
CS208 (Semester 1) Week 2 :
Logical Modelling I

Dr. Robert Atkey
Computer & Information Sciences

Atkey CS208 - Week 2 - page 1 of 56



Logical Modelling I, Part 1

Package Installations

Atkey CS208 - Week 2 - page 2 of 56



Logical Modelling I, Part 1: Package Installations

The Problem
1. We have a collection of packages

progA progB libC libD · · ·

2. Each package has several versions: progA1, progA2, ...

3. Only one version of a package may be installed at a time
installing two copies would overwrite each others’s files

4. Packages have dependencies: progA1 depends: libC1, libD2

5. The user wants some packages installed.

Atkey CS208 - Week 2 - page 3 of 56



Logical Modelling I, Part 1: Package Installations

The Problem
1. We have a collection of packages

progA progB libC libD · · ·

2. Each package has several versions: progA1, progA2, ...

3. Only one version of a package may be installed at a time
installing two copies would overwrite each others’s files

4. Packages have dependencies: progA1 depends: libC1, libD2

5. The user wants some packages installed.

Atkey CS208 - Week 2 - page 3 of 56



Logical Modelling I, Part 1: Package Installations

The Problem
1. We have a collection of packages

progA progB libC libD · · ·

2. Each package has several versions: progA1, progA2, ...

3. Only one version of a package may be installed at a time
installing two copies would overwrite each others’s files

4. Packages have dependencies: progA1 depends: libC1, libD2

5. The user wants some packages installed.

Atkey CS208 - Week 2 - page 3 of 56



Logical Modelling I, Part 1: Package Installations

The Problem
1. We have a collection of packages

progA progB libC libD · · ·

2. Each package has several versions: progA1, progA2, ...

3. Only one version of a package may be installed at a time
installing two copies would overwrite each others’s files

4. Packages have dependencies: progA1 depends: libC1, libD2

5. The user wants some packages installed.

Atkey CS208 - Week 2 - page 3 of 56



Logical Modelling I, Part 1: Package Installations

The Problem
1. We have a collection of packages

progA progB libC libD · · ·

2. Each package has several versions: progA1, progA2, ...

3. Only one version of a package may be installed at a time
installing two copies would overwrite each others’s files

4. Packages have dependencies: progA1 depends: libC1, libD2

5. The user wants some packages installed.

Atkey CS208 - Week 2 - page 3 of 56



Logical Modelling I, Part 1: Package Installations

Key Idea

1. Each package/version pair is an atomic proposition

progA1, progA2, progA3, libC1, libC2, · · ·

2. A valuation v represents a set of installed packages:
▶ v(progA1) = T means progA1 is installed;
▶ v(progA1) = F means progA1 is not installed.

Remember: a valuation is an assignment of T or F to every atomic proposition.

Atkey CS208 - Week 2 - page 4 of 56



Logical Modelling I, Part 1: Package Installations

Example Valuations / Installations

v = {progA1 : F, progB1 : F, · · · : F}
Nothing is installed.

v = {progA1 : T, progB1 : T, · · · : F}
progA1 and progB1 are installed, and nothing else is.

Atkey CS208 - Week 2 - page 5 of 56



Logical Modelling I, Part 1: Package Installations

Example Valuations / Installations

v = {progA1 : F, progB1 : F, · · · : F}
Nothing is installed.

v = {progA1 : T, progB1 : T, · · · : F}
progA1 and progB1 are installed, and nothing else is.

Atkey CS208 - Week 2 - page 5 of 56



Logical Modelling I, Part 1: Package Installations

Example Valuations / Installations

v = {progA1 : T, libC1 : T, · · · : F}
progA1 and libC1 are installed, and nothing else is.

v = {progA1 : T, progA2 : T, · · · : F}
progA1 and progA2 are installed, and nothing else is.

Atkey CS208 - Week 2 - page 6 of 56



Logical Modelling I, Part 1: Package Installations

Example Valuations / Installations

v = {progA1 : T, libC1 : T, · · · : F}
progA1 and libC1 are installed, and nothing else is.

v = {progA1 : T, progA2 : T, · · · : F}
progA1 and progA2 are installed, and nothing else is.

Atkey CS208 - Week 2 - page 6 of 56



Logical Modelling I, Part 1: Package Installations

Adding Constraints
This valuation:

v = {progA1 : T, progA2 : T, · · · : F}

says we should install two versions of progA, which is impossible.

So not all valuations are sensible! We must constrain to the sensible
valuations by writing down some formulas.

The formulas we write down to do this are called constraints.

Atkey CS208 - Week 2 - page 7 of 56



Logical Modelling I, Part 1: Package Installations

Adding Constraints
This valuation:

v = {progA1 : T, progA2 : T, · · · : F}

says we should install two versions of progA, which is impossible.

So not all valuations are sensible! We must constrain to the sensible
valuations by writing down some formulas.

The formulas we write down to do this are called constraints.

Atkey CS208 - Week 2 - page 7 of 56



Logical Modelling I, Part 1: Package Installations

Adding Constraints
This valuation:

v = {progA1 : T, progA2 : T, · · · : F}

says we should install two versions of progA, which is impossible.

So not all valuations are sensible! We must constrain to the sensible
valuations by writing down some formulas.

The formulas we write down to do this are called constraints.

Atkey CS208 - Week 2 - page 7 of 56



Logical Modelling I, Part 1: Package Installations

Encoding incompatibility
Requirement: one only version of each package may be installed.

For each package p and versions i, j, where i < j, we assume:

¬pi ∨ ¬pj

Exercise: why does this cover all the cases?

Example
Constraint: never install two versions of progA.

¬progA1 ∨ ¬progA2,¬progA1 ∨ ¬progA3,¬progA2 ∨ ¬progA3

Atkey CS208 - Week 2 - page 8 of 56



Logical Modelling I, Part 1: Package Installations

Encoding incompatibility
Requirement: one only version of each package may be installed.

For each package p and versions i, j, where i < j, we assume:

¬pi ∨ ¬pj

Exercise: why does this cover all the cases?

Example
Constraint: never install two versions of progA.

¬progA1 ∨ ¬progA2,¬progA1 ∨ ¬progA3,¬progA2 ∨ ¬progA3

Atkey CS208 - Week 2 - page 8 of 56



Logical Modelling I, Part 1: Package Installations

Encoding incompatibility
Requirement: one only version of each package may be installed.

