

CS208 (Semester 1) Week 1 : Propositional Logic

Dr. Robert Atkey

Computer & Information Sciences

Propositional Logic, Part 1 Syntax

Atomic Statements

Propositional Logic is concerned with statements that make assertions (about the world, or about some "situation"):

- 1. "It is raining"
- 2. "I am in Glasgow"
- 3. "Version 2.1 of *libfoo* is installed"
- **4.** "The number in cell (3,3) is 7"

usually, we abbreviate these: R, G, foo_{2.1}, $C_7^{3,3}$

These are called *atomic statements* or *atoms*.

Compound Statements

1. $R \rightarrow G$ if it is raining, I am in Glasgow $\gamma \neg R \rightarrow \neg G$ if it is not raining, then I am not in Glasgow **3.** $\neg foo_{21} \lor \neg foo_{20}$ either version 2.1 or 2.0 of libfoo is not installed 4. $C_7^{3,3} \wedge C_8^{3,4}$ cell (3,3) contains 7, and cell (3,4) contains 8

Formulas

... are built from *atomic propositions* A, B, C, ..., and the *connectives* \land ("and"), \lor ("or"), \neg ("not"), and \rightarrow ("implies"). As a grammar:

$$\mathsf{P}, \mathsf{Q} ::= \mathsf{A} \mid \mathsf{P} \land \mathsf{Q} \mid \mathsf{P} \lor \mathsf{Q} \mid \neg \mathsf{P} \mid \mathsf{P} \to \mathsf{Q}$$

where A stands for any atomic proposition.

Typically, formulas are written done in a "linear" notation, like in algebra. This is because it is more compact...

 $(S \lor R) \land \neg S$

 $((S \lor R) \land \neg S) \to R$

Propositional Logic, Part 1: Syntax

Ambiguity For compactness, we write out formulas "linearly":

However, this is ambiguous. What tree does this represent?

 $S \lor R \land \neg S \to R$

we disambiguate with parentheses:

$$((\mathsf{S}\lor\mathsf{R})\land\neg\mathsf{S})\to\mathsf{R}$$

Could put parentheses around every connective, but this is messy.

CS208 - Week 1 -

Propositional Logic, Part 1: Syntax

Disambiguation 1. Runs of \land , \lor , \rightarrow associate to the right:

 $P_1 \wedge P_2 \wedge P_3 \wedge P_4$ is same as $P_1 \wedge (P_2 \wedge (P_3 \wedge P_4))$

2. For any binary connective inside another, require parentheses:

$$(P_1 \lor P_2) \land P_3 \text{ good} P_1 \lor P_2 \land P_3 \text{ bad}$$

3. For a binary connective under a \neg , require parentheses:

$$\neg \mathsf{P} \land Q \quad \text{ is not the same as } \quad \neg (\mathsf{P} \land Q)$$

4. We don't put parentheses around a \neg :

$$\neg(\mathsf{P} \land \mathsf{Q}) \text{ good } (\neg(\mathsf{P} \land \mathsf{Q})) \text{ bad}$$

Formula	Connective	Subformulas
$A \wedge B$		
$A \wedge B \wedge C$		
$\neg(A \land B)$		
$A \to B \to C \to D$		
$B \to C \to D$		

Formula	Connective	Subformulas
$A \wedge B$	\wedge	A and B
$A \wedge B \wedge C$		
$\neg(A \land B)$		
$A \to B \to C \to D$		
$B \to C \to D$		

Formula	Connective	Subformulas
$A \wedge B$	\wedge	A and B
$A \wedge B \wedge C$	\wedge	A and $B \wedge C$
$\neg(A \land B)$		
$A \to B \to C \to D$		
$B \to C \to D$		

Formula	Connective	Subformulas
$A \wedge B$	\wedge	A and B
$A \wedge B \wedge C$	\wedge	A and $B \wedge C$
$\neg(A \land B)$	_	$A \wedge B$
$A \to B \to C \to D$		
$B \to C \to D$		

Formula	Connective	Subformulas
$A \wedge B$	\wedge	A and B
$A \wedge B \wedge C$	\wedge	A and $B \wedge C$
$\neg(A \land B)$	_	$A \wedge B$
$A \to B \to C \to D$	\rightarrow	A and $B \to C \to D$
$B \to C \to D$		

