
CS208 (Semester 1) Week 3 :
Logical Modelling II

Dr. Robert Atkey
Computer & Information Sciences

Atkey CS208 - Week 3 - page 1 of 30

Logical Modelling II, Part 1

Conversion to CNF

Atkey CS208 - Week 3 - page 2 of 30

Logical Modelling II, Part 1: Conversion to CNF

Conjunctive Normal Form (CNF)

(¬a∨ ¬b∨ ¬c)

∧ (¬b∨ ¬c∨ ¬d)

∧ (¬a∨ ¬b∨ c)

∧ b

1. Entire formula is a conjunction C1 ∧ C2 ∧ · · · ∧ Cn

2. where each clause Ci = Li,1 ∨ Li,2 ∨ · · · ∨ Li,k

3. where each literal Li,j = xi,j or Li,j = ¬xi,j

Atkey CS208 - Week 3 - page 3 of 30

Logical Modelling II, Part 1: Conversion to CNF

Disjunctive Normal Form (DNF)
Disjunctive Normal Form (DNF) is similar, but swaps ∧ and ∨.

(¬a∧ ¬b∧ ¬c)

∨ (¬b∧ ¬c∧ ¬d)

∨ (¬a∧ ¬b∧ c)

∨ b

1. Entire formula is a disjunction D1 ∨D2 ∨ · · · ∨Dn

2. where each disjunct Di = Li,1 ∧ Li,2 ∧ · · · ∧ Li,k

3. where each literal Li,j = xi,j or Li,j = ¬xi,j
Atkey CS208 - Week 3 - page 4 of 30

Logical Modelling II, Part 1: Conversion to CNF

Normal Forms and Satisfiability

CNF
Each clause is a constraint and all constraints must be satisfied.

DNF
At least one of the disjuncts must be satisfied.

Exercise (after all the videos): How would you write a SAT Solver for
formulas in DNF? Why don’t we do this instead of CNF?

Atkey CS208 - Week 3 - page 5 of 30

Logical Modelling II, Part 1: Conversion to CNF

Conversion to CNF
Not every formula is in CNF, e.g.,

(A∧ B) → (B∧A)

What if we want to use a SAT solver to determine satisfiability?

Two ways to convert a formula to CNF that is “the same”:
▶ “Multiplying out”
▶ Tseytin transformation

First we need to define what we mean by “the same”.
Atkey CS208 - Week 3 - page 6 of 30

Logical Modelling II, Part 1: Conversion to CNF

Equivalent Formulas

Define two formulas P and Q to be equivalent, written

P ≡ Q

exactly when, for all valuations v,

JPKv = JQKv
Equivalent to both P |= Q and Q |= P being valid

Atkey CS208 - Week 3 - page 7 of 30

Logical Modelling II, Part 1: Conversion to CNF

Simplifying Implication

A → B ≡ ¬A∨ B

valuation P Q

A B ¬A A → B ¬A∨ B

F F T T T
F T T T T
T F F F F
T T F T T

Atkey CS208 - Week 3 - page 8 of 30

Logical Modelling II, Part 1: Conversion to CNF

Double Negation
Negating twice is the same as doing nothing:

A ≡ ¬¬A

valuation P Q

A ¬A A ¬¬A

F T F F
T F T T

Atkey CS208 - Week 3 - page 9 of 30

Logical Modelling II, Part 1: Conversion to CNF

de Morgan’s laws
Negation swaps ∧ and ∨:

¬(A∧ B) ≡ ¬A∨ ¬B

valuation P Q

A B ¬A ¬B A∧ B ¬(A∧ B) ¬A∨ ¬B

F F T T F T T
F T T F F T T
T F F T F T T
T T F F T F F

Similar for ¬(A∨ B) ≡ ¬A∧ ¬B
Atkey CS208 - Week 3 - page 10 of 30

Logical Modelling II, Part 1: Conversion to CNF

Negation Normal Form (NNF)
Using the equivalences:

A → B ≡ ¬A∨ B

A ≡ ¬¬A

¬(A∧ B) ≡ ¬A∨ ¬B

¬(A∨ B) ≡ ¬A∧ ¬B

We can rewrite any formula into an equivalent one with
1. No implications (→s)
2. All negation signs on the atomic propositions

Atkey CS208 - Week 3 - page 11 of 30

Logical Modelling II, Part 1: Conversion to CNF

Example

(a∧ (a → b)) → c

≡ ¬(a∧ (a → b))∨ c converted →
≡ ¬(a∧ (¬a∨ b))∨ c converted →
≡ ¬a∨ ¬(¬a∨ b)∨ c converted ∧ to ∨
≡ ¬a∨ (¬¬a∧ ¬b)∨ c converted ∨ to ∧
≡ ¬a∨ (a∧ ¬b)∨ c converted double negation

Now in NNF, but not CNF.