For each package p and versions i, j, where i < j, we assume:

¬pi ∨ ¬pj

Exercise: why does this cover all the cases?

Example
Constraint: never install two versions of progA.

¬progA1 ∨ ¬progA2,¬progA1 ∨ ¬progA3,¬progA2 ∨ ¬progA3

Atkey CS208 - Week 2 - page 8 of 56



Logical Modelling I, Part 1: Package Installations

Understanding the Constraint
Why does ¬progA1 ∨ ¬progA2 work?

progA1 progA2 ¬progA1 ¬progA2 ¬progA1 ∨ ¬progA2

F F T T T
T F F T T
F T T F T
T T F F F

The last line, where both are installed, is the case we want to
disallow, and it is the only one assigned F.

Atkey CS208 - Week 2 - page 9 of 56



Logical Modelling I, Part 1: Package Installations

Incompatibility Constraints

We have a collection of constraints:

For each package p and versions i, j, where i < j: ¬pi ∨ ¬pj

Take all these constraints, ∧ them together, and call it Incompat.

Incompat = (¬progA1 ∨ ¬progA2)∧ (¬progA1 ∨ ¬progA3)∧ · · ·

Atkey CS208 - Week 2 - page 10 of 56



Logical Modelling I, Part 1: Package Installations

Filtering Valuations

Before: all valuations (installations) v
Now: only valuations such that JIncompatKv = T

Pay-off: We have a way of removing the nonsense valuations that
allow multiple versions of the same package to be installed.

Atkey CS208 - Week 2 - page 11 of 56



Logical Modelling I, Part 1: Package Installations

Encoding Dependencies
Requirement: Packages depend on other packages:

progA1 depends : libC1, libD2

progA2 depends : libC2, libD2

As Formulas

progA1 → (libC1 ∧ libD2)

progA2 → (libC2 ∧ libD2)

Atkey CS208 - Week 2 - page 12 of 56



Logical Modelling I, Part 1: Package Installations

Encoding Dependencies
Requirement: Packages depend on other packages:

progA1 depends : libC1, libD2

progA2 depends : libC2, libD2

As Formulas

progA1 → (libC1 ∧ libD2)

progA2 → (libC2 ∧ libD2)

Atkey CS208 - Week 2 - page 12 of 56



Logical Modelling I, Part 1: Package Installations

Dependency Constraints

For each package-version pi with dependency qj: pi → qj.
Exercise: why is this the correct thing?

Gather these up as Dep:

Dep = (progA1 → libC1)∧ (progA1 → libD1)∧ · · ·

Atkey CS208 - Week 2 - page 13 of 56



Logical Modelling I, Part 1: Package Installations

Dependency Constraints

For each package-version pi with dependency qj: pi → qj.
Exercise: why is this the correct thing?

Gather these up as Dep:

Dep = (progA1 → libC1)∧ (progA1 → libD1)∧ · · ·

Atkey CS208 - Week 2 - page 13 of 56



Logical Modelling I, Part 1: Package Installations

Dependency Constraints

For each package-version pi with dependency qj: pi → qj.
Exercise: why is this the correct thing?

Gather these up as Dep:

Dep = (progA1 → libC1)∧ (progA1 → libD1)∧ · · ·

Atkey CS208 - Week 2 - page 13 of 56



Logical Modelling I, Part 1: Package Installations

Understanding the Constraint
How to understand progA1 → libC1 ?

progA1 libC1 progA1 → libC1

F F T
T F F
F T T
T T T

The second last line, where progA1 is installed, but its dependency
libC1 is not, is the case we want to disallow, and it is the only one
assigned F.

Atkey CS208 - Week 2 - page 14 of 56



Logical Modelling I, Part 1: Package Installations

Putting together the constraints
Original idea: valuations represent installations.

Problem: Mutually incompatible packages can be installed.
Solution: Impose the constraints Incompat.

Problem: Packages could be installed without their dependencies.
Solution: Impose the constraints Dep.

In summary
Now we have, JIncompat∧ DepKv = T
exactly when the valuation v is a sensible selection of packages.

Atkey CS208 - Week 2 - page 15 of 56



Logical Modelling I, Part 1: Package Installations

Putting together the constraints
Original idea: valuations represent installations.

Problem: Mutually incompatible packages can be installed.

Solution: Impose the constraints Incompat.

Problem: Packages could be installed without their dependencies.
Solution: Impose the constraints Dep.

In summary
Now we have, JIncompat∧ DepKv = T
exactly when the valuation v is a sensible selection of packages.

Atkey CS208 - Week 2 - page 15 of 56



Logical Modelling I, Part 1: Package Installations

Putting together the constraints
Original idea: valuations represent installations.

Problem: Mutually incompatible packages can be installed.
Solution: Impose the constraints Incompat.

Problem: Packages could be installed without their dependencies.
Solution: Impose the constraints Dep.

In summary
Now we have, JIncompat∧ DepKv = T
exactly when the valuation v is a sensible selection of packages.

Atkey CS208 - Week 2 - page 15 of 56



Logical Modelling I, Part 1: Package Installations

Putting together the constraints
Original idea: valuations represent installations.

Problem: Mutually incompatible packages can be installed.
Solution: Impose the constraints Incompat.

Problem: Packages could be installed without their dependencies.

Solution: Impose the constraints Dep.

In summary
Now we have, JIncompat∧ DepKv = T
exactly when the valuation v is a sensible selection of packages.

Atkey CS208 - Week 2 - page 15 of 56



Logical Modelling I, Part 1: Package Installations

Putting together the constraints
Original idea: valuations represent installations.

Problem: Mutually incompatible packages can be installed.
Solution: Impose the constraints Incompat.

Problem: Packages could be installed without their dependencies.
Solution: Impose the constraints Dep.

In summary
Now we have, JIncompat∧ DepKv = T
exactly when the valuation v is a sensible selection of packages.

Atkey CS208 - Week 2 - page 15 of 56



Logical Modelling I, Part 1: Package Installations

Putting together the constraints
Original idea: valuations represent installations.

Problem: Mutually incompatible packages can be installed.
Solution: Impose the constraints Incompat.

Problem: Packages could be installed without their dependencies.
Solution: Impose the constraints Dep.

In summary
Now we have, JIncompat∧ DepKv = T
exactly when the valuation v is a sensible selection of packages.