Formula	Connective	Subformulas
$A \wedge B$	\wedge	A and B
$A \wedge B \wedge C$	\wedge	A and $B \wedge C$
$\neg(A \land B)$	_	$A \wedge B$
$A \to B \to C \to D$	\rightarrow	A and $B \to C \to D$
$B \to C \to D$	\rightarrow	B and $C \to D$

Split into: a) toplevel connective; b) immediate subformulasFormulaConnectiveSubformulas $(A \land B) \rightarrow (A \lor B)$ $(A \land B) \lor (B \land C)$ $A \lor B \lor C$ $A \lor B \lor C$ $A \lor B \land C$ $A \lor B \land C$

Split into: a) toplevel connective;b) immediate subformulasFormulaConnectiveSubformulas $(A \land B) \rightarrow (A \lor B)$ \rightarrow $(A \land B)$ and $(A \lor B)$ $(A \land B) \lor (B \land C)$ $A \lor B \lor C$ $A \lor B \land C$

Split into: a) toplevel connective; b) immediate subformulasFormulaConnectiveSubformulas $(A \land B) \rightarrow (A \lor B)$ \rightarrow $(A \land B)$ and $(A \lor B)$ $(A \land B) \lor (B \land C)$ \lor $(A \land B)$ and $(B \land C)$ $A \lor B \lor C$ $A \lor B \land C$ $a \lor B \land C$

Split into: a) toplevel connective; b) immediate subformulasFormulaConnectiveSubformulas $(A \land B) \rightarrow (A \lor B)$ \rightarrow $(A \land B)$ and $(A \lor B)$ $(A \land B) \lor (B \land C)$ \lor $(A \land B)$ and $(B \land C)$ $A \lor B \lor C$ \lor \land and $B \lor C$ $A \lor B \land C$ \lor \land and $B \lor C$

Split into: a) toplevel connective; b) immediate subformulasFormulaConnectiveSubformulas $(A \land B) \rightarrow (A \lor B)$ \rightarrow $(A \land B)$ and $(A \lor B)$ $(A \land B) \lor (B \land C)$ \lor $(A \land B)$ and $(B \land C)$ $A \lor B \lor C$ \lor \land and $B \lor C$ $A \lor B \land C$?

Last one is ambiguous! $A \lor (B \land C)$ or $(A \lor B) \land C$?

Summary

Propositional Logic formulas comprise:

- 1. Atomic propositions
- **2.** Compound formulas built from $\land, \lor, \rightarrow, \neg$

Formulas are "really" trees, but we write them linearly.

We use parentheses to disambiguate.

Propositional Logic, Part 2 Semantics

Truth Values

We define the semantics of formulas in terms of **truth values**:

- ▶ T meaning "true", also written 1, \top , t, true;
- F meaning "false", also written $0, \perp, f$, false.

Truth Values

We define the semantics of formulas in terms of **truth values**:

- ▶ T meaning "true", also written 1, \top , t, true;
- F meaning "false", also written 0, \perp , f, false.
- Other collections of truth values are possible (e.g., "unknown", or values between 0 and 1)
- The truth values mean whatever we want them to mean:
 - Current or no current on a wire
 - Package is installed or not installed
 - Grid cell is filled or not

Propositional Logic, Part 2: Semantics

Meaning is Compositional

The Meaning of a Formula is Defined In Terms of its Parts

Meaning is Compositional

The Meaning of a Formula is Defined In Terms of its Parts

To work out the meaning of $\mathsf{P} \land \mathsf{Q} \text{:}$

- 1. Work out the meaning of P
- 2. Work out the meaning of Q
- **3.** Combine using the meaning of \land and similar for \rightarrow , \lor , \neg .

Meaning is Compositional

The Meaning of a Formula is Defined In Terms of its Parts

To work out the meaning of $\mathsf{P} \land \mathsf{Q} \text{:}$

- 1. Work out the meaning of P
- 2. Work out the meaning of Q
- **3.** Combine using the meaning of \land and similar for \rightarrow , \lor , \neg .