Atkey CS208 - Week 3 - page 12 of 30

Logical Modelling II, Part 1: Conversion to CNF

“Push” ∨s into ∧s

A∨ (B∧ C) ≡ (A∨ B)∧ (A∨ C)

valuation P Q

A B C B∧ C A∨ B A∨ C A∨ (B∧ C) (A∨ B)∧ (A∨ C)

F F F F F F F F
F F T F F T F F
F T F F T F F F
F T T T T T T T
T F F F T T T T
T F T F T T T T
T T F F T T T T
T T T T T T T T

Atkey CS208 - Week 3 - page 13 of 30

Logical Modelling II, Part 1: Conversion to CNF

Conversion to CNF

¬a∨ (a∧ ¬b)∨ c

≡ multiply out
¬a∨ ((a∨ c)∧ (¬b∨ c))

≡ multiply out
(¬a∨ a∨ c)∧ (¬a∨ ¬b∨ c)

Now in CNF.

(Can further simplify to: (¬a∨ ¬b∨ c))

Atkey CS208 - Week 3 - page 14 of 30

Logical Modelling II, Part 1: Conversion to CNF

Exponential Blowup

If we convert (a∧b∧ c)∨ (d∧e∧ f)∨ (g∧h∧ i) to CNF, we get:

(a∨ d∨ g)∧ (a∨ d∨ h)∧ (a∨ d∨ i)∧ (a∨ e∨ g)∧ (a∨ e∨ h)∧

(a∨ e∨ i)∧ (a∨ f∨ g)∧ (a∨ f∨ h)∧ (a∨ f∨ i)∧ (b∨ d∨ g)∧

(b∨ d∨ h)∧ (b∨ d∨ i)∧ (b∨ e∨ g)∧ (b∨ e∨ h)∧ (b∨ e∨ i)∧

(b∨ f∨ g)∧ (b∨ f∨ h)∧ (b∨ f∨ i)∧ (c∨ d∨ g)∧ (c∨ d∨ h)∧

(c∨ d∨ i)∧ (c∨ e∨ g)∧ (c∨ e∨ h)∧ (c∨ e∨ i)∧ (c∨ f∨ g)∧

(c∨ f∨ h)∧ (c∨ f∨ i)

which has 27 clauses.

Atkey CS208 - Week 3 - page 15 of 30

Logical Modelling II, Part 1: Conversion to CNF

Summary

▶ SAT Solvers take their input in CNF
▶ Some problems are naturally in CNF
▶ Conversion by “multiplying out” can generate huge formulas
▶ We need something better

Atkey CS208 - Week 3 - page 16 of 30

Logical Modelling II, Part 2

Tseytin Transformation

Atkey CS208 - Week 3 - page 17 of 30

Logical Modelling II, Part 2: Tseytin Transformation

Tseytin Transformation
The Tseytin transformation converts a formula into CNF with at
most 3 times as many clauses as connectives in the original formula
(versus potentially exponential for multiplying out the brackets).

1. Convert the formula into equations
One connective⇝ one equation

2. Convert each equation into clauses
One equation⇝ 2-3 clauses

Result is not equivalent, but equisatisfiable.

Atkey CS208 - Week 3 - page 18 of 30

Logical Modelling II, Part 2: Tseytin Transformation

1. Name subformulas
Take the formula and name all the non-atomic subformulas.

Example:
¬(a∧ (¬a∨ b))∨ c

becomes:
x1 = x2 ∨ c

x2 = ¬x3

x3 = a∧ x4

x4 = x5 ∨ b

x5 = ¬a

Atkey CS208 - Week 3 - page 19 of 30

Logical Modelling II, Part 2: Tseytin Transformation

2. Converting Equations to Clauses
Given an equation like x = y∧ z, we want some clauses that are
true for every valuation that satisfies the equation.

Derive by conversion to CNF:

x = y∧ z

≡ (x → (y∧ z))∧ ((y∧ z) → x)

≡ (¬x∨ (y∧ z))∧ (¬(y∧ z)∨ x)

≡ (¬x∨ y)∧ (¬x∨ z)∧ (¬y∨ ¬z∨ x)

Atkey CS208 - Week 3 - page 20 of 30

Logical Modelling II, Part 2: Tseytin Transformation

2. Converting Equations to Clauses
Given an equation like x = y∧ z, we want some clauses that are
true for every valuation that satisfies the equation.

