CS208 (Semester 1) Week 4 : Natural Deduction I

Dr. Robert Atkey

Computer \& Information Sciences

Natural Deduction I, Part 1 Deductive Reasoning

Why have logic(s)?
One reason is to study "arguments".

- To separate valid and invalid reasoning.
- If we assume P_{1}, P_{2}, P_{3}, then when is it valid to conclude Q ?

Why have logic(s)?
One reason is to study "arguments".

- To separate valid and invalid reasoning.
- If we assume P_{1}, P_{2}, P_{3}, then when is it valid to conclude Q ?

One answer is "entailment"

- $\mathrm{P}_{1}, \ldots \models \mathrm{Q}$ "is" valid reasoning from assumptions to a conclusion.
Entailment is defined in terms of the semantics of formulas
$-\mathrm{P}_{1}, \ldots \models \mathrm{Q}$ if for all valuations $v, \llbracket \mathrm{P} \rrbracket v=\mathrm{T}$ implies $\llbracket \mathrm{Q} \rrbracket v=\mathrm{T}$

Why have logic(s)?
One reason is to study "arguments".

- To separate valid and invalid reasoning.
- If we assume P_{1}, P_{2}, P_{3}, then when is it valid to conclude Q ?

One answer is "entailment"

- $\mathrm{P}_{1}, \ldots \models \mathrm{Q}$ "is" valid reasoning from assumptions to a conclusion.
Entailment is defined in terms of the semantics of formulas
$-\mathrm{P}_{1}, \ldots \models \mathrm{Q}$ if for all valuations $v, \llbracket \mathrm{P} \rrbracket v=\mathrm{T}$ implies $\llbracket \mathrm{Q} \rrbracket v=\mathrm{T}$

Why have logic(s)?
One reason is to study "arguments".

- To separate valid and invalid reasoning.
- If we assume P_{1}, P_{2}, P_{3}, then when is it valid to conclude Q ?

One answer is "entailment"

- $\mathrm{P}_{1}, \ldots \models \mathrm{Q}$ "is" valid reasoning from assumptions to a conclusion.
Entailment is defined in terms of the semantics of formulas
$-\mathrm{P}_{1}, \ldots \models \mathrm{Q}$ if for all valuations $v, \llbracket \mathrm{P} \rrbracket v=\mathrm{T}$ implies $\llbracket \mathrm{Q} \rrbracket v=\mathrm{T}$
This doesn't match how we reason normally. If we are trying to convince someone, we don't (usually) say:
"let's go through all the combinations of truth values and test each one."

Chains of Inference

Usually, we might say things like:

1. Let's assume that A, B, C are true.
2. If we assume A and B imply D, then D is true.
3. If we assume C and D imply E, then E is true.
4. So, we can conclude E, under the assumptions.

If our reasoning is sound, then we ought to be able to conclude

$$
A, B, C,(A \wedge B) \rightarrow D,(C \wedge D) \rightarrow E \models E
$$

Chains of Inference

Usually, we might say things like:

1. Let's assume that A, B, C are true.
2. If we assume A and B imply D, then D is true.
3. If we assume C and D imply E, then E is true.
4. So, we can conclude E, under the assumptions.

If our reasoning is sound, then we ought to be able to conclude

$$
A, B, C,(A \wedge B) \rightarrow D,(C \wedge D) \rightarrow E \models E
$$

We have a form of modularity

- We don't check the entailment for every possible truth value of $A, B, C, D, E \quad\left(2^{5}=32\right.$ combinations! $)$
- We apply individual reasoning steps and chain them together.

Semantic Reasoning doesn't scale

In Propositional Logic, it is possible (though not always feasible) to check all cases.

- If there are n atomic propositions, check 2^{n} combinations.
- SAT solvers are good at only checking the ones that matter.
- But there are still Hard Problems that take too long.

Semantic Reasoning doesn't scale

In Propositional Logic, it is possible (though not always feasible) to check all cases.

- If there are n atomic propositions, check 2^{n} combinations.
- SAT solvers are good at only checking the ones that matter.
- But there are still Hard Problems that take too long.