This recipe leaves us to determine:

- 1. What is the meaning of an atom A?
- **2.** What is the meaning of \rightarrow , \land , \lor , \neg ?

Valuations

An assignment of truth values to atomic propositions is called a **valuation**. We use the letter v to stand for valuations.

For an atom A, we write v(A) for the value assigned to A by v.

Valuations

An assignment of truth values to atomic propositions is called a **valuation**. We use the letter v to stand for valuations.

For an atom A, we write v(A) for the value assigned to A by v.

Example

$$\nu = \{A : \mathsf{T}, B : \mathsf{F}, C : \mathsf{T}\}$$

So: v(A) = T v(B) = Fv(C) = T

Example Valuations

Example Valuations

Intuition: Valuations describe "states of the world"

Notes on Writing Valuations

1. Two valuations are equal if they assign the same truth values to the same atoms.

Order of writing them down doesn't matter.

- **2.** Each atom can only be assigned one truth value.
- 3. Every relevant atom must be assigned some truth value.

Propositional Logic, Part 2: Semantics

Semantics of the Connectives

Formula	is true when
$P \wedge Q$	both P and Q are true
$P\lor Q$	at least one of P or Q is true
$\neg P$	P isn't true
$P\to Q$	if P is true, then Q is true
	otherwise it is false.

Propositional Logic, Part 2: Semantics

Semantics of the Connectives I

Semantics of the Connectives II

Truth Assignment For a formula P and a valuation v, we write

to mean "the truth value of P at the valuation v".

 $\llbracket P \rrbracket v$

Truth Assignment For a formula P and a valuation v, we write

to mean "the truth value of P at the valuation v".

$$\begin{split} \llbracket A \rrbracket \nu &= \nu(A) \\ \llbracket P \land Q \rrbracket \nu &= \llbracket P \rrbracket \nu \land \llbracket Q \rrbracket \nu \\ \llbracket P \lor Q \rrbracket \nu &= \llbracket P \rrbracket \nu \lor \llbracket Q \rrbracket \nu \\ \llbracket \neg P \rrbracket \nu &= \neg \llbracket P \rrbracket \nu \lor \llbracket Q \rrbracket \nu \\ \llbracket \neg P \rrbracket \nu &= \neg \llbracket P \rrbracket \nu \end{split}$$

 $\llbracket P \rrbracket v$

CS208 - Week 1 -

page 22 of 51

Example $(A \lor B) \land \neg A$ with the valuation $v = \{A : F, B : T\}$:

$$[(\mathsf{A} \lor \mathsf{B}) \land \neg \mathsf{A}]]\mathbf{v}$$

Example $(A \lor B) \land \neg A$ with the valuation $\nu = \{A : F, B : T\}$:

$$[[(A \lor B) \land \neg A]]v$$

= $[[A \lor B]]v \land [[\neg A]]v$

Example $(A \lor B) \land \neg A$ with the valuation $v = \{A : F, B : T\}$:

 $[[(A \lor B) \land \neg A]]\nu$ $= [[A \lor B]]\nu \land [[\neg A]]\nu$ $= ([[A]]\nu \lor [[B]]\nu) \land [[\neg A]]\nu$

Example $(A \lor B) \land \neg A$ with the valuation $v = \{A : F, B : T\}$:

- $\llbracket (A \lor B) \land \neg A \rrbracket v$
- $= [\![A \lor B]\!] \nu \land [\![\neg A]\!] \nu$
- $= (\llbracket A \rrbracket \nu \lor \llbracket B \rrbracket \nu) \land \llbracket \neg A \rrbracket \nu$
- $= (\llbracket A \rrbracket \nu \lor \llbracket B \rrbracket \nu) \land \neg \llbracket A \rrbracket \nu$

$$\llbracket (\mathsf{A} \lor \mathsf{B}) \land \neg \mathsf{A} \rrbracket \mathsf{v}$$

$$= [\![A \lor B]\!] v \land [\![\neg A]\!] v$$

$$= (\llbracket A \rrbracket \nu \lor \llbracket B \rrbracket \nu) \land \llbracket \neg A \rrbracket \nu$$