Derive by conversion to CNF:

x = y∧ z

≡ (x → (y∧ z))∧ ((y∧ z) → x)

≡ (¬x∨ (y∧ z))∧ (¬(y∧ z)∨ x)

≡ (¬x∨ y)∧ (¬x∨ z)∧ (¬y∨ ¬z∨ x)

Atkey CS208 - Week 3 - page 20 of 30

Logical Modelling II, Part 2: Tseytin Transformation

2. Equations to Clauses
Take each equation x = y□ z and turn it into clauses:
1. If x = y∧ z, add

(¬x∨ y)∧ (¬x∨ z)∧ (¬y∨ ¬z∨ x)

2. If x = y∨ z, add

(y∨ z∨ ¬x)∧ (¬y∨ x)∧ (¬z∨ x)

3. If x = ¬y, add
(¬y∨ ¬x)∧ (y∨ x)

Atkey CS208 - Week 3 - page 21 of 30

Logical Modelling II, Part 2: Tseytin Transformation

3. Assert the top level variable

If x is the name of the whole formula, add a clause with just x:

equation 1
∧ equation 2
∧ ...

∧ x

This asserts that our original formula must be true.

Atkey CS208 - Week 3 - page 22 of 30

Logical Modelling II, Part 2: Tseytin Transformation

Example: ¬(A∧ B)∨ (B∧A)
1. Name the subformulas:

x1 = x2 ∨ x4 x2 = ¬x3

x3 = A∧ B x4 = B∧A

2+3. Generate clauses: (One line per equation)

(x2 ∨ x4 ∨ ¬x1)∧ (¬x2 ∨ x1)∧ (¬x4 ∨ x1)

∧ (¬x3 ∨ ¬x2)∧ (x3 ∨ x2)

∧ (¬A∨ ¬B∨ x3)∧ (A∨ ¬x3)∧ (B∨ ¬x3)

∧ (¬B∨ ¬A∨ x4)∧ (B∨ ¬x4)∧ (A∨ ¬x4)

∧ x1

Atkey CS208 - Week 3 - page 23 of 30

Logical Modelling II, Part 2: Tseytin Transformation

Example: ¬(A∧ B)∨ (B∧A)
1. Name the subformulas:

x1 = x2 ∨ x4 x2 = ¬x3

x3 = A∧ B x4 = B∧A

2+3. Generate clauses: (One line per equation)

(x2 ∨ x4 ∨ ¬x1)∧ (¬x2 ∨ x1)∧ (¬x4 ∨ x1)

∧ (¬x3 ∨ ¬x2)∧ (x3 ∨ x2)

∧ (¬A∨ ¬B∨ x3)∧ (A∨ ¬x3)∧ (B∨ ¬x3)

∧ (¬B∨ ¬A∨ x4)∧ (B∨ ¬x4)∧ (A∨ ¬x4)

∧ x1
Atkey CS208 - Week 3 - page 23 of 30

Logical Modelling II, Part 2: Tseytin Transformation

Efficiency

In small examples, we get many clauses.

But we always get ≤ 3n clauses, where n number of connectives.

Multiplying out can result in exponential number of clauses.

Can also optimise (see the tutorial questions).

Atkey CS208 - Week 3 - page 24 of 30

Logical Modelling II, Part 2: Tseytin Transformation

Not Equivalent!

The formulas generated by the Tseytin transformation are not
equivalent to the original, because they have extra atomic
propositions.

Atkey CS208 - Week 3 - page 25 of 30

Logical Modelling II, Part 2: Tseytin Transformation

Example

If the original formula is
¬A

the Tseytin transformed version is: (assuming we don’t optimise)

(¬A∨ ¬x)∧ (A∨ x)∧ x

Then {A : F, x : F} satisfies the original, but not the transformed
formula.

Atkey CS208 - Week 3 - page 26 of 30

Logical Modelling II, Part 2: Tseytin Transformation

Equisatisfiable

If we write Tseytin(P) for the Tseytin translation of P, then:
1. If there exists a valuation v1 such that JPKv1 = T, then there

exists a valuation v2 such that JTseytin(P)Kv2 = T;
2. If there exists a valuation v such that JTseytin(P)Kv = T, then

the valuation v ′ = v without the additional xis makesJPKv ′ = T.

This is called “equisatisfiability”.

Atkey CS208 - Week 3 - page 27 of 30

Logical Modelling II, Part 2: Tseytin Transformation

Example
v = {A : F} satisfies ¬A

The corresponding satisfying valuation for

(¬A∨ ¬x)∧ (A∨ x)∧ x

is {A : F, x : T}.

A corresponding satisfying assignment always exists for the
Tseytin transformation, because it is built from equations.

Atkey CS208 - Week 3 - page 28 of 30

Logical Modelling II, Part 2: Tseytin Transformation

Summary

▶ Tseytin transformation converts formulas to CNF
▶ Generates ≤ 3n clauses, where n is the number of connectives
▶ Avoids exponential blowup
▶ Can be further optimised
▶ Result is equisatisfiable

Atkey CS208 - Week 3 - page 29 of 30

Logical Modelling II, Part 3

Online Satisfiability
Checker

Atkey CS208 - Week 3 - page 30 of 30

	Logical Modelling II, Part 1: Conversion to CNF
	Logical Modelling II, Part 2: Tseytin Transformation
	Logical Modelling II, Part 3: Online Satisfiability Checker