Also, later in the course we will study Predicate Logic

- Predicate logic allows universal statements:

$$
\forall x \cdot \forall y \cdot x+y=y+x
$$

"For all (numbers) x and $\mathrm{y}, \mathrm{x}+\mathrm{y}$ is equal to $\mathrm{y}+\mathrm{x}$ "

- Simply not possible to exhaustively check all numbers.

Deductive Systems

To overcome these problems, we use deductive systems.
A deductive system is a collection of rules for deriving conclusions from assumptions.

- Typically, the rules are "finitely describable"
(roughly: we can implement them on a computer)
Typically (but not always), we write

$$
\mathrm{P}_{1}, \cdots, \mathrm{P}_{\mathrm{n}} \vdash \mathrm{Q}
$$

when we can derive conclusion Q from assumptions P_{1}, \cdots, P_{n}.

Soundness and Completeness

Soundness : "Everything that is provable is valid"

$$
\mathrm{P}_{1}, \cdots, \mathrm{P}_{\mathrm{n}} \vdash \mathrm{Q} \quad \text { implies } \quad \mathrm{P}_{1}, \cdots, \mathrm{P}_{\mathrm{n}} \models \mathrm{Q}
$$

(pretty much a requirement to be useful)
Completeness : "Everything that is valid is provable"

$$
\begin{aligned}
& \qquad \mathrm{P}_{1}, \cdots, \mathrm{P}_{\mathrm{n}} \models \mathrm{Q} \quad \text { implies } \quad \mathrm{P}_{1}, \cdots, \mathrm{P}_{\mathrm{n}} \vdash \mathrm{Q} \\
& \text { (not essential, but good to have) }
\end{aligned}
$$

Advantages of Deductive Systems

1. We can write computer programs to check our proofs, even when talking about infinitely many things.

Advantages of Deductive Systems

1. We can write computer programs to check our proofs, even when talking about infinitely many things.
2. If we remove or alter rules do we get an interesting new logic?

Advantages of Deductive Systems

1. We can write computer programs to check our proofs, even when talking about infinitely many things.
2. If we remove or alter rules do we get an interesting new logic?
3. We can start to ask questions about the proofs:

- An entailment $P_{1}, \cdots, P_{n} \models Q$ is either valid or invalid. Meh.
- but there may be many proofs (ways of applying the rules).
- Questions:
- Do different proofs mean different things?
- Is one proof a simplification of another?
- Is there information hidden in proofs that we can extract?

Natural Deduction I, Part 1: Deductive Reasoning

Inference Rules

The idea:

- If we can prove all of premise ${ }_{1}$ and \ldots and premise ${ }_{n}$; then
- we have a proof of conclusion.

Inference Rules

The idea:

- If we can prove all of premise ${ }_{1}$ and \ldots and premise ${ }_{n}$; then
- we have a proof of conclusion.

We might have zero premises, in which case the conclusion requires no proof ("is an axiom").

Inference Rules

The idea:

- If we can prove all of premise ${ }_{1}$ and \ldots and premise ${ }_{n}$; then
- we have a proof of conclusion.

We might have zero premises, in which case the conclusion requires no proof ("is an axiom").

Rules are organised into trees to make deductions.

Natural Deduction I, Part 1: Deductive Reasoning

Example

$\overline{\text { bears make milk }}^{\text {Rule2 }}$

$$
\frac{\mathrm{X} \text { are furry } \quad \mathrm{X} \text { make milk }}{\mathrm{X} \text { are mammals }} \text { RuLE3 }
$$

Example


```
X are furry X make milk
```

A deduction:

Example (cont.)

$\frac{\mathrm{X} \text { are covered in fibres }}{\mathrm{X} \text { are furry }}$ Rule4
$\overline{\text { coconuts are covered in fibres }}$ Rule5 $\quad \overline{\text { coconuts make milk }}$ Rule6

Natural Deduction I, Part 1: Deductive Reasoning

Example (cont.)

Another deduction:

Natural Deduction I, Part 1: Deductive Reasoning

Example (cont.)

When building deductions, we work bottom up:

Example (cont.)

When building deductions, we work bottom up:

coconuts are mammals

1. Write down the conclusion

Example (cont.)