Atkey CS208 - Week 2 - page 15 of 56



Logical Modelling I, Part 1: Package Installations

Relating to Satisfiability
P is satisfiable if there exists a valuation v with JPKv = T.

For the package installation problem:
1. If the formula Incompat∧ Dep

is satisfiable, then there is least one possible installation.
2. If the formula Incompat∧ Dep∧ progA1

is satisfiable then progA1 is installable (with its dependencies)
3. if Incompat∧ Dep∧ (progA1 ∨ progA2 ∨ progA3)

is satisfiable then some version of progA is installable.

Atkey CS208 - Week 2 - page 16 of 56



Logical Modelling I, Part 1: Package Installations

Relating to Satisfiability
P is satisfiable if there exists a valuation v with JPKv = T.

For the package installation problem:
1. If the formula Incompat∧ Dep

is satisfiable, then there is least one possible installation.
2. If the formula Incompat∧ Dep∧ progA1

is satisfiable then progA1 is installable (with its dependencies)
3. if Incompat∧ Dep∧ (progA1 ∨ progA2 ∨ progA3)

is satisfiable then some version of progA is installable.

Atkey CS208 - Week 2 - page 16 of 56



Logical Modelling I, Part 1: Package Installations

Example 1
Assume one version of each package: Incompat is empty.

Dep = (progA1 → libC1)∧ (libC1 → libD1)∧ (libC1 → libE1)

We would like to install progA1.

As a formula: Is this formula satisfiable?

Incompat∧ Dep∧ progA1

Yes:
{progA1 : T, libC1 : T, libD1 : T, libE1 : T}

(Install everything)

Atkey CS208 - Week 2 - page 17 of 56



Logical Modelling I, Part 1: Package Installations

Example 1
Assume one version of each package: Incompat is empty.

Dep = (progA1 → libC1)∧ (libC1 → libD1)∧ (libC1 → libE1)

We would like to install progA1.

As a formula: Is this formula satisfiable?

Incompat∧ Dep∧ progA1

Yes:
{progA1 : T, libC1 : T, libD1 : T, libE1 : T}

(Install everything)

Atkey CS208 - Week 2 - page 17 of 56



Logical Modelling I, Part 1: Package Installations

Example 1
Assume one version of each package: Incompat is empty.

Dep = (progA1 → libC1)∧ (libC1 → libD1)∧ (libC1 → libE1)

We would like to install progA1.

As a formula: Is this formula satisfiable?

Incompat∧ Dep∧ progA1

Yes:
{progA1 : T, libC1 : T, libD1 : T, libE1 : T}

(Install everything)

Atkey CS208 - Week 2 - page 17 of 56



Logical Modelling I, Part 1: Package Installations

Example 1
Assume one version of each package: Incompat is empty.

Dep = (progA1 → libC1)∧ (libC1 → libD1)∧ (libC1 → libE1)

We would like to install progA1.

As a formula: Is this formula satisfiable?

Incompat∧ Dep∧ progA1

Yes:
{progA1 : T, libC1 : T, libD1 : T, libE1 : T}

(Install everything)
Atkey CS208 - Week 2 - page 17 of 56



Logical Modelling I, Part 1: Package Installations

Example 2
Assume two versions of libE:

Incompat = ¬libE1 ∨ ¬libE2

Add a dependency:

Dep = (progA1 → libC1)∧ (libC1 → libD1)∧ (libC1 → libE1)

∧ (libD1 → libE2)

As a formula: Is this formula satisfiable? Incompat∧Dep∧ progA1

No! Incompat∧ progA1 force both libE1 and libE2 to be T, but this
is disallowed by the Incompat constraint.“diamond dependency”

Atkey CS208 - Week 2 - page 18 of 56



Logical Modelling I, Part 1: Package Installations

Example 2
Assume two versions of libE:

Incompat = ¬libE1 ∨ ¬libE2

Add a dependency:

Dep = (progA1 → libC1)∧ (libC1 → libD1)∧ (libC1 → libE1)

∧ (libD1 → libE2)

As a formula: Is this formula satisfiable? Incompat∧Dep∧ progA1

No! Incompat∧ progA1 force both libE1 and libE2 to be T, but this
is disallowed by the Incompat constraint.“diamond dependency”

Atkey CS208 - Week 2 - page 18 of 56



Logical Modelling I, Part 1: Package Installations

Example 2
Assume two versions of libE:

Incompat = ¬libE1 ∨ ¬libE2

Add a dependency:

Dep = (progA1 → libC1)∧ (libC1 → libD1)∧ (libC1 → libE1)

∧ (libD1 → libE2)

As a formula: Is this formula satisfiable? Incompat∧Dep∧ progA1

No! Incompat∧ progA1 force both libE1 and libE2 to be T, but this
is disallowed by the Incompat constraint.“diamond dependency”

Atkey CS208 - Week 2 - page 18 of 56



Logical Modelling I, Part 1: Package Installations

Summary

▶ Package installations solved via Logical Modelling
▶ Valuations are installations
▶ Impose constraints to match requirments
▶ Satisfying valuations = viable installations

Atkey CS208 - Week 2 - page 19 of 56



Logical Modelling I, Part 2

SAT Solving

Atkey CS208 - Week 2 - page 20 of 56



Logical Modelling I, Part 2: SAT Solving

SAT solvers

SATisfiability solvers.

The problem they solve:
▶ Given a formula P (in conjunctive normal form), find a

valuation v that makes it T and return SAT(v), or if there is
no such valuation, return UNSAT.

Atkey CS208 - Week 2 - page 21 of 56



Logical Modelling I, Part 2: SAT Solving

Solving SAT
▶ In the worst case, there are 2n cases to check, where n is the

number of atomic propositions.
▶ Checking each case is quick … but there are a lot of cases.

▶ This is the archetypal NP problem:
▶ If we knew the answer, it would be easy to check

(Polynomial time)
▶ But there are exponentially many to check

(Nondeterminism)

▶ It is unknown if there is a better way. Does P = NP?

