

CS208 (Semester 1) Week 1 : Propositional Logic

Dr. Robert Atkey Computer & Information Sciences

Atomic Statements

Propositional Logic is concerned with statements that make assertions (about the world, or about some "situation"):

- **1.** "It is raining"
- **2.** "I am in Glasgow"
- **3.** "Version 2.1 of libfoo is installed"
- **4.** "The number in cell (3, 3) is 7"

usually, we abbreviate these: R, G, $f_{\rm 002.1}, C_7^{3,3}$ 7

These are called atomic statements or atoms.

Compound Statements

1. $R \rightarrow G$

if it is raining, I am in Glasgow

- 2. $\neg R \rightarrow \neg G$ if it is not raining, then I am not in Glasgow
- **3.** \neg foo_{2.1} ∨ \neg foo_{2.0} either version 2.1 or 2.0 of libfoo is not installed
- **4.** $C_7^{3,3} \wedge C_8^{3,4}$ 8 cell $(3, 3)$ contains 7, and cell $(3, 4)$ contains 8

Formulas

… are built from atomic propositions A, B, C, *· · ·* , and the connectives \wedge ("and"), \vee ("or"), \neg ("not"), and \rightarrow ("implies").

As a grammar:

 $P, Q ::= A \mid P \wedge Q \mid P \vee Q \mid \neg P \mid P \rightarrow Q$

where A stands for any atomic proposition.

Typically, formulas are written done in a "linear" notation, like in algebra. This is because it is more compact…

 $(S \vee R) \wedge \neg S$

 $((S \vee R) \wedge \neg S) \rightarrow R$

University of Strathcly

Ambiguity For compactness, we write out formulas "linearly":

$$
(S \vee R) \wedge \neg S \ ((S \vee R) \wedge \neg S) \rightarrow R
$$

However, this is ambiguous. What tree does this represent?

$$
S\vee R\wedge \neg S\to R
$$

we disambiguate with parentheses:

$$
((S\vee R)\wedge\neg S)\to R
$$

Could put parentheses around every connective, but this is messy.

Disambiguation

1. Runs of \land , \lor , \rightarrow associate to the right:

 $P_1 \wedge P_2 \wedge P_3 \wedge P_4$ is same as $P_1 \wedge (P_2 \wedge (P_3 \wedge P_4))$

2. For any binary connective inside another, require parentheses:

 $(P_1 \vee P_2) \wedge P_3$ good $P_1 \vee P_2 \wedge P_3$ bad

3. For a binary connective under a ¬, require parentheses:

 $\neg P \wedge Q$ is not the same as $\neg (P \wedge Q)$

4. We don't put parentheses around a ¬:

 $\neg (P \land Q)$ good $(\neg (P \land Q))$ bad **Atkey CS208 - Week 1 - page 9 of 51**

Decomposing Formulas

University of

Decomposing Formulas

Split into: a) toplevel connective; b) immediate subformulas

Last one is ambiguous! $A \vee (B \wedge C)$ or $(A \vee B) \wedge C$?

Summary

Propositional Logic formulas comprise:

- **1.** Atomic propositions
- **2.** Compound formulas built from [∧], [∨], [→], [¬]

Formulas are "really" trees, but we write them linearly.

We use parentheses to disambiguate.

Truth Values

We define the semantics of formulas in terms of **truth values**:

- ▶ T meaning "true", also written 1, *⊤*, t, true;
- ▶ F meaning "false", also written 0, *⊥*, f, false.

Truth Values

We define the semantics of formulas in terms of **truth values**:

- ▶ T meaning "true", also written 1, *⊤*, t, true;
- ▶ F meaning "false", also written 0, *⊥*, f, false.
- \triangleright Other collections of truth values are possible (e.g., "unknown", or values between 0 and 1)
- \blacktriangleright The truth values mean whatever we want them to mean:
	- \triangleright Current or no current on a wire
	- ▶ Package is installed or not installed
	- ▶ Grid cell is filled or not

Meaning is Compositional

The Meaning of a Formula is Defined In Terms of its Parts

Meaning is Compositional

The Meaning of a Formula is Defined In Terms of its Parts

To work out the meaning of P \wedge Q:

- **1.** Work out the meaning of P
- **2.** Work out the meaning of Q
- **3.** Combine using the meaning of [∧] and similar for [→], [∨], [¬].