When building deductions, we work bottom up:

$$
\frac{\text { coconuts are furry coconuts make milk }}{\text { coconuts are mammals }}
$$

1. Write down the conclusion
2. Apply rule Rule3 (X are mammals if X are furry and make milk)

Example (cont.)

When building deductions, we work bottom up:
coconuts are covered in fibres
coconuts are furry
coconuts are mammals
coconuts make milk
R3

1. Write down the conclusion
2. Apply rule Rule3 (X are mammals if X are furry and make milk)
3. Apply rule Rule4 (X are furry if they are covered in fibres)

Example (cont.)

When building deductions, we work bottom up:

1. Write down the conclusion
2. Apply rule Rule3 (X are mammals if X are furry and make milk)
3. Apply rule Rule4 (X are furry if they are covered in fibres)
4. Apply rule Rule5 (an axiom)

Example (cont.)

When building deductions, we work bottom up:
\qquad
coconuts are covered in fibres
coconuts are furry R4
$\overline{\text { coconuts make milk }}^{\mathrm{R} 6}$
coconuts are mammals

1. Write down the conclusion
2. Apply rule Rule3 (X are mammals if X are furry and make milk)
3. Apply rule Rule4 (X are furry if they are covered in fibres)
4. Apply rule Rule5 (an axiom)
5. Apply rule Rule6 (an axiom)

Example (cont.)

When building deductions, we work bottom up:
\qquad
coconuts are covered in fibres
coconuts are furry R4
$\overline{\text { coconuts make milk }}^{\mathrm{R} 6}$
coconuts are mammals

1. Write down the conclusion
2. Apply rule Rule3 (X are mammals if X are furry and make milk)
3. Apply rule Rule4 (X are furry if they are covered in fibres)
4. Apply rule Rule5 (an axiom)
5. Apply rule Rule6 (an axiom)

Summary

- The why? of deductive systems.
- Inference rules.
- How to make chains of inference.

Natural Deduction I, Part 2 Natural Deduction

Judgements

We want to deduce judgements of the form:

$$
P_{1}, \ldots, P_{n} \vdash Q
$$

meaning:

$$
\text { From assumptions } P_{1}, \ldots, P_{n} \text {, we can prove } Q
$$

Soundness The system will be sound, meaning:

$$
P_{1}, \ldots, P_{n} \vdash Q \text { provable } \Rightarrow P_{1}, \ldots, P_{n} \models Q
$$

We will make sure it is sound by checking each rule as we go. If all the premises are valid entailments, then so is the conclusion

Judgements

The main judgement form is

$$
\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}} \vdash \mathrm{Q}
$$

With assumptions $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}$, can prove Q

Judgements

The main judgement form is

$$
P_{1}, \ldots, P_{n} \vdash Q
$$

With assumptions $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}$, can prove Q

We will also use an auxiliary judgement:

$$
\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}[\mathrm{P}] \vdash \mathrm{Q}
$$

- With assumptions P_{1}, \ldots, P_{n}, focusing on P, can prove Q
- Also "means" $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}, \mathrm{P} \models \mathrm{Q}$
- Having a focus is useful for organising proofs

Judgements

The main judgement form is

$$
P_{1}, \ldots, P_{n} \vdash Q
$$

We will also use an auxiliary judgement:

$$
\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}[\mathrm{P}] \vdash \mathrm{Q}
$$

Judgements

The main judgement form is

$$
P_{1}, \ldots, P_{n} \vdash Q
$$

We will also use an auxiliary judgement:

$$
\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}[\mathrm{P}] \vdash \mathrm{Q}
$$

Assumption lists The list of assumptions P_{1}, \ldots, P_{n} will appear often. So we will shorten it to $\Gamma=P_{1}, \ldots, P_{n}$.