Atkey CS208 - Week 2 - page 22 of 56



Logical Modelling I, Part 2: SAT Solving

But SAT is useful: Solving Problems

1. Package installations (last lecture)
(satisfying valuation = good package installation)

2. Solving Sudoku
(satisfying valuation = correct solution)

3. Solving Resource allocations
(satisfying valuation = feasible resource allocation)

Atkey CS208 - Week 2 - page 23 of 56



Logical Modelling I, Part 2: SAT Solving

SAT is Useful: Finding Bugs

(Recall: P1 → P2 → Q is valid if ¬(P1 → P2 → Q) is not satisfiable)

1. Finding faults in systems
(satisfying valuation = path to a bad state)

2. Finding flaws in Access Control rules
(satisfying valuation = unexpectedly permitted request)

3. Verifying hardware
(satisfying valuation = counterexample to correctness)

Atkey CS208 - Week 2 - page 24 of 56



Logical Modelling I, Part 2: SAT Solving

An alluring proposition

Instead of writing custom solvers for all these problems, we:
1. translate into propositional logic; and
2. use an off the shelf SAT solver.

Atkey CS208 - Week 2 - page 25 of 56



Logical Modelling I, Part 2: SAT Solving

Solving the problem in practice
Despite the 2n worst case time, practical SAT solvers are possible:
1. Solvers don’t blindly check all cases:

▶ Use the formula to guide the search;
▶ Analyse dead ends to avoid finding them more than once;
▶ Very efficient data structures.

2. Human-made problems tend to be quite regular.
3. Modern SAT solvers can handle

▶ 10s of thousands of variables
▶ millions of clauses

4. Practical tools for solving real-world problems.

Atkey CS208 - Week 2 - page 26 of 56



Logical Modelling I, Part 2: SAT Solving

Input for SAT solvers
SAT solvers take input in Conjunctive Normal Form (CNF):

(¬a∨ ¬b∨ ¬c)

∧ (¬b∨ ¬c∨ ¬d)

∧ (¬a∨ ¬b∨ c)

∧ b

1. Entire formula is a conjunction C1 ∧ C2 ∧ · · · ∧ Cn

2. where each clause Ci = Li,1 ∨ Li,2 ∨ · · · ∨ Li,k

3. where each literal Li,j = xi,j or Li,j = ¬xi,j
Every formula can be put into CNF (later)

Atkey CS208 - Week 2 - page 27 of 56



Logical Modelling I, Part 2: SAT Solving

Conjunctive Normal Form
For the package installation problems, we already have CNF:

(¬libD1 ∨ ¬libD2)

∧ (¬libC1 ∨ ¬libC2)

∧ (¬progA1 ∨ ¬progA2)

 Incompat

∧ (¬progA1 ∨ libC1)

∧ (¬progA2 ∨ libC2)

∧ (¬libC1 ∨ libD2)

∧ (¬libC2 ∨ libD2)

 Dep

∧ (progA1 ∨ progA2)
Atkey CS208 - Week 2 - page 28 of 56



Logical Modelling I, Part 2: SAT Solving

A SAT Solver’s job
Given clauses that look like:

(¬a∨ ¬b∨ ¬c)

∧ (¬b∨ ¬c∨ ¬d)

∧ (¬a∨ ¬b∨ c)

∧ b

To find a valuation v for the a, ... such that at least one literal in
every clause is true.

Returns either: SAT(v) or UNSAT.
Atkey CS208 - Week 2 - page 29 of 56



Logical Modelling I, Part 2: SAT Solving

Basic idea of the algorithm

1. The clauses C1, . . . , Cn to be satisfied are fixed;
2. The state is a partial valuation (next slide);
3. At each step we pick a way to modify the current partial

valuation by choosing from a collection of rules;
4. Algorithm terminates when either a satisfying valuation is

constructed, or it is clear that this is not possible.

This is known as the DPLL Algorithm.

Atkey CS208 - Week 2 - page 30 of 56



Logical Modelling I, Part 2: SAT Solving

Partial Valuations

To describe what a SAT solver does, we need partial valuations.

A partial valuation v? is a:
▶ sequence of assignments to atoms; with each one marked

1. decision point, if we guessed this value.
2. forced, if we were forced to have this value.

Examples: v?1 = [a :d T, b :d F, c :f T]
v?2 = [a :f F, b :d F]

Atkey CS208 - Week 2 - page 31 of 56



Logical Modelling I, Part 2: SAT Solving

Differences with Valuations

1. The order matters
(we keep track of what decisions we make during the search)

2. Not all atoms need an assignment
(we want to represent partial solutions during the search)

3. We mark decision points and forced decisions.

Atkey CS208 - Week 2 - page 32 of 56



Logical Modelling I, Part 2: SAT Solving

Notation

We write
v?1, a :d x, v?2

for a partial valuation with a :d x somewhere in the middle.

We write
decisionfree(v?)

if none of the assignments in v? are marked d

(i.e., all decisions in v? are forced)

Atkey CS208 - Week 2 - page 33 of 56



Logical Modelling I, Part 2: SAT Solving

1. Initialisation

We start with the empty partial valuation v? = [].
(We make no commitments)

We must extend this guess to a valuation that satisfies all the
clauses.

Atkey CS208 - Week 2 - page 34 of 56



Logical Modelling I, Part 2: SAT Solving

2. Guessing

If there is an atom a in the clauses that is not in the current partial
valuation v?, then we can make a guess. We pick one of:

v?, a :d T or v?, a :d F

(Note: we have marked this as a decision point)

Atkey CS208 - Week 2 - page 35 of 56



Logical Modelling I, Part 2: SAT Solving

3. Success

If the current v? makes all the clauses true (for all i, JCiKv? = T),
then stop with SAT(v?).

Atkey CS208 - Week 2 - page 36 of 56



Logical Modelling I, Part 2: SAT Solving

Example

(
✓
¬a ∨

✓
¬b ∨

✓
¬c )∧(

✓
¬b ∨

✓
¬c ∨

✓
¬d )∧(

✓
¬a ∨

✓
¬b ∨

✓
c )∧

✓
b

(Need at least one green in every clause)

Sequence of (lucky) guesses
1. []

2. [a :d F]
3. [a :d F, b :d T]
4. [a :d F, b :d T, c :d F]
5. [a :d F, b :d T, c :d F, d :d F], a satisfying valuation.

Atkey CS208 - Week 2 - page 37 of 56



Logical Modelling I, Part 2: SAT Solving

Example

(
✓
¬a ∨

✓
¬b ∨

✓
¬c )∧(

✓
¬b ∨

✓
¬c ∨

✓
¬d )∧(

✓
¬a ∨

✓
¬b ∨

✓
c )∧

✓
b

(Need at least one green in every clause)

Sequence of (lucky) guesses
1. []
2. [a :d F]

3. [a :d F, b :d T]
4. [a :d F, b :d T, c :d F]
5. [a :d F, b :d T, c :d F, d :d F], a satisfying valuation.