Meaning is Compositional

The Meaning of a Formula is Defined In Terms of its Parts

To work out the meaning of P \land Q:

- **1.** Work out the meaning of P
- **2.** Work out the meaning of Q
- **3.** Combine using the meaning of \wedge and similar for \rightarrow , \vee , \neg .

This recipe leaves us to determine:

- **1.** What is the meaning of an atom A?
- **2.** What is the meaning of \rightarrow , \land , \lor , \neg ?

Valuations

An assignment of truth values to atomic propositions is called a **valuation**. We use the letter v to stand for valuations.

For an atom A, we write $v(A)$ for the value assigned to A by v.

Valuations

An assignment of truth values to atomic propositions is called a **valuation**. We use the letter v to stand for valuations.

For an atom A, we write $v(A)$ for the value assigned to A by v.

Example

$$
\nu = \{A : T, B : F, C : T\}
$$

So: $v(A) = T$ $v(B) = F$ $v(C) = T$

Example Valuations

\n- **1.**
$$
v = \{S : T, R : F\}
$$
 "It is sunny ($v(S) = T$). It is not raining ($v(R) = F$)"
\n- **2.** $v = \{S : F, R : T\}$ "It is not sunny ($v(S) = F$). It is raining ($v(R) = T$)"
\n- **3.** $v = \{S : T, R : T\}$ "It is sunny ($v(S) = T$). It is raining ($v(R) = T$)"
\n

Example Valuations

1. $v = \{S : T, R : F\}$ "It is sunny $(v(S) = T)$. It is not raining $(v(R) = F)$ " **2.** $v = \{S : F, R : T\}$ "It is not sunny $(v(S) = F)$. It is raining $(v(R) = T)$ " **3.** $v = \{S : T, R : T\}$ "It is sunny $(v(S) = T)$. It is raining $(v(R) = T)$ "

Intuition: Valuations describe "states of the world"

Notes on Writing Valuations

1. Two valuations are equal if they assign the same truth values to the same atoms.

Order of writing them down doesn't matter.

- **2.** Each atom can only be assigned one truth value.
- **3.** Every relevant atom must be assigned some truth value.

University of **Strathclyde**

Semantics of the Connectives I

Semantics of the Connectives II

P	$\neg P$	P	Q	$P \rightarrow Q$
F	T	F	T	
T	F	T	T	
T	T	F	T	
T	T	T		

 $\overline{1}$

Truth Assignment

For a formula P and a valuation v , we write

 $[$ P $]$ v

to mean "the truth value of P at the valuation v ".

Truth Assignment

For a formula P and a valuation v , we write

 $[\![P]\!]$ v

to mean "the truth value of P at the valuation v ".

$$
[\mathbf{A}]\mathbf{v} = \mathbf{v}(\mathbf{A})
$$

\n
$$
[\mathbf{P} \wedge \mathbf{Q}]\mathbf{v} = [\mathbf{P}]\mathbf{v} \wedge [\mathbf{Q}]\mathbf{v}
$$

\n
$$
[\mathbf{P} \vee \mathbf{Q}]\mathbf{v} = [\mathbf{P}]\mathbf{v} \vee [\mathbf{Q}]\mathbf{v}
$$

\n
$$
[\neg \mathbf{P}]\mathbf{v} = \neg [\mathbf{P}]\mathbf{v}
$$

\n
$$
[\mathbf{P} \rightarrow \mathbf{Q}]\mathbf{v} = [\mathbf{P}]\mathbf{v} \rightarrow [\mathbf{Q}]\mathbf{v}
$$

$$
[\hspace{-0.04cm}[(A \vee B) \wedge \neg A]\hspace{-0.04cm}] \nu
$$

$$
[[(A \vee B) \wedge \neg A]v \\
= [[A \vee B]v \wedge [\neg A]v
$$

$$
\begin{aligned}\n & [[(A \vee B) \wedge \neg A]]\mathbf{v} \\
 & = [[A \vee B]]\mathbf{v} \wedge [\neg A]\mathbf{v} \\
 & = [[A]]\mathbf{v} \vee [[B]]\mathbf{v}) \wedge [\neg A]\mathbf{v}\n\end{aligned}
$$

$$
\begin{aligned}\n & [[(A \vee B) \wedge \neg A] \vee \\
 & = [A \vee B] \vee \wedge [\neg A] \vee \\
 & = ([A] \vee \vee [B] \vee) \wedge [\neg A] \vee \\
 & = ([A] \vee \vee [B] \vee) \wedge \neg [A] \vee\n \end{aligned}
$$

