶ Analyse dead ends to avoid finding them more than once;
▶ Very efficient data structures.

2. Human-made problems tend to be quite regular.
3. Modern SAT solvers can handle

▶ 10s of thousands of variables
▶ millions of clauses

4. Practical tools for solving real-world problems.

Atkey CS208 - Topic 9 - page 16 of 72

Automating Logic, Part 2: SAT Solvers

Input for SAT solvers
SAT solvers take input in Conjunctive Normal Form (CNF):

(¬a∨ ¬b∨ ¬c)

∧ (¬b∨ ¬c∨ ¬d)

∧ (¬a∨ ¬b∨ c)

∧ b

1. Entire formula is a conjunction C1 ∧ C2 ∧ · · · ∧ Cn

2. where each clause Ci = Li,1 ∨ Li,2 ∨ · · · ∨ Li,k

3. where each literal Li,j = xi,j or Li,j = ¬xi,j
Every formula can be put into CNF (later)

Atkey CS208 - Topic 9 - page 17 of 72

Automating Logic, Part 2: SAT Solvers

Conjunctive Normal Form
The restriction to CNF may seem like a massive restriction.

Every Propositional Logic formula can be translated into CNF.

1. Slow way: “multiply out the brackets”
Resulting formula might be exponentially larger

2. Fast way: “Tseytin translation”
Resulting formulas is at most 3 times larger

We’ll just assume this can be done for now.

Atkey CS208 - Topic 9 - page 18 of 72

Automating Logic, Part 2: SAT Solvers

A SAT Solver’s job
Given clauses that look like:

(¬a∨ ¬b∨ ¬c)

∧ (¬b∨ ¬c∨ ¬d)

∧ (¬a∨ ¬b∨ c)

∧ b

To find a valuation v for the a, ... such that at least one literal in
every clause is true.

Returns either: SAT(v) or UNSAT.
Atkey CS208 - Topic 9 - page 19 of 72

Automating Logic, Part 2: SAT Solvers

Basic idea of the algorithm

1. The clauses C1, . . . , Cn to be satisfied are fixed;
2. The state is a partial valuation (next slide);
3. At each step we pick a way to modify the current partial

valuation by choosing from a collection of rules;
4. Algorithm terminates when either a satisfying valuation is

constructed, or it is clear that this is not possible.

This is known as the DPLL Algorithm.

Atkey CS208 - Topic 9 - page 20 of 72

Automating Logic, Part 2: SAT Solvers

Partial Valuations

To describe what a SAT solver does, we need partial valuations.

A partial valuation v? is a:
▶ sequence of assignments to atoms; with each one marked

1. decision point, if we guessed this value.
2. forced, if we were forced to have this value.

Examples: v?1 = [a :d T, b :d F, c :f T]
v?2 = [a :f F, b :d F]

Atkey CS208 - Topic 9 - page 21 of 72

Automating Logic, Part 2: SAT Solvers

Differences with Valuations

1. The order matters
(we keep track of what decisions we make during the search)

2. Not all atoms need an assignment
(we want to represent partial solutions during the search)

3. We mark decision points and forced decisions.

Atkey CS208 - Topic 9 - page 22 of 72

Automating Logic, Part 2: SAT Solvers

Notation

We write
v?1, a :d x, v?2

for a partial valuation with a :d x somewhere in the middle.

We write
decisionfree(v?)

if none of the assignments in v? are marked d

(i.e., all decisions in v? are forced)

Atkey CS208 - Topic 9 - page 23 of 72

Automating Logic, Part 2: SAT Solvers

1. Initialisation

We start with the empty partial valuation v? = [].
(We make no commitments)

We must extend this guess to a valuation that satisfies all the
clauses.

Atkey CS208 - Topic 9 - page 24 of 72

Automating Logic, Part 2: SAT Solvers

2. Guessing

If there is an atom a in the clauses that is not in the current partial
valuation v?, then we can make a guess. We pick one of:

v?, a :d T or v?, a :d F

(Note: we have marked this as a decision point)

Atkey CS208 - Topic 9 - page 25 of 72

Automating Logic, Part 2: SAT Solvers

3. Success

If the current v? makes all the clauses true (for all i, JCiKv? = T),
then stop with SAT(v?).

Atkey CS208 - Topic 9 - page 26 of 72

Automating Logic, Part 2: SAT Solvers

Example

(
✓
¬a ∨

✓
¬b ∨

✓
¬c)∧(

✓
¬b ∨

✓
¬c ∨

✓
¬d)∧(

✓
¬a ∨

✓
¬b ∨

✓
c)∧

✓
b

(Need at least one cyan in every clause)

Sequence of (lucky) guesses
1. []

2. [a :d F]
3. [a :d F, b :d T]
4. [a :d F, b :d T, c :d F]
5. [a :d F, b :d T, c :d F, d :d F], a satisfying valuation.

Atkey CS208 - Topic 9 - page 27 of 72

Automating Logic, Part 2: SAT Solvers

Example

(
✓
¬a ∨

✓
¬b ∨

✓
¬c)∧(

✓
¬b ∨

✓
¬c ∨

✓
¬d)∧(

✓
¬a ∨

✓
¬b ∨

✓
c)∧

✓
b

(Need at least one cyan in every clause)

Sequence of (lucky) guesses
1. []

2. [a :d F]

3. [a :d F, b :d T]
4. [a :d F, b :d T, c :d F]
5. [a :d F, b :d T, c :d F, d :d F], a satisfying valuation.