$$= (\llbracket A \rrbracket \nu \lor \llbracket B \rrbracket \nu) \land \neg \llbracket A \rrbracket \nu$$

$$= (\nu(A) \vee \nu(B)) \wedge \neg \nu(A)$$

 $\llbracket (\mathsf{A} \lor \mathsf{B}) \land \neg \mathsf{A} \rrbracket \mathsf{v}$

$$= [\![A \lor B]\!] \nu \land [\![\neg A]\!] \nu$$

- $= (\llbracket A \rrbracket \nu \lor \llbracket B \rrbracket \nu) \land \llbracket \neg A \rrbracket \nu$
- $= (\llbracket A \rrbracket \nu \lor \llbracket B \rrbracket \nu) \land \neg \llbracket A \rrbracket \nu$
- $= (\nu(A) \vee \nu(B)) \wedge \neg \nu(A)$
- $= (\mathsf{F} \lor \mathsf{T}) \land \neg \mathsf{F}$

 $\llbracket (A \lor B) \land \neg A \rrbracket \nu$

$$= \llbracket A \lor B \rrbracket v \land \llbracket \neg A \rrbracket v$$

- $= (\llbracket A \rrbracket \nu \lor \llbracket B \rrbracket \nu) \land \llbracket \neg A \rrbracket \nu$
- $= (\llbracket A \rrbracket \nu \lor \llbracket B \rrbracket \nu) \land \neg \llbracket A \rrbracket \nu$
- $= (\nu(A) \vee \nu(B)) \wedge \neg \nu(A)$
- $= (\mathsf{F} \lor \mathsf{T}) \land \neg \mathsf{F}$
- $= T \wedge \neg F$

 $\llbracket (A \lor B) \land \neg A \rrbracket \nu$

$$= \llbracket A \lor B \rrbracket v \land \llbracket \neg A \rrbracket v$$

- $= (\llbracket A \rrbracket \nu \lor \llbracket B \rrbracket \nu) \land \llbracket \neg A \rrbracket \nu$
- $= (\llbracket A \rrbracket \nu \lor \llbracket B \rrbracket \nu) \land \neg \llbracket A \rrbracket \nu$
- $= (\nu(A) \vee \nu(B)) \wedge \neg \nu(A)$
- $= (\mathsf{F} \lor \mathsf{T}) \land \neg \mathsf{F}$
- $= T \land \neg F$
- $= T \wedge T$

 $\llbracket (\mathsf{A} \lor \mathsf{B}) \land \neg \mathsf{A} \rrbracket \mathsf{v}$

$$= \ [\![A \lor B]\!] \nu \land [\![\neg A]\!] \nu$$

- $= (\llbracket A \rrbracket \nu \lor \llbracket B \rrbracket \nu) \land \llbracket \neg A \rrbracket \nu$
- $= (\llbracket A \rrbracket \nu \lor \llbracket B \rrbracket \nu) \land \neg \llbracket A \rrbracket \nu$
- $= (\nu(A) \vee \nu(B)) \wedge \neg \nu(A)$
- $= (\mathsf{F} \lor \mathsf{T}) \land \neg \mathsf{F}$
- $= T \land \neg F$

Semantics of a Formula

For a formula P, its *meaning* is the collection of all valuations v that make $[\![P]\!]v = T$.

For example,

$$\llbracket (\mathsf{A} \lor \mathsf{B}) \land \neg \mathsf{A} \rrbracket = \{ \{\mathsf{A} : \mathsf{F}, \mathsf{B} : \mathsf{T} \} \}$$

To compute sets of valuations, we will use truth tables.

Summary

- 1. Semantics defines the *meaning* of formulas.
- **2.** We use *truth values* T and F.
- **3.** A valuation v assigns truth values to atoms.
- 4. We extend that assignment to whole formulas: [P]v.
- 5. The meaning of P is the set of valuations that make it true.