Atkey CS208 - Week 2 - page 37 of 56



Logical Modelling I, Part 2: SAT Solving

Example

(
✓
¬a ∨

×
¬b ∨

✓
¬c )∧(

×
¬b ∨

✓
¬c ∨

✓
¬d )∧(

✓
¬a ∨

×
¬b ∨

✓
c )∧

✓
b

(Need at least one green in every clause)

Sequence of (lucky) guesses
1. []
2. [a :d F]
3. [a :d F, b :d T]

4. [a :d F, b :d T, c :d F]
5. [a :d F, b :d T, c :d F, d :d F], a satisfying valuation.

Atkey CS208 - Week 2 - page 37 of 56



Logical Modelling I, Part 2: SAT Solving

Example

(
✓
¬a ∨

×
¬b ∨

✓
¬c )∧(

×
¬b ∨

✓
¬c ∨

✓
¬d )∧(

✓
¬a ∨

×
¬b ∨

×
c )∧

✓
b

(Need at least one green in every clause)

Sequence of (lucky) guesses
1. []
2. [a :d F]
3. [a :d F, b :d T]
4. [a :d F, b :d T, c :d F]

5. [a :d F, b :d T, c :d F, d :d F], a satisfying valuation.

Atkey CS208 - Week 2 - page 37 of 56



Logical Modelling I, Part 2: SAT Solving

Example

(
✓
¬a ∨

×
¬b ∨

✓
¬c )∧(

×
¬b ∨

✓
¬c ∨

✓
¬d )∧(

✓
¬a ∨

×
¬b ∨

×
c )∧

✓
b

(Need at least one green in every clause)

Sequence of (lucky) guesses
1. []
2. [a :d F]
3. [a :d F, b :d T]
4. [a :d F, b :d T, c :d F]
5. [a :d F, b :d T, c :d F, d :d F], a satisfying valuation.

Atkey CS208 - Week 2 - page 37 of 56



But we can’t program “luck”!

Atkey CS208 - Week 2 - page 38 of 56



Logical Modelling I, Part 2: SAT Solving

4. Backtracking
If we have a partial valuation:

v?1, a :d x, v?2

and decisionfree(v?2) (so a : x was our most recent guess).

Then we backtrack (throw away v?2) and change our mind:

v?1, a :f ¬x

marking the assignment as forced.

Atkey CS208 - Week 2 - page 39 of 56



Logical Modelling I, Part 2: SAT Solving

5. Failure

If all decisions are forced (decisionfree(v?)), and there is at least
one clause Ci such that JCKv? = F, then return UNSAT.

Atkey CS208 - Week 2 - page 40 of 56



Logical Modelling I, Part 2: SAT Solving

(
✓
¬a ∨

✓
¬b ∨

✓
¬c )∧ (

✓
¬b ∨

✓
¬c ∨

✓
¬d )∧ (

✓
¬a ∨

✓
¬b ∨

✓
c )∧

✓
b

1. []

2. [a :d T]
3. [a :d T, b :d T]
4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…
5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…
6. [a :d T, b :f F] clause 4 failed, backtrack…
7. [a :f F]
8. [a :f F, b :d T]
9. [a :f F, b :d T, c :d T]

10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack
11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Week 2 - page 41 of 56



Logical Modelling I, Part 2: SAT Solving

(
×
¬a ∨

✓
¬b ∨

✓
¬c )∧ (

✓
¬b ∨

✓
¬c ∨

✓
¬d )∧ (

×
¬a ∨

✓
¬b ∨

✓
c )∧

✓
b

1. []

2. [a :d T]

3. [a :d T, b :d T]
4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…
5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…
6. [a :d T, b :f F] clause 4 failed, backtrack…
7. [a :f F]
8. [a :f F, b :d T]
9. [a :f F, b :d T, c :d T]

10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack
11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Week 2 - page 41 of 56



Logical Modelling I, Part 2: SAT Solving

(
×
¬a ∨

×
¬b ∨

✓
¬c )∧ (

×
¬b ∨

✓
¬c ∨

✓
¬d )∧ (

×
¬a ∨

×
¬b ∨

✓
c )∧

✓
b

1. []

2. [a :d T]
3. [a :d T, b :d T]

4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…
5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…
6. [a :d T, b :f F] clause 4 failed, backtrack…
7. [a :f F]
8. [a :f F, b :d T]
9. [a :f F, b :d T, c :d T]

10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack
11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Week 2 - page 41 of 56



Logical Modelling I, Part 2: SAT Solving

(
×
¬a ∨

×
¬b ∨

×
¬c )∧ (

×
¬b ∨

×
¬c ∨

✓
¬d )∧ (

×
¬a ∨

×
¬b ∨

✓
c )∧

✓
b

1. []

2. [a :d T]
3. [a :d T, b :d T]
4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…

5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…
6. [a :d T, b :f F] clause 4 failed, backtrack…
7. [a :f F]
8. [a :f F, b :d T]
9. [a :f F, b :d T, c :d T]

10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack
11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Week 2 - page 41 of 56



Logical Modelling I, Part 2: SAT Solving

(
×
¬a ∨

×
¬b ∨

✓
¬c )∧ (

×
¬b ∨

✓
¬c ∨

✓
¬d )∧ (

×
¬a ∨

×
¬b ∨

×
c )∧

✓
b

1. []

2. [a :d T]
3. [a :d T, b :d T]
4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…
5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…

6. [a :d T, b :f F] clause 4 failed, backtrack…
7. [a :f F]
8. [a :f F, b :d T]
9. [a :f F, b :d T, c :d T]

10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack
11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Week 2 - page 41 of 56



Logical Modelling I, Part 2: SAT Solving

(
×
¬a ∨

✓
¬b ∨

✓
¬c )∧ (

✓
¬b ∨

✓
¬c ∨

✓
¬d )∧ (

×
¬a ∨

✓
¬b ∨

✓
c )∧

×
b

1. []

2. [a :d T]
3. [a :d T, b :d T]
4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…
5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…
6. [a :d T, b :f F] clause 4 failed, backtrack…