Atkey CS208 - Topic 9 - page 27 of 72

Automating Logic, Part 2: SAT Solvers

Example

(
✓
¬a ∨

×
¬b ∨

✓
¬c)∧(

×
¬b ∨

✓
¬c ∨

✓
¬d)∧(

✓
¬a ∨

×
¬b ∨

✓
c)∧

✓
b

(Need at least one cyan in every clause)

Sequence of (lucky) guesses
1. []

2. [a :d F]
3. [a :d F, b :d T]

4. [a :d F, b :d T, c :d F]
5. [a :d F, b :d T, c :d F, d :d F], a satisfying valuation.

Atkey CS208 - Topic 9 - page 27 of 72

Automating Logic, Part 2: SAT Solvers

Example

(
✓
¬a ∨

×
¬b ∨

✓
¬c)∧(

×
¬b ∨

✓
¬c ∨

✓
¬d)∧(

✓
¬a ∨

×
¬b ∨

×
c)∧

✓
b

(Need at least one cyan in every clause)

Sequence of (lucky) guesses
1. []

2. [a :d F]
3. [a :d F, b :d T]
4. [a :d F, b :d T, c :d F]

5. [a :d F, b :d T, c :d F, d :d F], a satisfying valuation.

Atkey CS208 - Topic 9 - page 27 of 72

Automating Logic, Part 2: SAT Solvers

Example

(
✓
¬a ∨

×
¬b ∨

✓
¬c)∧(

×
¬b ∨

✓
¬c ∨

✓
¬d)∧(

✓
¬a ∨

×
¬b ∨

×
c)∧

✓
b

(Need at least one cyan in every clause)

Sequence of (lucky) guesses
1. []

2. [a :d F]
3. [a :d F, b :d T]
4. [a :d F, b :d T, c :d F]
5. [a :d F, b :d T, c :d F, d :d F], a satisfying valuation.

Atkey CS208 - Topic 9 - page 27 of 72

But we can’t program “luck”!

Atkey CS208 - Topic 9 - page 28 of 72

Automating Logic, Part 2: SAT Solvers

4. Backtracking
If we have a partial valuation:

v?1, a :d x, v?2

and decisionfree(v?2) (so a : x was our most recent guess).

Then we backtrack (throw away v?2) and change our mind:

v?1, a :f ¬x

marking the assignment as forced.

Atkey CS208 - Topic 9 - page 29 of 72

Automating Logic, Part 2: SAT Solvers

5. Failure

If all decisions are forced (decisionfree(v?)), and there is at least
one clause Ci such that JCKv? = F, then return UNSAT.

Atkey CS208 - Topic 9 - page 30 of 72

Automating Logic, Part 2: SAT Solvers

(
✓
¬a ∨

✓
¬b ∨

✓
¬c)∧ (

✓
¬b ∨

✓
¬c ∨

✓
¬d)∧ (

✓
¬a ∨

✓
¬b ∨

✓
c)∧

✓
b

1. []

2. [a :d T]
3. [a :d T, b :d T]
4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…
5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…
6. [a :d T, b :f F] clause 4 failed, backtrack…
7. [a :f F]
8. [a :f F, b :d T]
9. [a :f F, b :d T, c :d T]

10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack
11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Topic 9 - page 31 of 72

Automating Logic, Part 2: SAT Solvers

(
×
¬a ∨

✓
¬b ∨

✓
¬c)∧ (

✓
¬b ∨

✓
¬c ∨

✓
¬d)∧ (

×
¬a ∨

✓
¬b ∨

✓
c)∧

✓
b

1. []

2. [a :d T]

3. [a :d T, b :d T]
4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…
5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…
6. [a :d T, b :f F] clause 4 failed, backtrack…
7. [a :f F]
8. [a :f F, b :d T]
9. [a :f F, b :d T, c :d T]

10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack
11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Topic 9 - page 31 of 72

Automating Logic, Part 2: SAT Solvers

(
×
¬a ∨

×
¬b ∨

✓
¬c)∧ (

×
¬b ∨

✓
¬c ∨

✓
¬d)∧ (

×
¬a ∨

×
¬b ∨

✓
c)∧

✓
b

1. []

2. [a :d T]
3. [a :d T, b :d T]

4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…
5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…
6. [a :d T, b :f F] clause 4 failed, backtrack…
7. [a :f F]
8. [a :f F, b :d T]
9. [a :f F, b :d T, c :d T]

10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack
11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Topic 9 - page 31 of 72

Automating Logic, Part 2: SAT Solvers

(
×
¬a ∨

×
¬b ∨

×
¬c)∧ (

×
¬b ∨

×
¬c ∨

✓
¬d)∧ (

×
¬a ∨

×
¬b ∨

✓
c)∧

✓
b

1. []

2. [a :d T]
3. [a :d T, b :d T]
4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…

5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…
6. [a :d T, b :f F] clause 4 failed, backtrack…
7. [a :f F]
8. [a :f F, b :d T]
9. [a :f F, b :d T, c :d T]

10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack
11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Topic 9 - page 31 of 72

Automating Logic, Part 2: SAT Solvers

(
×
¬a ∨

×
¬b ∨

✓
¬c)∧ (

×
¬b ∨

✓
¬c ∨

✓
¬d)∧ (

×
¬a ∨

×
¬b ∨

×
c)∧

✓
b

1. []