Truth Tables, Satisfiability, and Validity

Truth table for
$$(A \lor B) \land \neg A$$

Truth table for
$$(A \lor B) \land \neg A$$

Truth table for
$$(A \lor B) \land \neg A$$

Truth table for
$$(A \lor B) \land \neg A$$

Truth table for
$$(A \lor B) \land \neg A$$

Truth table for
$$(A \lor B) \land \neg A$$

Truth table for
$$(A \lor B) \land \neg A$$

Truth table for
$$(A \lor B) \land \neg A$$

Truth table for
$$(A \lor B) \land \neg A$$

Truth table for
$$(A \lor B) \land \neg A$$

Truth table for
$$(A \lor B) \land \neg A$$

Truth table for
$$(A \lor B) \land \neg A$$

Truth table for
$$(A \lor B) \land \neg A$$

Truth table for $(A \lor B) \land \neg A$

A	В	$A \lor B$	$\neg A$	$(A \lor B) \land \neg A$
F	F	F	Т	F
F	Т	Т	Т	Т
т	F	Т	F	F
т	Т	Т	F	F

- 1. Row for every valuation
- 2. Intermediate columns for the subformulas
- 3. Final column for the whole formula

Truth table for $(A \lor B) \land \neg A$

А	В	$A \lor B$	¬A	$(A \lor B) \land \neg A$
F	F	F	Т	F
F	Т	Т	Т	Т
Т	F	Т	F	F
т	Т	Т	F	F

Read off the truth value assignments:

1. For
$$v = \{A : F; B : F\}$$
: $[[(S \lor R) \land \neg S]]v = F$.
2. For $v = \{A : F; B : T\}$: $[[(S \lor R) \land \neg S]]v = T$.
3. For $v = \{A : T; B : F\}$: $[[(S \lor R) \land \neg S]]v = F$.
4. For $v = \{A : T; B : T\}$: $[[(S \lor R) \land \neg S]]v = F$.

Truth table for $(A \lor B) \land \neg A$

А	В	$A \lor B$	¬A	$(A \lor B) \land \neg A$
F	F	F	Т	F
F	Т	Т	Т	Т
Т	F	Т	F	F
Т	Т	Т	F	F

The semantics of a formula can be read off from the lines of the truth table that end with T:

$$\llbracket (A \lor B) \land \neg A \rrbracket = \{\{A : \mathsf{F}; B : \mathsf{T}\}\}$$

Satisfiability

A formula P is **satisfiable** if there **exists at least one** valuation v such that [P]v = T.

Satisfiability

A formula P is **satisfiable** if there **exists at least one** valuation v such that [P]v = T.

Alternatively: there is at least one row in the truth table that ends with T.

Satisfiability

A formula P is **satisfiable** if there **exists at least one** valuation v such that [P]v = T.

Alternatively: there is at least one row in the truth table that ends with T.

Alternatively: the semantics of P contains at least one valuation.

Validity

A formula P is **valid** if **for all** valuations v, we have [P]v = T.

Validity

A formula P is **valid** if **for all** valuations v, we have [P]v = T.

Alternatively: all rows in the truth table end with T.
Validity

A formula P is **valid** if **for all** valuations v, we have $\llbracket P \rrbracket v = T$.

Alternatively: all rows in the truth table end with T.

Alternatively: the semantics of P consists of all possible valuations.

Validity

A formula P is **valid** if **for all** valuations v, we have [P]v = T. *Alternatively:* all rows in the truth table end with T.

Alternatively: the semantics of P consists of all possible valuations.

A valid formula is also called a *tautology*.