$$
\begin{aligned}\n &\left[(A \vee B) \wedge \neg A \right] \mathbf{v} \\
 &= \left[A \vee B \right] \mathbf{v} \wedge \left[\neg A \right] \mathbf{v} \\
 &= \left(\left[A \right] \mathbf{v} \vee \left[B \right] \mathbf{v} \right) \wedge \left[\neg A \right] \mathbf{v} \\
 &= \left(\left[A \right] \mathbf{v} \vee \left[B \right] \mathbf{v} \right) \wedge \neg \left[A \right] \mathbf{v} \\
 &= \left(\mathbf{v}(A) \vee \mathbf{v}(B) \right) \wedge \neg \mathbf{v}(A)\n \end{aligned}
$$

$$
\begin{aligned}\n &\left[(A \vee B) \wedge \neg A \right] \mathbf{v} \\
 &= \left[A \vee B \right] \mathbf{v} \wedge \left[\neg A \right] \mathbf{v} \\
 &= \left(\left[A \right] \mathbf{v} \vee \left[B \right] \mathbf{v} \right) \wedge \left[\neg A \right] \mathbf{v} \\
 &= \left(\left[A \right] \mathbf{v} \vee \left[B \right] \mathbf{v} \right) \wedge \neg \left[A \right] \mathbf{v} \\
 &= \left(\mathbf{v}(A) \vee \mathbf{v}(B) \right) \wedge \neg \mathbf{v}(A) \\
 &= \left(\mathbf{F} \vee \mathbf{T} \right) \wedge \neg \mathbf{F}\n\end{aligned}
$$

$$
\begin{aligned}\n &\left[(A \vee B) \wedge \neg A \right] \nu \\
 &= [A \vee B] \nu \wedge [\neg A] \nu \\
 &= ([A] \nu \vee [B] \nu) \wedge [\neg A] \nu \\
 &= ([A] \nu \vee [B] \nu) \wedge \neg [A] \nu \\
 &= (\nu(A) \vee \nu(B)) \wedge \neg \nu(A) \\
 &= (F \vee T) \wedge \neg F \\
 &= T \wedge \neg F\n\end{aligned}
$$

$$
\begin{aligned}\n &\left[(A \vee B) \wedge \neg A \right] \mathbf{v} \\
 &= \left[A \vee B \right] \mathbf{v} \wedge \left[\neg A \right] \mathbf{v} \\
 &= \left(\left[A \right] \mathbf{v} \vee \left[B \right] \mathbf{v} \right) \wedge \left[\neg A \right] \mathbf{v} \\
 &= \left(\left[A \right] \mathbf{v} \vee \left[B \right] \mathbf{v} \right) \wedge \neg \left[A \right] \mathbf{v} \\
 &= \left(\mathbf{v}(A) \vee \mathbf{v}(B) \right) \wedge \neg \mathbf{v}(A) \\
 &= \left(\mathbf{F} \vee \mathbf{T} \right) \wedge \neg \mathbf{F} \\
 &= \mathbf{T} \wedge \neg \mathbf{F} \\
 &= \mathbf{T} \wedge \mathbf{T}\n\end{aligned}
$$

$$
\begin{aligned}\n& \left[(A \vee B) \wedge \neg A \right] \vee \\
&= \left[A \vee B \right] \vee \wedge \left[\neg A \right] \vee \\
&= \left(\left[A \right] \vee \vee \left[B \right] \vee \right) \wedge \left[\neg A \right] \vee \\
&= \left(\left[A \right] \vee \vee \left[B \right] \vee \right) \wedge \neg \left[A \right] \vee \\
&= \left(\vee (A) \vee \vee (B) \right) \wedge \neg \vee (A) \\
&= \left(F \vee T \right) \wedge \neg F \\
&= T \wedge \neg F \\
&= T \wedge T \\
&= T \\
\text{Atkey}\n\end{aligned}
$$
\nAtkey

Semantics of a Formula

For a formula P, its meaning is the collection of all valuations v that make $[P]v = T$.

For example,

$$
\llbracket (A \vee B) \wedge \neg A \rrbracket = \Big\{ \{A : F, B : T\} \Big\}
$$

To compute sets of valuations, we will use truth tables.

Summary

- **1.** Semantics defines the meaning of formulas.
- **2.** We use truth values T and F.
- **3.** A valuation v assigns truth values to atoms.
- **4.** We extend that assignment to whole formulas: $[$ P $]$ v.
- **5.** The meaning of P is the set of valuations that make it true.