7. [a :f F]
8. [a :f F, b :d T]
9. [a :f F, b :d T, c :d T]

10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack
11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Week 2 - page 41 of 56



Logical Modelling I, Part 2: SAT Solving

(
✓
¬a ∨

✓
¬b ∨

✓
¬c )∧ (

✓
¬b ∨

✓
¬c ∨

✓
¬d )∧ (

✓
¬a ∨

✓
¬b ∨

✓
c )∧

✓
b

1. []

2. [a :d T]
3. [a :d T, b :d T]
4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…
5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…
6. [a :d T, b :f F] clause 4 failed, backtrack…
7. [a :f F]

8. [a :f F, b :d T]
9. [a :f F, b :d T, c :d T]

10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack
11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Week 2 - page 41 of 56



Logical Modelling I, Part 2: SAT Solving

(
✓
¬a ∨

×
¬b ∨

✓
¬c )∧ (

×
¬b ∨

✓
¬c ∨

✓
¬d )∧ (

✓
¬a ∨

×
¬b ∨

✓
c )∧

✓
b

1. []

2. [a :d T]
3. [a :d T, b :d T]
4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…
5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…
6. [a :d T, b :f F] clause 4 failed, backtrack…
7. [a :f F]
8. [a :f F, b :d T]

9. [a :f F, b :d T, c :d T]
10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack
11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Week 2 - page 41 of 56



Logical Modelling I, Part 2: SAT Solving

(
✓
¬a ∨

×
¬b ∨

×
¬c )∧ (

×
¬b ∨

×
¬c ∨

✓
¬d )∧ (

✓
¬a ∨

×
¬b ∨

✓
c )∧

✓
b

1. []

2. [a :d T]
3. [a :d T, b :d T]
4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…
5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…
6. [a :d T, b :f F] clause 4 failed, backtrack…
7. [a :f F]
8. [a :f F, b :d T]
9. [a :f F, b :d T, c :d T]

10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack
11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Week 2 - page 41 of 56



Logical Modelling I, Part 2: SAT Solving

(
✓
¬a ∨

×
¬b ∨

×
¬c )∧ (

×
¬b ∨

×
¬c ∨

×
¬d )∧ (

✓
¬a ∨

×
¬b ∨

✓
c )∧

✓
b

1. []

2. [a :d T]
3. [a :d T, b :d T]
4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…
5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…
6. [a :d T, b :f F] clause 4 failed, backtrack…
7. [a :f F]
8. [a :f F, b :d T]
9. [a :f F, b :d T, c :d T]

10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack

11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Week 2 - page 41 of 56



Logical Modelling I, Part 2: SAT Solving

(
✓
¬a ∨

×
¬b ∨

×
¬c )∧ (

×
¬b ∨

×
¬c ∨

✓
¬d )∧ (

✓
¬a ∨

×
¬b ∨

✓
c )∧

✓
b

1. []

2. [a :d T]
3. [a :d T, b :d T]
4. [a :d T, b :d T, c :d T] clause 1 failed, backtrack…
5. [a :d T, b :d T, c :f F] clause 3 failed, backtrack…
6. [a :d T, b :f F] clause 4 failed, backtrack…
7. [a :f F]
8. [a :f F, b :d T]
9. [a :f F, b :d T, c :d T]

10. [a :f F, b :d T, c :d T, d :d T] clause 2 failed, backtrack
11. [a :f F, b :d T, c :d T, d :d F] SAT

Atkey CS208 - Week 2 - page 41 of 56



Logical Modelling I, Part 2: SAT Solving

Summary

1. SAT solvers are tools that find satisfying valuations for
formulas in CNF.

2. Having a SAT solver enables solving of problems modelled
using logic.

3. The core algorithm is a backtracking search.

Atkey CS208 - Week 2 - page 42 of 56



Logical Modelling I, Part 3

Faster SAT by Unit
Propagation

Atkey CS208 - Week 2 - page 43 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

Backtracking is Oblivious

The example:

(¬a∨ ¬b∨ ¬c)∧ (¬b∨ ¬c∨ ¬d)∧ (¬a∨ ¬b∨ c)∧ b

Backtracking tries the atoms in some order.

But we can see immediately that b must be true.

Other forced assignments occur during the search.

Atkey CS208 - Week 2 - page 44 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

Making the Search less naive
If we are in a situation like:

(
×
¬b ∨

×
¬c ∨

✓
¬d )

then if the current valuation is to succeed in any way, it must be
the case that d : F.

(because we need at least one literal in every clause to be true.)

Using this, we can make the search a little less naive.

Atkey CS208 - Week 2 - page 45 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

6. Unit Propagation Step

(a) If there is a clause C∨ aand JCKv? = F, then we extend v? to:

v?, a :f T

(b) If there is a clause C∨ ¬a and JCKv? = F, then we extend v? to:

v?, a :f F

(Note: the a needn’t necessarily appear at the end of the clause)

Atkey CS208 - Week 2 - page 46 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

(
✓
¬a ∨

✓
¬b ∨

✓
¬c )∧ (

✓
¬b ∨

✓
¬c ∨

✓
¬d )∧ (

✓
¬a ∨

✓
¬b ∨

✓
c )∧

✓
b

1. [] do unit propagation…

2. [b :f T]
3. [b :f T, a :d T] do unit propagation…
4. [b :f T, a :d T, c :f F] clause 3 failed, backtrack…
5. [b :f T, a :f F]
6. [b :f T, a :f F, c :d T] do unit propagation…
7. [b :f T, a :f F, c :d T, d :f F] SAT

One backtrack vs. four without unit propagation.

Atkey CS208 - Week 2 - page 47 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

(
✓
¬a ∨

×
¬b ∨

✓
¬c )∧ (

×
¬b ∨

✓
¬c ∨

✓
¬d )∧ (

✓
¬a ∨

×
¬b ∨

✓
c )∧

✓
b

1. [] do unit propagation…
2. [b :f T]

3. [b :f T, a :d T] do unit propagation…
4. [b :f T, a :d T, c :f F] clause 3 failed, backtrack…
5. [b :f T, a :f F]
6. [b :f T, a :f F, c :d T] do unit propagation…
7. [b :f T, a :f F, c :d T, d :f F] SAT

One backtrack vs. four without unit propagation.