Sunny and Rainy

Is the formula $(S \lor R) \land \neg S$

1. Satisfiable?

2. Valid?

Sunny and Rainy

Is the formula $(S \lor R) \land \neg S$

1. Satisfiable?

Yes.
$$v = \{S : F, R : T\}$$

2. Valid?

Sunny and Rainy

Is the formula $(S \lor R) \land \neg S$

1. Satisfiable?

Yes.
$$v = \{S : F, R : T\}$$

2. Valid?

No: $v = \{S : T, R : F\}$ is a counterexample

Sunny and Rainy

Is the formula $(S \lor R) \land \neg S$

1. Satisfiable?

Yes.
$$v = \{S : F, R : T\}$$

2. Valid?

No: $v = \{S : T, R : F\}$ is a counterexample

Is the formula $((S \lor R) \land \neg S) \to R$

1. Satisfiable?

2. Valid?

Sunny and Rainy

Is the formula $(S \lor R) \land \neg S$

1. Satisfiable?

Yes.
$$v = \{S : F, R : T\}$$

2. Valid?

No: $v = \{S : T, R : F\}$ is a counterexample

Is the formula $((S \lor R) \land \neg S) \to R$

1. Satisfiable?

Yes.
$$v = \{S : T, R : F\}$$

2. Valid?

Sunny and Rainy

Is the formula $(S \lor R) \land \neg S$

1. Satisfiable?

Yes.
$$v = \{S : F, R : T\}$$

2. Valid?

No: $v = \{S : T, R : F\}$ is a counterexample

Is the formula
$$((S \lor R) \land \neg S) \to R$$

1. Satisfiable?

Yes.
$$v = \{S : T, R : F\}$$

2. Valid?

Yes. (need to check the truth table)

An observation

If a valuation v makes a formula P true, then it makes \neg P false.

$$\llbracket P \rrbracket v = \mathsf{T} \qquad \Leftrightarrow \qquad \llbracket \neg P \rrbracket v = \mathsf{F}$$

Satisfiability vs Validity

A formula P is valid exactly when $\neg P$ is not satisfiable.

Satisfiability vs Validity

A formula P is valid exactly when $\neg P$ is not satisfiable. *Proof.*

P valid

Satisfiability vs Validity

A formula P is valid exactly when $\neg P$ is not satisfiable. *Proof.*

 $\begin{array}{l} \mathsf{P} \text{ valid} \\ \Leftrightarrow \quad \mathsf{for all } \nu, \llbracket \mathsf{P} \rrbracket \nu = \mathsf{T} \end{array}$

by definition

A formula P is valid exactly when $\neg P$ is not satisfiable. *Proof.*

P valid

- $\Leftrightarrow \quad \text{for all } \nu, \llbracket P \rrbracket \nu = \mathsf{T}$
- $\Leftrightarrow \quad \text{for all } \nu, [\![\neg P]\!]\nu = \mathsf{F}$

by definition by above observation

A formula P is valid exactly when $\neg P$ is not satisfiable. *Proof.*

P valid

- $\Leftrightarrow \quad \text{for all } \nu, \llbracket P \rrbracket \nu = \mathsf{T}$
- $\Leftrightarrow \quad \text{for all } \nu, \llbracket \neg P \rrbracket \nu = \mathsf{F}$
- $\Leftrightarrow \quad \text{for all } \nu, \text{not } (\llbracket \neg P \rrbracket \nu = T)$

by definition by above observation T is not F

A formula P is valid exactly when $\neg P$ is not satisfiable. *Proof.*

P valid

- $\Leftrightarrow \quad \text{for all } \nu, \llbracket P \rrbracket \nu = \mathsf{T}$
- $\Leftrightarrow \quad \text{for all } \nu, \llbracket \neg P \rrbracket \nu = \mathsf{F}$
- $\Leftrightarrow \quad \text{for all } \nu, \text{not } (\llbracket \neg P \rrbracket \nu = \mathsf{T})$

- by definition by above observation
- T *is not* F
- \Leftrightarrow does not exist v such that $[\neg P]v = T$ "for all, not" \equiv "not exists"

A formula P is valid exactly when $\neg P$ is not satisfiable. *Proof.*

P valid

- $\Leftrightarrow \quad \text{for all } \nu, [\![P]\!]\nu = \mathsf{T}$
- $\Leftrightarrow \quad \text{for all } \nu, [\![\neg P]\!]\nu = \mathsf{F}$
- $\Leftrightarrow \quad \text{for all } \nu, \text{not} (\llbracket \neg P \rrbracket \nu = \mathsf{T})$
- $\Leftrightarrow \quad \text{does not exist } \nu \text{ such that } \llbracket \neg P \rrbracket \nu = T \quad \text{``for all, not''} \equiv$
- $\Leftrightarrow \neg P \text{ not satisfiable}$

by definition by above observation T is not F "for all, not" ≡ "not exists"

by definition

A formula P is valid exactly when $\neg P$ is not satisfiable.