2. [a :d T]
3. [a :d T, b :d T]
4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…
5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…

6. [a :d T, b :f F] clause 4 failed, backtrack…
7. [a :f F]
8. [a :f F, b :d T]
9. [a :f F, b :d T, c :d T]

10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack
11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Topic 9 - page 31 of 72

Automating Logic, Part 2: SAT Solvers

(
×
¬a ∨

✓
¬b ∨

✓
¬c)∧ (

✓
¬b ∨

✓
¬c ∨

✓
¬d)∧ (

×
¬a ∨

✓
¬b ∨

✓
c)∧

×
b

1. []

2. [a :d T]
3. [a :d T, b :d T]
4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…
5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…
6. [a :d T, b :f F] clause 4 failed, backtrack…

7. [a :f F]
8. [a :f F, b :d T]
9. [a :f F, b :d T, c :d T]

10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack
11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Topic 9 - page 31 of 72

Automating Logic, Part 2: SAT Solvers

(
✓
¬a ∨

✓
¬b ∨

✓
¬c)∧ (

✓
¬b ∨

✓
¬c ∨

✓
¬d)∧ (

✓
¬a ∨

✓
¬b ∨

✓
c)∧

✓
b

1. []

2. [a :d T]
3. [a :d T, b :d T]
4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…
5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…
6. [a :d T, b :f F] clause 4 failed, backtrack…
7. [a :f F]

8. [a :f F, b :d T]
9. [a :f F, b :d T, c :d T]

10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack
11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Topic 9 - page 31 of 72

Automating Logic, Part 2: SAT Solvers

(
✓
¬a ∨

×
¬b ∨

✓
¬c)∧ (

×
¬b ∨

✓
¬c ∨

✓
¬d)∧ (

✓
¬a ∨

×
¬b ∨

✓
c)∧

✓
b

1. []

2. [a :d T]
3. [a :d T, b :d T]
4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…
5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…
6. [a :d T, b :f F] clause 4 failed, backtrack…
7. [a :f F]
8. [a :f F, b :d T]

9. [a :f F, b :d T, c :d T]
10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack
11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Topic 9 - page 31 of 72

Automating Logic, Part 2: SAT Solvers

(
✓
¬a ∨

×
¬b ∨

×
¬c)∧ (

×
¬b ∨

×
¬c ∨

✓
¬d)∧ (

✓
¬a ∨

×
¬b ∨

✓
c)∧

✓
b

1. []

2. [a :d T]
3. [a :d T, b :d T]
4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…
5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…
6. [a :d T, b :f F] clause 4 failed, backtrack…
7. [a :f F]
8. [a :f F, b :d T]
9. [a :f F, b :d T, c :d T]

10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack
11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Topic 9 - page 31 of 72

Automating Logic, Part 2: SAT Solvers

(
✓
¬a ∨

×
¬b ∨

×
¬c)∧ (

×
¬b ∨

×
¬c ∨

×
¬d)∧ (

✓
¬a ∨

×
¬b ∨

✓
c)∧

✓
b

1. []

2. [a :d T]
3. [a :d T, b :d T]
4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…
5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…
6. [a :d T, b :f F] clause 4 failed, backtrack…
7. [a :f F]
8. [a :f F, b :d T]
9. [a :f F, b :d T, c :d T]

10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack

11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Topic 9 - page 31 of 72

Automating Logic, Part 2: SAT Solvers

(
✓
¬a ∨

×
¬b ∨

×
¬c)∧ (

×
¬b ∨

×
¬c ∨

✓
¬d)∧ (

✓
¬a ∨

×
¬b ∨

✓
c)∧

✓
b

1. []

2. [a :d T]
3. [a :d T, b :d T]
4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…
5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…
6. [a :d T, b :f F] clause 4 failed, backtrack…
7. [a :f F]
8. [a :f F, b :d T]
9. [a :f F, b :d T, c :d T]

10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack
11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Topic 9 - page 31 of 72

Automating Logic, Part 2: SAT Solvers

Summary

1. SAT solvers are tools that find satisfying valuations for
formulas in CNF.

2. Having a SAT solver enables solving of problems modelled
using logic.

3. The core algorithm is a backtracking search.

Atkey CS208 - Topic 9 - page 32 of 72

Automating Logic, Part 3

Faster SAT by Unit
Propagation

Atkey CS208 - Topic 9 - page 33 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

Backtracking is Oblivious

The example:

(¬a∨ ¬b∨ ¬c)∧ (¬b∨ ¬c∨ ¬d)∧ (¬a∨ ¬b∨ c)∧ b

Backtracking tries the atoms in some order.

But we can see immediately that b must be true.

Other forced assignments occur during the search.

Atkey CS208 - Topic 9 - page 34 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

Making the Search less naive
If we are in a situation like:

(
×
¬b ∨

×
¬c ∨

✓
¬d)

then if the current valuation is to succeed in any way, it must be
the case that d : F.

(because we need at least one literal in every clause to be true.)

Using this, we can make the search a little less naive.