Natural Deduction I, Part 2: Natural Deduction

Basic Rules

$$
\overline{\Gamma[P] \vdash P} \text { Done }
$$

Basic Rules

$$
\overline{\Gamma[P] \vdash P} \text { Done }
$$

- If we have a focused assumption P , then we can prove P
- (Remember Γ stands for a list of other assumptions)

Natural Deduction I, Part 2: Natural Deduction

Basic Rules

$$
\frac{\mathrm{P} \in \Gamma \quad \Gamma[\mathrm{P}] \vdash \mathrm{Q}}{\Gamma \vdash \mathrm{Q}} \mathrm{USE}_{\mathrm{SE}}
$$

Basic Rules

- $P \in \Gamma$ means " P is in Γ ".
- If we have a P in our current assumptions, we can focus on it.
- $\mathrm{P} \in \Gamma$ is a side condition: it is something we check when we apply the rule, not another judgement to be proved.

A first proof

$A \vdash A$

A first proof

$$
\frac{A[A] \vdash A}{A \vdash A} U_{\text {SE }}
$$

- First Use the A assumption.

A first proof

$$
\frac{\overline{A[A] \vdash A}}{A \vdash A} \text { Done }
$$

- First Use the A assumption.
- Then we are Done.

Natural Deduction I, Part 2: Natural Deduction

Soundness

Soundness

$$
\frac{}{\Gamma[\mathrm{P}] \vdash \mathrm{P}} \text { Done } \quad \frac{\mathrm{P} \in \Gamma \quad \Gamma[\mathrm{P}] \vdash \mathrm{Q}}{\Gamma \vdash \mathrm{Q}} \mathrm{USE}
$$

Done
is sound because assuming P entails P, and extra assumptions make no difference.

Soundness

Done
is sound because assuming P entails P, and extra assumptions make no difference.

Use
is sound because if we assuming P twice entails Q, then it is okay to assume it once.

Rules for connectives

The rule Done and Use do not mention the connectives.
In Natural Deduction, rules for connectives come in two kinds:

1. Introduction rules

How to construct a proof with the connective
2. Elimination rules

How to use an assumption with this connective

Rules for connectives

The rule Done and Use do not mention the connectives.
In Natural Deduction, rules for connectives come in two kinds:

1. Introduction rules

How to construct a proof with the connective
2. Elimination rules

How to use an assumption with this connective
Very rough analogy: but can be made very precise

1. Introduction rules are like constructors for building objects
2. Elimination rules are like methods for taking apart objects

"And" Introduction

"And" Introduction

- To prove $P_{1} \wedge P_{2}$ we have to prove P_{1} and P_{2}
- This rule is often called \wedge-Introduction

An example proof

An example proof

$\frac{\frac{\overline{A, B[A] \vdash A} \text { Done }}{A, B \vdash A} \text { Use } \quad \frac{\overline{A, B[B] \vdash B} \text { Done }}{A, B \vdash B} \text { Use }}{A, B \vdash A \wedge B}$ Split

To prove $A \wedge B$, we Split into proofs of A and B. In each case, we Use the corresponding assumption.

"And" Elimination

$$
\frac{\Gamma\left[\mathrm{P}_{1}\right] \vdash \mathrm{Q}}{\Gamma\left[\mathrm{P}_{1} \wedge \mathrm{P}_{2}\right] \vdash \mathrm{Q}} \text { FIRST } \quad \frac{\Gamma\left[\mathrm{P}_{2}\right] \vdash \mathrm{Q}}{\Gamma\left[\mathrm{P}_{1} \wedge \mathrm{P}_{2}\right] \vdash \mathrm{Q}} \text { SECOND }
$$

"And" Elimination

If we are focused on an formula $P_{1} \wedge P_{2}$, we can select either the First or Second component to focus on.

Example proof

$$
\frac{{\frac{\overline{A \wedge B[B] \vdash B}}{} \frac{D \text { Done }}{}_{A \wedge A \wedge B] \vdash B}^{A \wedge B \vdash B}}_{\text {Second }} \text { Use }}{\text { A }}
$$

$\overline{\Gamma \vdash \mathrm{T}}^{\text {True }}$

- T is always provable.
"True" Elimination

"True" Elimination

No elimination rule!

Summary

- The judgement forms for (focused) Natural Deduction:

$$
\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}} \vdash \mathrm{Q} \quad \mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}[\mathrm{P}] \vdash \mathrm{Q}
$$

- Rules for Use and Done
- Rules for introducing and eliminating \wedge.