Truth table for (A ∨ B) ∧ ¬A

University of Way

Name the parts: $\textcircled{1} = A \lor B$; $\textcircled{2} = \neg A$

$$
\begin{array}{c|c}\nA & B & \mathbf{0} & \mathbf{0} & \mathbf{0} \wedge \mathbf{0} \\
A \vee B & \neg A & (A \vee B) \wedge \neg A \\
\hline\nF & F & \mathbf{T} \\
T & F & \mathbf{T} \\
T & T & \mathbf{T}\n\end{array}
$$

Truth table for (A ∨ B) ∧ ¬A

Name the parts: $\textcircled{1} = A \lor B$; $\textcircled{2} = \neg A$

$$
\begin{array}{c|c}\nA & B & \mathbf{0} & \mathbf{0} & \mathbf{0} \land \mathbf{0} \\
A \lor B & \neg A & (A \lor B) \land \neg A \\
\hline\nF & F & F \\
F & T & F \\
T & F & T \\
T & T & T\n\end{array}
$$

Truth table for (A ∨ B) ∧ ¬A

$$
\begin{array}{c|c}\nA & B & \textcircled{1} & \textcircled{2} & \textcircled{1} \wedge \textcircled{2} \\
\hline\nF & F & F & F \\
F & T & T & \nabla \\
T & F & T & \nabla\n\end{array}
$$

Truth table for (A ∨ B) ∧ ¬A

$$
\begin{array}{c|c}\nA & B & \textcircled{1} & \textcircled{2} & \textcircled{1} \wedge \textcircled{2} \\
\hline\nA \vee B & \neg A & (A \vee B) \wedge \neg A \\
\hline\nF & F & F \\
F & T & T \\
T & F & T \\
T & T & T\n\end{array}
$$

Truth table for (A ∨ B) ∧ ¬A

$$
\begin{array}{c|c}\nA & B & \textcircled{1} & \textcircled{2} & \textcircled{1} \wedge \textcircled{2} \\
\hline\nA \vee B & \neg A & (A \vee B) \wedge \neg A \\
\hline\nF & F & F \\
F & T & T \\
T & F & T \\
T & T & T\n\end{array}
$$

Truth table for (A ∨ B) ∧ ¬A

$$
\begin{array}{c|c}\nA & B & \mathbf{0} & \mathbf{0} & \mathbf{0} \land \mathbf{0} \\
A \lor B & \neg A & (A \lor B) \land \neg A \\
\hline\nF & F & F & T \\
F & T & T \\
T & F & T \\
T & T & T\n\end{array}
$$

Truth table for (A ∨ B) ∧ ¬A

Name the parts: $\textcircled{1} = A \lor B$; $\textcircled{2} = \neg A$

$$
\begin{array}{c|c}\nA & B & \mathbf{0} & \mathbf{0} & \mathbf{0} \land \mathbf{0} \\
A \lor B & \neg A & (A \lor B) \land \neg A \\
\hline\nF & F & F & T \\
F & T & T & T \\
T & F & T & T \\
T & T & T & T\n\end{array}
$$

Truth table for (A ∨ B) ∧ ¬A

$$
\begin{array}{c|c}\nA & B & \textcircled{1} & \textcircled{2} & \textcircled{1} \wedge \textcircled{2} \\
\hline\nF & F & F & T \\
F & T & T & T \\
T & F & T & F \\
T & T & T & T \\
\end{array}
$$

Truth table for (A ∨ B) ∧ ¬A

$$
\begin{array}{c|c}\nA & B & \textcircled{1} & \textcircled{2} & \textcircled{1} \wedge \textcircled{2} \\
\hline\nF & F & F & T \\
F & T & T & T \\
T & F & T & F \\
T & T & T & F \\
\end{array}
$$

Truth table for (A ∨ B) ∧ ¬A

$$
\begin{array}{c|c}\nA & B & \mathbb{O} & \mathbb{O} \\
\hline\nA \lor B & \neg A & (A \lor B) \land \neg A \\
\hline\nF & F & F & T & F \\
F & T & T & F \\
T & F & T & F \\
T & T & F & T\n\end{array}
$$

University of Way

Truth table for (A ∨ B) ∧ ¬A Name the parts: $(\mathbb{D} = A \lor B; \mathbb{Q} = \neg A)$

$$
\begin{array}{c|c}\nA & B & \mathbf{0} & \mathbf{0} \\
A \lor B & \neg A & (A \lor B) \land \neg A \\
\hline\nF & F & F & T & F \\
F & T & T & T & T \\
T & F & T & F & T \\
T & T & T & F & T\n\end{array}
$$