Atkey CS208 - Topic 9 - page 35 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

6. Unit Propagation Step

(a) If there is a clause C∨ aand JCKv? = F, then we extend v? to:

v?, a :f T

(b) If there is a clause C∨ ¬a and JCKv? = F, then we extend v? to:

v?, a :f F

(Note: the a needn’t necessarily appear at the end of the clause)

Atkey CS208 - Topic 9 - page 36 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

(
✓
¬a ∨

✓
¬b ∨

✓
¬c)∧ (

✓
¬b ∨

✓
¬c ∨

✓
¬d)∧ (

✓
¬a ∨

✓
¬b ∨

✓
c)∧

✓
b

1. [] do unit propagation…

2. [b :f T]
3. [b :f T, a :d T] do unit propagation…
4. [b :f T, a :d T, c :f F] clause 3 failed, backtrack…
5. [b :f T, a :f F]
6. [b :f T, a :f F, c :d T] do unit propagation…
7. [b :f T, a :f F, c :d T, d :f F] SAT

One backtrack vs. four without unit propagation.

Atkey CS208 - Topic 9 - page 37 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

(
✓
¬a ∨

×
¬b ∨

✓
¬c)∧ (

×
¬b ∨

✓
¬c ∨

✓
¬d)∧ (

✓
¬a ∨

×
¬b ∨

✓
c)∧

✓
b

1. [] do unit propagation…
2. [b :f T]

3. [b :f T, a :d T] do unit propagation…
4. [b :f T, a :d T, c :f F] clause 3 failed, backtrack…
5. [b :f T, a :f F]
6. [b :f T, a :f F, c :d T] do unit propagation…
7. [b :f T, a :f F, c :d T, d :f F] SAT

One backtrack vs. four without unit propagation.

Atkey CS208 - Topic 9 - page 37 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

(
×
¬a ∨

×
¬b ∨

✓
¬c)∧ (

×
¬b ∨

✓
¬c ∨

✓
¬d)∧ (

×
¬a ∨

×
¬b ∨

✓
c)∧

✓
b

1. [] do unit propagation…
2. [b :f T]
3. [b :f T, a :d T] do unit propagation…

4. [b :f T, a :d T, c :f F] clause 3 failed, backtrack…
5. [b :f T, a :f F]
6. [b :f T, a :f F, c :d T] do unit propagation…
7. [b :f T, a :f F, c :d T, d :f F] SAT

One backtrack vs. four without unit propagation.

Atkey CS208 - Topic 9 - page 37 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

(
×
¬a ∨

×
¬b ∨

✓
¬c)∧ (

×
¬b ∨

✓
¬c ∨

✓
¬d)∧ (

×
¬a ∨

×
¬b ∨

×
c)∧

✓
b

1. [] do unit propagation…
2. [b :f T]
3. [b :f T, a :d T] do unit propagation…
4. [b :f T, a :d T, c :f F] clause 3 failed, backtrack…

5. [b :f T, a :f F]
6. [b :f T, a :f F, c :d T] do unit propagation…
7. [b :f T, a :f F, c :d T, d :f F] SAT

One backtrack vs. four without unit propagation.

Atkey CS208 - Topic 9 - page 37 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

(
✓
¬a ∨

×
¬b ∨

✓
¬c)∧ (

×
¬b ∨

✓
¬c ∨

✓
¬d)∧ (

✓
¬a ∨

×
¬b ∨

✓
c)∧

✓
b

1. [] do unit propagation…
2. [b :f T]
3. [b :f T, a :d T] do unit propagation…
4. [b :f T, a :d T, c :f F] clause 3 failed, backtrack…
5. [b :f T, a :f F]

6. [b :f T, a :f F, c :d T] do unit propagation…
7. [b :f T, a :f F, c :d T, d :f F] SAT

One backtrack vs. four without unit propagation.

Atkey CS208 - Topic 9 - page 37 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

(
✓
¬a ∨

×
¬b ∨

×
¬c)∧ (

×
¬b ∨

×
¬c ∨

✓
¬d)∧ (

✓
¬a ∨

×
¬b ∨

✓
c)∧

✓
b

1. [] do unit propagation…
2. [b :f T]
3. [b :f T, a :d T] do unit propagation…
4. [b :f T, a :d T, c :f F] clause 3 failed, backtrack…
5. [b :f T, a :f F]
6. [b :f T, a :f F, c :d T] do unit propagation…

7. [b :f T, a :f F, c :d T, d :f F] SAT

One backtrack vs. four without unit propagation.

Atkey CS208 - Topic 9 - page 37 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

(
✓
¬a ∨

×
¬b ∨

×
¬c)∧ (

×
¬b ∨

×
¬c ∨

✓
¬d)∧ (

✓
¬a ∨

×
¬b ∨

✓
c)∧

✓
b

1. [] do unit propagation…
2. [b :f T]
3. [b :f T, a :d T] do unit propagation…
4. [b :f T, a :d T, c :f F] clause 3 failed, backtrack…
5. [b :f T, a :f F]
6. [b :f T, a :f F, c :d T] do unit propagation…
7. [b :f T, a :f F, c :d T, d :f F] SAT

One backtrack vs. four without unit propagation.