Consequence: Counterexample finding

- If we get a valuation satisfying ¬P, it is a counterexample to the validity of P.
- If we do not find any valuation satisfying $\neg P$, then P is valid.
- So we can reduce the problem of determining validity to finding satisfying valuations.

Summary

- Truth tables enable mass production of meaning
- Satisfiability: at least one valuation makes it true.
- Validity: every valuation makes it true.
- Satisfiability and Validity related via negation.

Entailment

Entailment is a relation between some assumptions:

P_1,\ldots,P_n

and a conclusion:

Entailment

Entailment is a relation between some assumptions:

and a conclusion:

Q

 P_1,\ldots,P_n

What we want to capture is:

If we assume $P_1, ..., P_n$ are all true, then it is safe to conclude Q.

Is it safe?

If we assume

it is sunny

then is it safe to conclude

it is sunny

Is it safe?

If we assume

it is sunny

then is it safe to conclude

it is sunny

Yes!

Is it safe?

it is sunny

then is it safe to conclude

it is sunny

Yes! There are two cases:

It is sunny (i.e., ν(Sunny) = T)
It isn't sunny (i.e., ν(Sunny) = F)

Is it safe?

it is sunny

then is it safe to conclude

it is sunny

Yes! There are two cases:

- 1. It is sunny (i.e., v(Sunny) = T)
- **2.** It isn't sunny (i.e., v(Sunny) = F)

But we are assuming "it is sunny", so the second case doesn't matter.

Is it safe?

If we assume

nothing

then is it safe to conclude

it is sunny

Is it safe?

If we assume

nothing

then is it safe to conclude

it is sunny

No!

Is it safe?

nothing

then is it safe to conclude

it is sunny

No! There are two cases:

- **1.** It is sunny (i.e., v(Sunny) = T)
- **2.** It isn't sunny (i.e., v(Sunny) = F)

Is it safe?

nothing

then is it safe to conclude

it is sunny

No! There are two cases:

- 1. It is sunny (i.e., v(Sunny) = T)
- 2. It isn't sunny (i.e., $\nu(\text{Sunny}) = F$) But we are making no assumptions, so either "world" is possible: it might not be sunny.

Is it safe?

If we assume

it is raining

then it is safe to conclude:

it is not sunny

Is it safe?

If we assume

it is raining

then it is safe to conclude:

it is not sunny

No!

Is it safe?

If we assume

it is raining

then it is safe to conclude:

it is not sunny

No! There are four cases:

- 1. It is sunny and raining
- 2. It is sunny and not raining
- 3. It is not sunny, but is raining
- 4. It is not sunny and not raining

Is it safe?

If we assume

it is raining

then it is safe to conclude:

it is not sunny

No! There are four cases:

- 1. It is sunny and raining
- 2. It is sunny and not raining
- 3. It is not sunny, but is raining
- 4. It is not sunny and not raining

University of Strathclyde

Is it safe?

If we assume

it is raining *and* if it is raining it is not sunny then is it safe to conclude:

it is not sunny

University of Strathclyde

Is it safe?

it is raining *and* if it is raining it is not sunny then is it safe to conclude:

it is not sunny

Yes!

Univers Stra Science

If we assume

Is it safe?

it is raining *and* if it is raining it is not sunny then is it safe to conclude:

it is not sunny

Yes! There are four cases:

- 1. It is sunny and raining
- 2. It is sunny and not raining
- 3. It is not sunny, but is raining
- 4. It is not sunny and not raining
University of Strathclyde Science

Is it safe?

If we assume

it is raining *and* if it is raining it is not sunny then is it safe to conclude:

it is not sunny

- 1. It is sunny and raining
- 2. It is sunny and not raining
- 3. It is not sunny, but is raining
- 4. It is not sunny and not raining

Is it safe?

If we assume

it is raining *and* if it is raining it is not sunny then is it safe to conclude:

it is not sunny

- 1. It is sunny and raining
- 2. It is sunny and not raining
- 3. It is not sunny, but is raining
- 4. It is not sunny and not raining

Is it safe?