University of Way

Truth table for (A ∨ B) ∧ ¬A Name the parts: $\textcircled{1} = A \lor B$; $\textcircled{2} = \neg A$

$$
\begin{array}{c|c|c|c|c} A & B & \mathbb{O} & \mathbb{O} & \mathbb{O} \wedge \mathbb{O} \\ \hline F & F & F & T & F \\ F & T & T & T & T \\ T & F & T & F & F \\ T & T & F & F & F \\ \end{array}
$$

Truth table for (A ∨ B) ∧ ¬A

University of Way

Name the parts: $\textcircled{1} = A \lor B$; $\textcircled{2} = \neg A$

$$
\begin{array}{c|c|c|c|c} A & B & \textcircled{1} & \textcircled{2} & \textcircled{1} \wedge \textcircled{2} \\ \hline F & F & F & T & F \\ F & T & T & T & T \\ T & F & T & F & F \\ T & T & F & F & F \\ \end{array}
$$

Truth table for (A ∨ B) ∧ ¬A

- **1.** Row for every valuation
- **2.** Intermediate columns for the subformulas
- **3.** Final column for the whole formula

Truth table for (A ∨ B) ∧ ¬A

Read off the truth value assignments:

1. For
$$
v = \{A : F; B : F\}
$$
: $[[S \vee R) \wedge \neg S]v = F$.

2. For
$$
v = \{A : F; B : T\}
$$
: $[[(S \vee R) \wedge \neg S]]v = T$.

3. For
$$
v = \{A : T; B : F\}
$$
: $[[S \vee R) \wedge \neg S]]v = F$.

4. For
$$
v = \{A : T; B : T\}
$$
: $[[S \vee R) \wedge \neg S]v = F$.

truth table for
$$
(A \lor B) \land \neg A
$$

$$
\begin{array}{c|c|c|c|c|c|c|c|c} \hline A & B & A \lor B & \neg A & (A \lor B) \land \neg A \\ \hline F & F & F & T & F \\ F & T & T & T & T \\ T & F & T & F & F \\ T & T & T & F & F \\ \hline \end{array}
$$

The semantics of a formula can be read off from the lines of the truth table that end with T:

$$
[\![(A \vee B) \wedge \neg A]\!] = \{\! \{A : F ; B : T \}\!\}
$$

University of Way

Satisfiability

A formula P is **satisfiable** if there **exists at least one** valuation v such that $[P]\nu = T$.

Satisfiability

A formula P is **satisfiable** if there **exists at least one** valuation v such that $[$ P $]$ v = T.

Alternatively: there is at least one row in the truth table that ends with T.

Strathclyd

Satisfiability

A formula P is **satisfiable** if there **exists at least one** valuation v such that $[$ P $]$ v = T.

Alternatively: there is at least one row in the truth table that ends with T.

Alternatively: the semantics of P contains at least one valuation.

Validity

A formula P is **valid** if **for all** valuations v, we have $[$ P $]$ v = T.

Validity

A formula P is **valid** if **for all** valuations v, we have $[$ P $]$ v = T.

Alternatively: all rows in the truth table end with T.

Validity

A formula P is **valid** if **for all** valuations v, we have $[$ P $]$ v = T.

Alternatively: all rows in the truth table end with T.

Alternatively: the semantics of P consists of all possible valuations.

University of Strathcly

Validity

A formula P is **valid** if **for all** valuations v, we have $[$ P $]$ v = T.

Alternatively: all rows in the truth table end with T.

Alternatively: the semantics of P consists of all possible valuations.

A valid formula is also called a tautology.

Sunny and Rainy

Is the formula $(S \vee R) \wedge \neg S$

1. Satisfiable?

2. Valid?

Sunny and Rainy

Is the formula $(S \vee R) \wedge \neg S$ **1.** Satisfiable? Yes. $v = \{S : F, R : T\}$ **2.** Valid?

Sunny and Rainy

Is the formula $(S \vee R) \wedge \neg S$

1. Satisfiable?

Yes. $v = \{S : F, R : T\}$

2. Valid?

No: $v = \{S : T, R : F\}$ is a counterexample

Sunny and Rainy

Is the formula $(S \vee R) \wedge \neg S$

1. Satisfiable?

Yes. $v = \{S : F, R : T\}$

2. Valid? No: $v = \{S : T, R : F\}$ is a counterexample

Is the formula
$$
((S \lor R) \land \neg S) \rightarrow R
$$

- **1.** Satisfiable?
- **2.** Valid?