Atkey CS208 - Topic 9 - page 37 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

(
✓
¬a ∨

×
¬b ∨

×
¬c)∧ (

×
¬b ∨

×
¬c ∨

✓
¬d)∧ (

✓
¬a ∨

×
¬b ∨

✓
c)∧

✓
b

1. [] do unit propagation…
2. [b :f T]
3. [b :f T, a :d T] do unit propagation…
4. [b :f T, a :d T, c :f F] clause 3 failed, backtrack…
5. [b :f T, a :f F]
6. [b :f T, a :f F, c :d T] do unit propagation…
7. [b :f T, a :f F, c :d T, d :f F] SAT

One backtrack vs. four without unit propagation.
Atkey CS208 - Topic 9 - page 37 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

2-SAT
If every clause has at most two literals, UP means less backtracking:

(
✓

¬libD1 ∨
✓

¬libD2) ∧ (
✓

¬libC1 ∨
✓

¬libC2)

∧ (
✓

¬progA1 ∨
✓

¬progA2) ∧ (
✓

¬progA1 ∨
✓

libC1)

∧ (
✓

¬progA2 ∨
✓

libC2) ∧ (
✓

¬libC1 ∨
✓

libD2)

∧ (
✓

¬libC2 ∨
✓

libD2) ∧ (
✓

progA1 ∨
✓

progA2)

[]

Atkey CS208 - Topic 9 - page 38 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

2-SAT
If every clause has at most two literals, UP means less backtracking:

(
✓

¬libD1 ∨
✓

¬libD2) ∧ (
✓

¬libC1 ∨
✓

¬libC2)

∧ (
×

¬progA1 ∨
✓

¬progA2) ∧ (
×

¬progA1 ∨
✓

libC1)

∧ (
✓

¬progA2 ∨
✓

libC2) ∧ (
✓

¬libC1 ∨
✓

libD2)

∧ (
✓

¬libC2 ∨
✓

libD2) ∧ (
✓

progA1 ∨
✓

progA2)

[progA1 :d T]
Atkey CS208 - Topic 9 - page 38 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

2-SAT
If every clause has at most two literals, UP means less backtracking:

(
✓

¬libD1 ∨
✓

¬libD2) ∧ (
✓

¬libC1 ∨
✓

¬libC2)

∧ (
×

¬progA1 ∨
✓

¬progA2) ∧ (
×

¬progA1 ∨
✓

libC1)

∧ (
✓

¬progA2 ∨
✓

libC2) ∧ (
✓

¬libC1 ∨
✓

libD2)

∧ (
✓

¬libC2 ∨
✓

libD2) ∧ (
✓

progA1 ∨
×

progA2)

[progA1 :d T, progA2 :f F]
Atkey CS208 - Topic 9 - page 38 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

2-SAT
If every clause has at most two literals, UP means less backtracking:

(
✓

¬libD1 ∨
✓

¬libD2) ∧ (
×

¬libC1 ∨
✓

¬libC2)

∧ (
×

¬progA1 ∨
✓

¬progA2) ∧ (
×

¬progA1 ∨
✓

libC1)

∧ (
✓

¬progA2 ∨
✓

libC2) ∧ (
×

¬libC1 ∨
✓

libD2)

∧ (
✓

¬libC2 ∨
✓

libD2) ∧ (
✓

progA1 ∨
×

progA2)

[progA1 :d T, progA2 :f F, libC1 :f T]
Atkey CS208 - Topic 9 - page 38 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

2-SAT
If every clause has at most two literals, UP means less backtracking:

(
✓

¬libD1 ∨
✓

¬libD2) ∧ (
×

¬libC1 ∨
✓

¬libC2)

∧ (
×

¬progA1 ∨
✓

¬progA2) ∧ (
×

¬progA1 ∨
✓

libC1)

∧ (
✓

¬progA2 ∨
×

libC2) ∧ (
×

¬libC1 ∨
✓

libD2)

∧ (
✓

¬libC2 ∨
✓

libD2) ∧ (
✓

progA1 ∨
×

progA2)

[progA1 :d T, progA2 :f F, libC1 :f T, libC2 :f F]
Atkey CS208 - Topic 9 - page 38 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

2-SAT
If every clause has at most two literals, UP means less backtracking:

(
✓

¬libD1 ∨
×

¬libD2) ∧ (
×

¬libC1 ∨
✓

¬libC2)

∧ (
×

¬progA1 ∨
✓

¬progA2) ∧ (
×

¬progA1 ∨
✓

libC1)

∧ (
✓

¬progA2 ∨
×

libC2) ∧ (
×

¬libC1 ∨
✓

libD2)

∧ (
✓

¬libC2 ∨
✓

libD2) ∧ (
✓

progA1 ∨
×

progA2)

[progA1 :d T, progA2 :f F, libC1 :f T, libC2 :f F, libD2 :f T]
Atkey CS208 - Topic 9 - page 38 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

2-SAT
If every clause has at most two literals, UP means less backtracking:

(
✓

¬libD1 ∨
×

¬libD2) ∧ (
×

¬libC1 ∨
✓

¬libC2)

∧ (
×

¬progA1 ∨
✓

¬progA2) ∧ (
×

¬progA1 ∨
✓

libC1)

∧ (
✓

¬progA2 ∨
×

libC2) ∧ (
×

¬libC1 ∨
✓

libD2)

∧ (
✓

¬libC2 ∨
✓

libD2) ∧ (
✓

progA1 ∨
×

progA2)

[progA1 :d T, progA2 :f F, libC1 :f T, libC2 :f F, libD2 :f T, libD1 :f F]
Atkey CS208 - Topic 9 - page 38 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

2-SAT

If every clause has at most two literals,
▶ UP means at most one backtrack
▶ Means that we can solve the problem in polynomial time
▶ So for the n-SAT problem:

▶ If n ≤ 2, there is a fast polynomial time algorithm
▶ If n ≥ 3, no known general fast algorithm

Atkey CS208 - Topic 9 - page 39 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

Summary of the Rules 1

DecideTRue v? =⇒ v?, a :d T if a is not assigned in v?