Atkey CS208 - Week 2 - page 47 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

(
×
¬a ∨

×
¬b ∨

✓
¬c )∧ (

×
¬b ∨

✓
¬c ∨

✓
¬d )∧ (

×
¬a ∨

×
¬b ∨

✓
c )∧

✓
b

1. [] do unit propagation…
2. [b :f T]
3. [b :f T, a :d T] do unit propagation…

4. [b :f T, a :d T, c :f F] clause 3 failed, backtrack…
5. [b :f T, a :f F]
6. [b :f T, a :f F, c :d T] do unit propagation…
7. [b :f T, a :f F, c :d T, d :f F] SAT

One backtrack vs. four without unit propagation.

Atkey CS208 - Week 2 - page 47 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

(
×
¬a ∨

×
¬b ∨

✓
¬c )∧ (

×
¬b ∨

✓
¬c ∨

✓
¬d )∧ (

×
¬a ∨

×
¬b ∨

×
c )∧

✓
b

1. [] do unit propagation…
2. [b :f T]
3. [b :f T, a :d T] do unit propagation…
4. [b :f T, a :d T, c :f F] clause 3 failed, backtrack…

5. [b :f T, a :f F]
6. [b :f T, a :f F, c :d T] do unit propagation…
7. [b :f T, a :f F, c :d T, d :f F] SAT

One backtrack vs. four without unit propagation.

Atkey CS208 - Week 2 - page 47 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

(
✓
¬a ∨

×
¬b ∨

✓
¬c )∧ (

×
¬b ∨

✓
¬c ∨

✓
¬d )∧ (

✓
¬a ∨

×
¬b ∨

✓
c )∧

✓
b

1. [] do unit propagation…
2. [b :f T]
3. [b :f T, a :d T] do unit propagation…
4. [b :f T, a :d T, c :f F] clause 3 failed, backtrack…
5. [b :f T, a :f F]

6. [b :f T, a :f F, c :d T] do unit propagation…
7. [b :f T, a :f F, c :d T, d :f F] SAT

One backtrack vs. four without unit propagation.

Atkey CS208 - Week 2 - page 47 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

(
✓
¬a ∨

×
¬b ∨

×
¬c )∧ (

×
¬b ∨

×
¬c ∨

✓
¬d )∧ (

✓
¬a ∨

×
¬b ∨

✓
c )∧

✓
b

1. [] do unit propagation…
2. [b :f T]
3. [b :f T, a :d T] do unit propagation…
4. [b :f T, a :d T, c :f F] clause 3 failed, backtrack…
5. [b :f T, a :f F]
6. [b :f T, a :f F, c :d T] do unit propagation…

7. [b :f T, a :f F, c :d T, d :f F] SAT

One backtrack vs. four without unit propagation.

Atkey CS208 - Week 2 - page 47 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

(
✓
¬a ∨

×
¬b ∨

×
¬c )∧ (

×
¬b ∨

×
¬c ∨

✓
¬d )∧ (

✓
¬a ∨

×
¬b ∨

✓
c )∧

✓
b

1. [] do unit propagation…
2. [b :f T]
3. [b :f T, a :d T] do unit propagation…
4. [b :f T, a :d T, c :f F] clause 3 failed, backtrack…
5. [b :f T, a :f F]
6. [b :f T, a :f F, c :d T] do unit propagation…
7. [b :f T, a :f F, c :d T, d :f F] SAT

One backtrack vs. four without unit propagation.

Atkey CS208 - Week 2 - page 47 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

(
✓
¬a ∨

×
¬b ∨

×
¬c )∧ (

×
¬b ∨

×
¬c ∨

✓
¬d )∧ (

✓
¬a ∨

×
¬b ∨

✓
c )∧

✓
b

1. [] do unit propagation…
2. [b :f T]
3. [b :f T, a :d T] do unit propagation…
4. [b :f T, a :d T, c :f F] clause 3 failed, backtrack…
5. [b :f T, a :f F]
6. [b :f T, a :f F, c :d T] do unit propagation…
7. [b :f T, a :f F, c :d T, d :f F] SAT

One backtrack vs. four without unit propagation.
Atkey CS208 - Week 2 - page 47 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

2-SAT
If every clause has at most two literals, UP means less backtracking:

(
✓

¬libD1 ∨
✓

¬libD2 ) ∧ (
✓

¬libC1 ∨
✓

¬libC2 )

∧ (
✓

¬progA1 ∨
✓

¬progA2 ) ∧ (
✓

¬progA1 ∨
✓

libC1 )

∧ (
✓

¬progA2 ∨
✓

libC2 ) ∧ (
✓

¬libC1 ∨
✓

libD2 )

∧ (
✓

¬libC2 ∨
✓

libD2 ) ∧ (
✓

progA1 ∨
✓

progA2 )

[]

Atkey CS208 - Week 2 - page 48 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

2-SAT
If every clause has at most two literals, UP means less backtracking:

(
✓

¬libD1 ∨
✓

¬libD2 ) ∧ (
✓

¬libC1 ∨
✓

¬libC2 )

∧ (
×

¬progA1 ∨
✓

¬progA2 ) ∧ (
×

¬progA1 ∨
✓

libC1 )

∧ (
✓

¬progA2 ∨
✓

libC2 ) ∧ (
✓

¬libC1 ∨
✓

libD2 )

∧ (
✓

¬libC2 ∨
✓

libD2 ) ∧ (
✓

progA1 ∨
✓

progA2 )

[progA1 :d T]
Atkey CS208 - Week 2 - page 48 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

2-SAT
If every clause has at most two literals, UP means less backtracking:

(
✓

¬libD1 ∨
✓

¬libD2 ) ∧ (
✓

¬libC1 ∨
✓

¬libC2 )

∧ (
×

¬progA1 ∨
✓

¬progA2 ) ∧ (
×

¬progA1 ∨
✓

libC1 )

∧ (
✓

¬progA2 ∨
✓

libC2 ) ∧ (
✓

¬libC1 ∨
✓

libD2 )

∧ (
✓

¬libC2 ∨
✓

libD2 ) ∧ (
✓

progA1 ∨
×

progA2 )

[progA1 :d T, progA2 :f F]
Atkey CS208 - Week 2 - page 48 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

2-SAT
If every clause has at most two literals, UP means less backtracking:

(
✓

¬libD1 ∨
✓

¬libD2 ) ∧ (
×

¬libC1 ∨
✓

¬libC2 )