Sunny and Rainy

Is the formula $(S \vee R) \wedge \neg S$ **1.** Satisfiable? Yes. $v = \{S : F, R : T\}$ **2.** Valid? No: $v = \{S : T, R : F\}$ is a counterexample Is the formula $((S \vee R) \wedge \neg S) \rightarrow R$ **1.** Satisfiable? Yes. $v = \{S : T, R : F\}$ **2.** Valid?

Sunny and Rainy

Is the formula $(S \vee R) \wedge \neg S$ **1.** Satisfiable? Yes. $v = \{S : F, R : T\}$ **2.** Valid? No: $v = \{S : T, R : F\}$ is a counterexample Is the formula $((S \vee R) \wedge \neg S) \rightarrow R$ **1.** Satisfiable? Yes. $v = \{S : T, R : F\}$ **2.** Valid? Yes. (need to check the truth table) **Atkey CS208 - Week 1 - page 33 of 51**

University of

An observation

If a valuation v makes a formula P true, then it makes $\neg P$ false.

 $[P]\nu = T \qquad \Leftrightarrow \qquad [\neg P]\nu = F$

Satisfiability vs Validity

A formula P is valid exactly when $\neg P$ is not satisfiable.

Satisfiability vs Validity

University of **Strathcly**

A formula P is valid exactly when $\neg P$ is not satisfiable. Proof.

P valid

University of

Satisfiability vs Validity

A formula P is valid exactly when $\neg P$ is not satisfiable. Proof.

P valid

 \Leftrightarrow for all v, [P]|v = T by definition

University of

Satisfiability vs Validity

A formula P is valid exactly when $\neg P$ is not satisfiable. Proof.

P valid

-
- \Leftrightarrow for all $v,$ \neg P] $v = F$

 \Leftrightarrow for all $v,$ $[$ P $]$ $v =$ T
 \Leftrightarrow for all $v,$ $[$ \neg P $]$ $v =$ F
 \therefore by above observation

Strathcly

Satisfiability vs Validity

A formula P is valid exactly when $\neg P$ is not satisfiable. Proof.

P valid

-
-
- \Leftrightarrow for all $v,$ $\lbrack \neg P \rbrack v = F$ by above observation by above observation by above observation by above observations. for all v , not $([\neg P]\]v = \top$)

 \Leftrightarrow for all $v,$ $[$ P $]$ $v =$ T
 \Leftrightarrow for all $v,$ $[$ \neg P $]$ $v =$ F
 \therefore by above observation

Strathcly

Satisfiability vs Validity

A formula P is valid exactly when $\neg P$ is not satisfiable. Proof.

P valid

- \Leftrightarrow for all $v,$ $[$ P $]$ $v =$ T
 \Leftrightarrow for all $v,$ $[$ \neg P $]$ $v =$ F
 \therefore by above observation
-
- \Leftrightarrow for all $v,$ $[\neg P]v = F$ by above observation by above observation by above observation by above observation of $[\neg P]v = T$ by above of \Box \Leftrightarrow for all v, not ([¬P]]v = T)
 \Leftrightarrow does not exist v such that
- does not exist v such that $[\neg P]\neg v = \top$ *"for all, not"* \equiv "*not exists"*

Atkey CS208 - Week 1 - page 35 of 51

Strathclyon

Satisfiability vs Validity

A formula P is valid exactly when $\neg P$ is not satisfiable. Proof.

P valid

- \Leftrightarrow for all v , $[P]v = T$ by definition
 \Leftrightarrow for all v , $[¬P]v = F$ by above obs
-
-
- ⇔ does not exist *v* such that $[\neg P]\neg v = \top$ "*for all, not"*
 $\Leftrightarrow \neg P$ not satisfiable *by definition*
- [⇔] [¬]^P not satisfiable by definition

 \Leftrightarrow for all $v,$ $[\neg P]v = F$ by above observation
 \Leftrightarrow for all $v,$ not $([\neg P]v = T)$ T is not F \Leftrightarrow for all v, not ($\lbrack \lbrack \lbrack \lbrack \lbrack \lbrack P \rbrack \rbrack v = T$ T is not F
 \Leftrightarrow does not exist v such that $\lbrack \lbrack \lbrack \lbrack \lbrack P \rbrack \rbrack v = T$ "for all, not" ≡ "not exists"

Strathcly

Satisfiability vs Validity

A formula P is valid exactly when $\neg P$ is not satisfiable.