DecideFalse v? =⇒ v?, a :d F if a is not assigned in v?

Success v? =⇒ SAT(v?) if v? makes all the
clauses true.

Atkey CS208 - Topic 9 - page 40 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

Summary of the Rules 2

BacKTRacK v?1, a :d x, v?2 =⇒ v?1, a :f ¬x if v?2 is decision free

Fail v? =⇒ UNSAT if v? is decision free, and
makes at least one clause
false.

Atkey CS208 - Topic 9 - page 41 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

Summary of the Rules 3

UnitPRopTRue v? =⇒ v?, a :f T if there is a clause C∨ a

and JCK(v?) = F

UnitPRopFalse v? =⇒ v?, a :f F if there is a clause C∨ ¬a

and JCK(v?) = F

Atkey CS208 - Topic 9 - page 42 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

Real SAT solvers
Use very efficient data structures. (Key is very fast unit propagation)

Use heuristics to guide the search:
▶ Which atom to try next? (not just a, b, c, ...)
▶ Whether to try T or F first?

Incorporate additional rules:
▶ Non-chronological backjumping

(skip several decision points by analysing conflicts)

▶ Clause learning to avoid doing the same work over again.
▶ “CDCL” (Conflict Driven Clause Learning)
▶ Random walk between possible valuations “WalkSAT”.

Atkey CS208 - Topic 9 - page 43 of 72

Automating Logic, Part 3: Faster SAT by Unit Propagation

Summary

▶ Unit Propagation speeds up SAT Solving
(by using the structure of the problem)

▶ This makes 2-SAT very fast
▶ Real SAT Solvers are very sophisticated.

Atkey CS208 - Topic 9 - page 44 of 72

Automating Logic, Part 4

Conversion to CNF

Atkey CS208 - Topic 9 - page 45 of 72

Automating Logic, Part 4: Conversion to CNF

Conjunctive Normal Form (CNF)

(¬a∨ ¬b∨ ¬c)

∧ (¬b∨ ¬c∨ ¬d)

∧ (¬a∨ ¬b∨ c)

∧ b

1. Entire formula is a conjunction C1 ∧ C2 ∧ · · · ∧ Cn

2. where each clause Ci = Li,1 ∨ Li,2 ∨ · · · ∨ Li,k

3. where each literal Li,j = xi,j or Li,j = ¬xi,j

Atkey CS208 - Topic 9 - page 46 of 72

Automating Logic, Part 4: Conversion to CNF

Disjunctive Normal Form (DNF)
Disjunctive Normal Form (DNF) is similar, but swaps ∧ and ∨.

(¬a∧ ¬b∧ ¬c)

∨ (¬b∧ ¬c∧ ¬d)

∨ (¬a∧ ¬b∧ c)

∨ b

1. Entire formula is a disjunction D1 ∨D2 ∨ · · · ∨Dn

2. where each disjunct Di = Li,1 ∧ Li,2 ∧ · · · ∧ Li,k

3. where each literal Li,j = xi,j or Li,j = ¬xi,j
Atkey CS208 - Topic 9 - page 47 of 72

Automating Logic, Part 4: Conversion to CNF

Normal Forms and Satisfiability

CNF
Each clause is a constraint and all constraints must be satisfied.

DNF
At least one of the disjuncts must be satisfied.

Exercise: How would you write a SAT Solver for formulas in DNF?
Why don’t we do this instead of CNF?

Atkey CS208 - Topic 9 - page 48 of 72

Automating Logic, Part 4: Conversion to CNF

Conversion to CNF
Not every formula is in CNF, e.g.,

(A∧ B) → (B∧A)

What if we want to use a SAT solver to determine satisfiability?

Two ways to convert a formula to CNF that is “the same”:
▶ “Multiplying out”
▶ Tseytin transformation

First we need to define what we mean by “the same”.
Atkey CS208 - Topic 9 - page 49 of 72

Automating Logic, Part 4: Conversion to CNF

Equivalent Formulas

Define two formulas P and Q to be equivalent, written

P ≡ Q

exactly when, for all valuations v,

JPKv = JQKv
Equivalent to both P |= Q and Q |= P being valid

Atkey CS208 - Topic 9 - page 50 of 72

Automating Logic, Part 4: Conversion to CNF

Simplifying Implication

A → B ≡ ¬A∨ B

valuation P Q

A B ¬A A → B ¬A∨ B

F F T T T
F T T T T
T F F F F
T T F T T

Atkey CS208 - Topic 9 - page 51 of 72

Automating Logic, Part 4: Conversion to CNF

Double Negation
Negating twice is the same as doing nothing:

A ≡ ¬¬A

valuation P Q

A ¬A A ¬¬A

F T F F
T F T T

Atkey CS208 - Topic 9 - page 52 of 72

Automating Logic, Part 4: Conversion to CNF

de Morgan’s laws
Negation swaps ∧ and ∨:

¬(A∧ B) ≡ ¬A∨ ¬B

valuation P Q

A B ¬A ¬B A∧ B ¬(A∧ B) ¬A∨ ¬B

F F T T F T T
F T T F F T T
T F F T F T T
T T F F T F F

Similar for ¬(A∨ B) ≡ ¬A∧ ¬B
Atkey CS208 - Topic 9 - page 53 of 72

Automating Logic, Part 4: Conversion to CNF

Negation Normal Form (NNF)
Using the equivalences:

A → B ≡ ¬A∨ B

A ≡ ¬¬A

¬(A∧ B) ≡ ¬A∨ ¬B

¬(A∨ B) ≡ ¬A∧ ¬B

We can rewrite any formula into an equivalent one with
1. No implications (→s)
2. All negation signs on the atomic propositions

Atkey CS208 - Topic 9 - page 54 of 72

Automating Logic, Part 4: Conversion to CNF

Example

(a∧ (a → b)) → c

≡ ¬(a∧ (a → b))∨ c converted →
≡ ¬(a∧ (¬a∨ b))∨ c converted →
≡ ¬a∨ ¬(¬a∨ b)∨ c converted ∧ to ∨
≡ ¬a∨ (¬¬a∧ ¬b)∨ c converted ∨ to ∧
≡ ¬a∨ (a∧ ¬b)∨ c converted double negation

Now in NNF, but not CNF.

Atkey CS208 - Topic 9 - page 55 of 72

Automating Logic, Part 4: Conversion to CNF

“Push” ∨s into ∧s

A∨ (B∧ C) ≡ (A∨ B)∧ (A∨ C)

valuation P Q

A B C B∧ C A∨ B A∨ C A∨ (B∧ C) (A∨ B)∧ (A∨ C)

F F F F F F F F
F F T F F T F F
F T F F T F F F
F T T T T T T T
T F F F T T T T
T F T F T T T T
T T F F T T T T
T T T T T T T T

Atkey CS208 - Topic 9 - page 56 of 72

Automating Logic, Part 4: Conversion to CNF

Conversion to CNF

¬a∨ (a∧ ¬b)∨ c

≡ multiply out
¬a∨ ((a∨ c)∧ (¬b∨ c))

≡ multiply out
(¬a∨ a∨ c)∧ (¬a∨ ¬b∨ c)

Now in CNF.

(Can further simplify to: (¬a∨ ¬b∨ c))

Atkey CS208 - Topic 9 - page 57 of 72

Automating Logic, Part 4: Conversion to CNF

Exponential Blowup

If we convert (a∧b∧ c)∨ (d∧e∧ f)∨ (g∧h∧ i) to CNF, we get:

(a∨ d∨ g)∧ (a∨ d∨ h)∧ (a∨ d∨ i)∧ (a∨ e∨ g)∧ (a∨ e∨ h)∧

(a∨ e∨ i)∧ (a∨ f∨ g)∧ (a∨ f∨ h)∧ (a∨ f∨ i)∧ (b∨ d∨ g)∧

(b∨ d∨ h)∧ (b∨ d∨ i)∧ (b∨ e∨ g)∧ (b∨ e∨ h)∧ (b∨ e∨ i)∧

(b∨ f∨ g)∧ (b∨ f∨ h)∧ (b∨ f∨ i)∧ (c∨ d∨ g)∧ (c∨ d∨ h)∧

(c∨ d∨ i)∧ (c∨ e∨ g)∧ (c∨ e∨ h)∧ (c∨ e∨ i)∧ (c∨ f∨ g)∧

(c∨ f∨ h)∧ (c∨ f∨ i)

which has 27 clauses.

Atkey CS208 - Topic 9 - page 58 of 72

Automating Logic, Part 4: Conversion to CNF

Summary

▶ SAT Solvers take their input in CNF
▶ Some problems are naturally in CNF
▶ Conversion by “multiplying out” can generate huge formulas
▶ We need something better

Atkey CS208 - Topic 9 - page 59 of 72

Automating Logic, Part 5

Tseytin Transformation

Atkey CS208 - Topic 9 - page 60 of 72

Automating Logic, Part 5: Tseytin Transformation

Tseytin Transformation
The Tseytin transformation converts a formula into CNF with at
most 3 times as many clauses as connectives in the original formula
(versus potentially exponential for multiplying out the brackets).

1. Convert the formula into equations
One connective⇝ one equation

2. Convert each equation into clauses
One equation⇝ 2-3 clauses

Result is not equivalent, but equisatisfiable.

Atkey CS208 - Topic 9 - page 61 of 72

Automating Logic, Part 5: Tseytin Transformation

1. Name subformulas
Take the formula and name all the non-atomic subformulas.

Example:
¬(a∧ (¬a∨ b))∨ c

becomes:
x1 = x2 ∨ c

x2 = ¬x3

x3 = a∧ x4

x4 = x5 ∨ b

x5 = ¬a

Atkey CS208 - Topic 9 - page 62 of 72

Automating Logic, Part 5: Tseytin Transformation

2. Converting Equations to Clauses
Given an equation like x = y∧ z, we want some clauses that are
true for every valuation that satisfies the equation.

Derive by conversion to CNF:

x = y∧ z

≡ (x → (y∧ z))∧ ((y∧ z) → x)

≡ (¬x∨ (y∧ z))∧ (¬(y∧ z)∨ x)

≡ (¬x∨ y)∧ (¬x∨ z)∧ (¬y∨ ¬z∨ x)

Atkey CS208 - Topic 9 - page 63 of 72

Automating Logic, Part 5: Tseytin Transformation

2. Converting Equations to Clauses
Given an equation like x = y∧ z, we want some clauses that are
true for every valuation that satisfies the equation.