If we assume

nothing

then is it safe to conclude:

it is sunny or not sunny

Is it safe?

nothing

then is it safe to conclude:

it is sunny or not sunny

Yes!. There are two cases:

- **1**. It is sunny
- 2. It is not sunny

Is it safe?

nothing

then is it safe to conclude:

it is sunny or not sunny

Yes!. There are two cases:

- **1.** It is sunny
- 2. It is not sunny

In either case the conclusion is true: $A \lor B$ requires at least one of A or B to be true.

Atkey

Is it safe?

If we assume

it is sunny *and* it is not sunny then is it safe to conclude: the moon is made of spaghetti

Is it safe?

If we assume

it is sunny *and* it is not sunny then is it safe to conclude: the moon is made of spaghetti

Yes!

Is it safe?

If we assume

it is sunny *and* it is not sunny then is it safe to conclude:

the moon is made of spaghetti

- 1. it is sunny, and the moon is made of spaghetti
- 2. it is not sunny, and the moon is made of spaghetti
- 3. it is sunny, and the moon is not made of spaghetti
- 4. it is not sunny, and the moon is not made of spaghetti

Is it safe?

If we assume

it is sunny *and* it is not sunny then is it safe to conclude:

the moon is made of spaghetti

- 1. it is sunny, and the moon is made of spaghetti
- 2. it is not sunny, and the moon is made of spaghetti
- 3. it is sunny, and the moon is not made of spaghetti
- 4. it is not sunny, and the moon is not made of spaghetti

Is it safe?

If we assume

it is sunny *and* it is not sunny then is it safe to conclude:

the moon is made of spaghetti

- 1. it is sunny, and the moon is made of spaghetti
- 2. it is not sunny, and the moon is made of spaghetti
- 3. it is sunny, and the moon is not made of spaghetti
- 4. it is not sunny, and the moon is not made of spaghetti

Entailment

In general, we have n assumptions P_1, \ldots, P_n and conclusion Q.

We are going to say:
$$P_1, \dots, P_n \models Q$$

Read as P_1, \dots, P_n entails Q

$\begin{array}{l} \text{if:} \\ \text{for all "situations" (i.e., valuations)} \\ \text{that make all the assumptions } P_i \text{ true,} \\ \text{the conclusion } Q \text{ is true.} \end{array}$

Entailment

With more symbols

for all valuations ν , if, for all i, $\llbracket P_i \rrbracket \nu = T$, then $\llbracket Q \rrbracket \nu = T$.

In terms of Semantics

every valuation in all $\llbracket P_i \rrbracket$ is also in $\llbracket Q \rrbracket$ (in set theory symbols: $(\llbracket P_1 \rrbracket \cap \cdots \cap \llbracket P_n \rrbracket) \subseteq \llbracket Q \rrbracket$).

Entailment vs Validity

If we have no assumptions, then:

exactly when

for all
$$v$$
. $\llbracket P \rrbracket v = T$

 $\models P$

exactly when

P is valid

Deduction Theorem

$$P_1, \dots, P_n, P \models Q$$
 exactly when $P_1, \dots, P_n \models P \rightarrow Q$

All these statements are equivalent:

1.
$$P_1, \ldots, P_n, P \models Q$$

2. for all v , if all $\llbracket P_i \rrbracket v = T$ and $\llbracket P \rrbracket v = T$, then $\llbracket Q \rrbracket v = T$
3. for all v , if all $\llbracket P_i \rrbracket v = T$, then (if $\llbracket P \rrbracket v = T$, then $\llbracket Q \rrbracket v = T$)
4. for all v , if all $\llbracket P_i \rrbracket v = T$, then $\llbracket P \rightarrow Q \rrbracket v = T$
5. $P_1, \ldots, P_n \models P \rightarrow Q$

Entailment vs satisfiability

So, it is the case that

 $P_1,\ldots,P_n\models Q$

exactly when

$$\models P_1 \to \dots \to P_n \to Q$$

exactly when

$$P_1 \rightarrow \cdots \rightarrow P_n \rightarrow Q$$
 is valid

exactly when

$$\neg(\mathsf{P}_1 \to \dots \to \mathsf{P}_n \to Q)$$
 is not satisfiable

Summary

- Entailment defines safe deductions.
- Relationship with Validity
- Relationship with " \rightarrow " (Deduction Theorem)
- Relationship with Satisfaction.