Consequence: Counterexample finding

- ▶ If we get a valuation satisfying ¬P, it is a **counterexample** to the validity of P.
- \blacktriangleright If we do not find any valuation satisfying $\neg P$, then P is valid.
- ▶ So we can reduce the problem of determining validity to finding satisfying valuations.

University of

Summary

- \blacktriangleright Truth tables enable mass production of meaning
- ▶ Satisfiability: at least one valuation makes it true.
- ▶ Validity: every valuation makes it true.
- ▶ Satisfiability and Validity related via negation.

Entailment

University of Ways

Entailment is a relation between some assumptions:

 P_1, \ldots, P_n

and a conclusion:

Q

Entailment

University of Way

Entailment is a relation between some assumptions:

$$
P_1, \ldots, P_n
$$

and a conclusion:

Q

What we want to capture is:

If we assume P_1 , ..., P_n are all true, then it is safe to conclude Q.

Is it safe?

If we assume

it is sunny

then is it safe to conclude

it is sunny

Is it safe?

If we assume

it is sunny

then is it safe to conclude

it is sunny

Yes!

University of Way

Is it safe?

If we assume

it is sunny

then is it safe to conclude

it is sunny

Yes! There are two cases:

- **1.** It is sunny (i.e., $v(Sunny) = T$)
- **2.** It isn't sunny (i.e., $\nu(\text{Sunny}) = F$)

Is it safe?

If we assume

it is sunny

then is it safe to conclude

it is sunny

Yes! There are two cases:

- **1.** It is sunny (i.e., $v(Sunny) = T$)
- 2. It isn't sunny (i.e., $v(\text{Sunny}) = F$)

But we are assuming "it is sunny", so the second case doesn't

matter.

Atkey CS208 - Week 1 - page 40 of 51

Is it safe?

If we assume

nothing

then is it safe to conclude

it is sunny

Is it safe?

If we assume

nothing

then is it safe to conclude

it is sunny

No!

Is it safe?

If we assume

nothing

then is it safe to conclude

it is sunny

No! There are two cases:

- **1.** It is sunny (i.e., $v(Sunny) = T$)
- **2.** It isn't sunny (i.e., $v(Sunny) = F$)

Is it safe?

If we assume

nothing

then is it safe to conclude

it is sunny

No! There are two cases:

- **1.** It is sunny (i.e., $v(Sunny) = T$)
- **2.** It isn't sunny (i.e., $v(Sunny) = F$)

But we are making no assumptions, so either "world" is possible: it might not be sunny.

Is it safe?

If we assume

it is raining

then it is safe to conclude:

it is not sunny

Is it safe?

If we assume

it is raining

then it is safe to conclude:

it is not sunny

No!

University of Way

Is it safe?

If we assume

it is raining

then it is safe to conclude:

it is not sunny

No! There are four cases:

- **1.** It is sunny and raining
- **2.** It is sunny and not raining
- **3.** It is not sunny, but is raining
- **4.** It is not sunny and not raining

Is it safe?

If we assume

it is raining

then it is safe to conclude:

it is not sunny

No! There are four cases:

- **1.** It is sunny and raining
- **2.** It is sunny and not raining
- **3.** It is not sunny, but is raining
- **4.** It is not sunny and not raining

Is it safe?

If we assume

it is raining and if it is raining it is not sunny

then is it safe to conclude:

it is not sunny

Is it safe?

If we assume

it is raining and if it is raining it is not sunny

then is it safe to conclude:

it is not sunny

Yes!

University of

Is it safe?

If we assume

it is raining and if it is raining it is not sunny

then is it safe to conclude:

it is not sunny

Yes! There are four cases:

- **1.** It is sunny and raining
- **2.** It is sunny and not raining
- **3.** It is not sunny, but is raining
- **4.** It is not sunny and not raining

Is it safe?

If we assume

it is raining and if it is raining it is not sunny

then is it safe to conclude:

it is not sunny

- **1.** It is sunny and raining
- **2.** It is sunny and not raining
- **3.** It is not sunny, but is raining
- **4.** It is not sunny and not raining

Is it safe?

If we assume

it is raining and if it is raining it is not sunny

then is it safe to conclude:

it is not sunny

- **1.** It is sunny and raining
- **2.** It is sunny and not raining
- **3.** It is not sunny, but is raining
- **4.** It is not sunny and not raining

Is it safe?