Derive by conversion to CNF:

x = y∧ z

≡ (x → (y∧ z))∧ ((y∧ z) → x)

≡ (¬x∨ (y∧ z))∧ (¬(y∧ z)∨ x)

≡ (¬x∨ y)∧ (¬x∨ z)∧ (¬y∨ ¬z∨ x)

Atkey CS208 - Topic 9 - page 63 of 72

Automating Logic, Part 5: Tseytin Transformation

2. Equations to Clauses
Take each equation x = y□ z and turn it into clauses:
1. If x = y∧ z, add

(¬x∨ y)∧ (¬x∨ z)∧ (¬y∨ ¬z∨ x)

2. If x = y∨ z, add

(y∨ z∨ ¬x)∧ (¬y∨ x)∧ (¬z∨ x)

3. If x = ¬y, add
(¬y∨ ¬x)∧ (y∨ x)

Atkey CS208 - Topic 9 - page 64 of 72

Automating Logic, Part 5: Tseytin Transformation

3. Assert the top level variable

If x is the name of the whole formula, add a clause with just x:

equation 1
∧ equation 2
∧ ...

∧ x

This asserts that our original formula must be true.

Atkey CS208 - Topic 9 - page 65 of 72

Automating Logic, Part 5: Tseytin Transformation

Example: ¬(A∧ B)∨ (B∧A)
1. Name the subformulas:

x1 = x2 ∨ x4 x2 = ¬x3

x3 = A∧ B x4 = B∧A

2+3. Generate clauses: (One line per equation)

(x2 ∨ x4 ∨ ¬x1)∧ (¬x2 ∨ x1)∧ (¬x4 ∨ x1)

∧ (¬x3 ∨ ¬x2)∧ (x3 ∨ x2)

∧ (¬A∨ ¬B∨ x3)∧ (A∨ ¬x3)∧ (B∨ ¬x3)

∧ (¬B∨ ¬A∨ x4)∧ (B∨ ¬x4)∧ (A∨ ¬x4)

∧ x1

Atkey CS208 - Topic 9 - page 66 of 72

Automating Logic, Part 5: Tseytin Transformation

Example: ¬(A∧ B)∨ (B∧A)
1. Name the subformulas:

x1 = x2 ∨ x4 x2 = ¬x3

x3 = A∧ B x4 = B∧A

2+3. Generate clauses: (One line per equation)

(x2 ∨ x4 ∨ ¬x1)∧ (¬x2 ∨ x1)∧ (¬x4 ∨ x1)

∧ (¬x3 ∨ ¬x2)∧ (x3 ∨ x2)

∧ (¬A∨ ¬B∨ x3)∧ (A∨ ¬x3)∧ (B∨ ¬x3)

∧ (¬B∨ ¬A∨ x4)∧ (B∨ ¬x4)∧ (A∨ ¬x4)

∧ x1
Atkey CS208 - Topic 9 - page 66 of 72

Automating Logic, Part 5: Tseytin Transformation

Efficiency

In small examples, we get many clauses.

But we always get ≤ 3n clauses, where n number of connectives.

Multiplying out can result in exponential number of clauses.

Can also optimise (see the tutorial questions).

Atkey CS208 - Topic 9 - page 67 of 72

Automating Logic, Part 5: Tseytin Transformation

Not Equivalent!

The formulas generated by the Tseytin transformation are not
equivalent to the original, because they have extra atomic
propositions.

Atkey CS208 - Topic 9 - page 68 of 72

Automating Logic, Part 5: Tseytin Transformation

Example

If the original formula is
¬A

the Tseytin transformed version is: (assuming we don’t optimise)

(¬A∨ ¬x)∧ (A∨ x)∧ x

Then {A : F, x : F} satisfies the original, but not the transformed
formula.

Atkey CS208 - Topic 9 - page 69 of 72

Automating Logic, Part 5: Tseytin Transformation

Equisatisfiable

If we write Tseytin(P) for the Tseytin translation of P, then:
1. If there exists a valuation v1 such that JPKv1 = T, then there

exists a valuation v2 such that JTseytin(P)Kv2 = T;
2. If there exists a valuation v such that JTseytin(P)Kv = T, then

the valuation v ′ = v without the additional xis makesJPKv ′ = T.

This is called “equisatisfiability”.

Atkey CS208 - Topic 9 - page 70 of 72

Automating Logic, Part 5: Tseytin Transformation

Example
v = {A : F} satisfies ¬A

The corresponding satisfying valuation for

(¬A∨ ¬x)∧ (A∨ x)∧ x

is {A : F, x : T}.

A corresponding satisfying assignment always exists for the
Tseytin transformation, because it is built from equations.

Atkey CS208 - Topic 9 - page 71 of 72

Automating Logic, Part 5: Tseytin Transformation

Summary

▶ Tseytin transformation converts formulas to CNF
▶ Generates ≤ 3n clauses, where n is the number of connectives
▶ Avoids exponential blowup
▶ Can be further optimised
▶ Result is equisatisfiable

Atkey CS208 - Topic 9 - page 72 of 72

	Automating Logic, Part 1: Automating Logic
	Automating Logic, Part 2: SAT Solvers
	Automating Logic, Part 3: Faster SAT by Unit Propagation
	Automating Logic, Part 4: Conversion to CNF
	Automating Logic, Part 5: Tseytin Transformation