∧ (
×

¬progA1 ∨
✓

¬progA2 ) ∧ (
×

¬progA1 ∨
✓

libC1 )

∧ (
✓

¬progA2 ∨
✓

libC2 ) ∧ (
×

¬libC1 ∨
✓

libD2 )

∧ (
✓

¬libC2 ∨
✓

libD2 ) ∧ (
✓

progA1 ∨
×

progA2 )

[progA1 :d T, progA2 :f F, libC1 :f T]
Atkey CS208 - Week 2 - page 48 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

2-SAT
If every clause has at most two literals, UP means less backtracking:

(
✓

¬libD1 ∨
✓

¬libD2 ) ∧ (
×

¬libC1 ∨
✓

¬libC2 )

∧ (
×

¬progA1 ∨
✓

¬progA2 ) ∧ (
×

¬progA1 ∨
✓

libC1 )

∧ (
✓

¬progA2 ∨
×

libC2 ) ∧ (
×

¬libC1 ∨
✓

libD2 )

∧ (
✓

¬libC2 ∨
✓

libD2 ) ∧ (
✓

progA1 ∨
×

progA2 )

[progA1 :d T, progA2 :f F, libC1 :f T, libC2 :f F]
Atkey CS208 - Week 2 - page 48 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

2-SAT
If every clause has at most two literals, UP means less backtracking:

(
✓

¬libD1 ∨
×

¬libD2 ) ∧ (
×

¬libC1 ∨
✓

¬libC2 )

∧ (
×

¬progA1 ∨
✓

¬progA2 ) ∧ (
×

¬progA1 ∨
✓

libC1 )

∧ (
✓

¬progA2 ∨
×

libC2 ) ∧ (
×

¬libC1 ∨
✓

libD2 )

∧ (
✓

¬libC2 ∨
✓

libD2 ) ∧ (
✓

progA1 ∨
×

progA2 )

[progA1 :d T, progA2 :f F, libC1 :f T, libC2 :f F, libD2 :f T]
Atkey CS208 - Week 2 - page 48 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

2-SAT
If every clause has at most two literals, UP means less backtracking:

(
✓

¬libD1 ∨
×

¬libD2 ) ∧ (
×

¬libC1 ∨
✓

¬libC2 )

∧ (
×

¬progA1 ∨
✓

¬progA2 ) ∧ (
×

¬progA1 ∨
✓

libC1 )

∧ (
✓

¬progA2 ∨
×

libC2 ) ∧ (
×

¬libC1 ∨
✓

libD2 )

∧ (
✓

¬libC2 ∨
✓

libD2 ) ∧ (
✓

progA1 ∨
×

progA2 )

[progA1 :d T, progA2 :f F, libC1 :f T, libC2 :f F, libD2 :f T, libD1 :f F]
Atkey CS208 - Week 2 - page 48 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

2-SAT

If every clause has at most two literals,
▶ UP means at most one backtrack
▶ Means that we can solve the problem in polynomial time
▶ So for the n-SAT problem:

▶ If n ≤ 2, there is a fast polynomial time algorithm
▶ If n ≥ 3, no known general fast algorithm

Atkey CS208 - Week 2 - page 49 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

Summary of the Rules 1

DecideTRue v? =⇒ v?, a :d T if a is not assigned in v?

DecideFalse v? =⇒ v?, a :d F if a is not assigned in v?

Success v? =⇒ SAT(v?) if v? makes all the
clauses true.

Atkey CS208 - Week 2 - page 50 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

Summary of the Rules 2

BacKTRacK v?1, a :d x, v?2 =⇒ v?1, a :f ¬x if v?2 is decision free

Fail v? =⇒ UNSAT if v? is decision free, and
makes at least one clause
false.

Atkey CS208 - Week 2 - page 51 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

Summary of the Rules 3

UnitPRopTRue v? =⇒ v?, a :f T if there is a clause C∨ a

and JCK(v?) = F

UnitPRopFalse v? =⇒ v?, a :f F if there is a clause C∨ ¬a

and JCK(v?) = F

Atkey CS208 - Week 2 - page 52 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

Real SAT solvers
Use very efficient data structures. (Key is very fast unit propagation)

Use heuristics to guide the search:
▶ Which atom to try next? (not just a, b, c, ...)
▶ Whether to try T or F first?

Incorporate additional rules:
▶ Non-chronological backjumping

(skip several decision points by analysing conflicts)

▶ Clause learning to avoid doing the same work over again.
▶ “CDCL” (Conflict Driven Clause Learning)
▶ Random walk between possible valuations “WalkSAT”.

Atkey CS208 - Week 2 - page 53 of 56



Logical Modelling I, Part 3: Faster SAT by Unit Propagation

Further Reading
A blog post with a Python implementation:

Understanding SAT by Implementing a Simple SAT Solver in Python
Sahand Saba
https://sahandsaba.com/understanding-sat-by-implementing-a-simple-sat-solver-in-python.html

Another blog post with more formalism:
A Primer on Boolean Satisfiability
Emina Torlak
https://homes.cs.washington.edu/~emina/blog/2017-06-23-a-primer-on-sat.html

See also the links at the end for lots more detail.

Atkey CS208 - Week 2 - page 54 of 56

https://sahandsaba.com/understanding-sat-by-implementing-a-simple-sat-solver-in-python.html
https://homes.cs.washington.edu/~emina/blog/2017-06-23-a-primer-on-sat.html


Logical Modelling I, Part 3: Faster SAT by Unit Propagation

More Further Reading
For more breadth and detail than you could possibly imagine:

The Art of Computer Programming: 7.2.2.2 Satisfiability
Draft: Volume 4B, Pre-fascicle 6A

Donald E. Knuth
https://cs.stanford.edu/~knuth/fasc6a.ps.gz

Atkey CS208 - Week 2 - page 55 of 56

https://cs.stanford.edu/~knuth/fasc6a.ps.gz


Logical Modelling I, Part 3: Faster SAT by Unit Propagation

Summary

▶ Unit Propagation speeds up SAT Solving
(by using the structure of the problem)

▶ This makes 2-SAT very fast
▶ Real SAT Solvers are very sophisticated.

Atkey CS208 - Week 2 - page 56 of 56


	Logical Modelling I, Part 1: Package Installations
	Logical Modelling I, Part 2: SAT Solving
	Logical Modelling I, Part 3: Faster SAT by Unit Propagation