If we assume

University of Way

nothing

then is it safe to conclude:

it is sunny or not sunny

Is it safe?

If we assume

University of Way

nothing

then is it safe to conclude:

it is sunny or not sunny

Yes!. There are two cases:

- **1.** It is sunny
- **2.** It is not sunny

Is it safe?

If we assume

Strathcly

nothing

then is it safe to conclude:

it is sunny or not sunny

Yes!. There are two cases:

- **1.** It is sunny
- **2.** It is not sunny

In either case the conclusion is true: $\mathbf{A} \vee \mathbf{B}$ requires at least one of

A or B to be true.

Is it safe?

If we assume

it is sunny and it is not sunny

then is it safe to conclude:

the moon is made of spaghetti

Is it safe?

If we assume

it is sunny and it is not sunny

then is it safe to conclude:

the moon is made of spaghetti

Yes!

Is it safe?

If we assume

it is sunny and it is not sunny

then is it safe to conclude:

the moon is made of spaghetti

- **1.** it is sunny, and the moon is made of spaghetti
- **2.** it is not sunny, and the moon is made of spaghetti
- **3.** it is sunny, and the moon is not made of spaghetti
- **4.** it is not sunny, and the moon is not made of spaghetti

Is it safe?

If we assume

it is sunny and it is not sunny

then is it safe to conclude:

the moon is made of spaghetti

- **1.** it is sunny, and the moon is made of spaghetti
- **2.** it is not sunny, and the moon is made of spaghetti
- **3.** it is sunny, and the moon is not made of spaghetti
- **4.** it is not sunny, and the moon is not made of spaghetti

Is it safe?

If we assume

it is sunny and it is not sunny

then is it safe to conclude:

the moon is made of spaghetti

- **1.** it is sunny, and the moon is made of spaghetti
- **2.** it is not sunny, and the moon is made of spaghetti
- **3.** it is sunny, and the moon is not made of spaghetti
- **4.** it is not sunny, and the moon is not made of spaghetti

Entailment

In general, we have n assumptions P_1, \ldots, P_n and conclusion Q.

We are going to say: $P_1, \ldots, P_n \models Q$ Read as P_1, \ldots, P_n entails Q

if:

for all "situations" (i.e., valuations) that make **all** the assumptions P_i true, the conclusion Q is true.

Entailment

With more symbols

for all valuations v, if, for all i, $[{\mathbb P}_i]v = {\mathsf T}$, then $[{\mathbb Q}]v = {\mathsf T}$.

In terms of Semantics

every valuation in all $[\![P_i]\!]$ is also in $[\![Q]\!]$ $(\textsf{in set theory symbols: } (\llbracket P_1 \rrbracket \cap \cdots \cap \llbracket P_n \rrbracket) \subseteq \llbracket Q \rrbracket).$

Entailment vs Validity

University of Way

If we have no assumptions, then:

 $\models P$

exactly when

for all v . $[$ P $]$ $v = T$

exactly when

P is valid

Deduction Theorem

 $P_1, \ldots, P_n, P \models Q$ exactly when $P_1, \ldots, P_n \models P \rightarrow Q$

All these statements are equivalent:

- 1. $P_1, \ldots, P_n, P \models Q$
- **2.** for all v, if all $[\![P_i]\!]v = T$ and $[\![P]\!]v = T$, then $[\![Q]\!]v = T$
- **3.** for all v , if all $[\![P_i]\!]v = T$, then (if $[\![P]\!]v = T$, then $[\![Q]\!]v = T$)
- **4.** for all v , if all $[\![P_i]\!]v = T$, then $[\![P \rightarrow Q]\!]v = T$
- **5.** $P_1, \ldots, P_n \models P \rightarrow Q$

Entailment vs satisfiability

So, it is the case that

$$
P_1,\ldots,P_n\models Q
$$

exactly when

 $\models P_1 \rightarrow \cdots \rightarrow P_n \rightarrow Q$

exactly when

 $P_1 \rightarrow \cdots \rightarrow P_n \rightarrow Q$ is valid

exactly when

 $\neg (P_1 \rightarrow \cdot \cdot \cdot \rightarrow P_n \rightarrow Q)$ is not satisfiable

Summary

- ▶ Entailment defines safe deductions.
- ▶ Relationship with Validity
- ▶ Relationship with "→" (Deduction Theorem)
- \blacktriangleright Relationship with Satisfaction.