Natural Deduction I, Part 3
 Rules for "Implies"

Natural Deduction I, Part 3: Rules for "Implies"

"Implies" Introduction

$$
\frac{\Gamma, \mathrm{P} \vdash \mathrm{Q}}{\Gamma \vdash \mathrm{P} \rightarrow \mathrm{Q}} \text { Introduce }
$$

"Implies" Introduction

$$
\frac{\Gamma, \mathrm{P} \vdash \mathrm{Q}}{\Gamma \vdash \mathrm{P} \rightarrow \mathrm{Q}} \text { Introduce }
$$

To prove $P \rightarrow Q$, we prove Q under the assumption P.

Natural Deduction I, Part 3: Rules for "Implies"

Example: $A \rightarrow A$

$$
\frac{\overline{A[A] \vdash A}}{\frac{A \vdash A}{\vdash A} \text { Done }} \begin{aligned}
& \text { Use } \\
& \vdash A
\end{aligned} \text { Introduce }
$$

Natural Deduction I, Part 3: Rules for "Implies"

Example : $(A \wedge B) \rightarrow A$

$\overline{\mathrm{A} \wedge \mathrm{B}[\mathrm{A}] \vdash \mathrm{A}}$ Done

$\vdash(\mathrm{A} \wedge \mathrm{B}) \rightarrow \mathrm{A}$

Natural Deduction I, Part 3: Rules for "Implies"

"Implies" Elimination

$$
{\left.\frac{\Gamma \vdash \mathrm{P}_{1}}{\Gamma\left[\mathrm{P}_{1} \rightarrow \mathrm{P}_{2}\right] \vdash \mathrm{P}} \mathrm{P}_{2}\right] \vdash \mathrm{Q}}_{\text {APPLY }}
$$

Natural Deduction I, Part 3: Rules for "Implies"

"Implies" Elimination

$$
{\left.\frac{\Gamma \vdash \mathrm{P}_{1}}{\Gamma\left[\mathrm{P}_{1} \rightarrow \mathrm{P}_{2}\right] \vdash \mathrm{Q}} \mathrm{P}_{2}\right] \vdash \mathrm{Q}}_{\mathrm{APPLY}}
$$

If we have $P_{1} \rightarrow P_{2}$ and we can prove P_{1}, then we have P_{2}.

Natural Deduction I, Part 3: Rules for "Implies"

Example: $A \rightarrow(A \rightarrow B) \rightarrow B$

$$
\begin{array}{cc}
\frac{\mathrm{A}_{\mathrm{A}, \mathrm{~A} \rightarrow \mathrm{~B}[\mathrm{~A}] \vdash \mathrm{A}}^{\mathrm{A}, \mathrm{~A} \rightarrow \mathrm{~B} \vdash \mathrm{~A}} \text { Use }}{} \quad \overline{\mathrm{A}, \mathrm{~A} \rightarrow \mathrm{~B}[\mathrm{~B}] \vdash \mathrm{B}} & \text { Done } \\
\hline \mathrm{A}, \mathrm{~A} \rightarrow \mathrm{~B}[\mathrm{~A} \rightarrow \mathrm{~B}] \vdash \mathrm{B} & \text { Use } \\
\hline \mathrm{A}, \mathrm{~A} \rightarrow \mathrm{~B} \vdash \mathrm{~B} & \text { Introduce } \\
\mathrm{A} \vdash(\mathrm{~A} \rightarrow \mathrm{~B}) \rightarrow \mathrm{B} & \text { Introduce }
\end{array}
$$

The Rules so far

$$
\overline{\Gamma[\mathrm{P}] \vdash \mathrm{P}} \text { Done }
$$

$$
\frac{\mathrm{P} \in \Gamma \quad \Gamma[\mathrm{P}] \vdash \mathrm{Q}}{\Gamma \vdash \mathrm{Q}} \mathrm{USE}
$$

$$
\frac{\Gamma \vdash \mathrm{Q}_{1} \quad \Gamma \vdash \mathrm{Q}_{2}}{\Gamma \vdash \mathrm{Q}_{1} \wedge \mathrm{Q}_{2}} \text { SPLIt } \frac{\Gamma\left[\mathrm{P}_{1}\right] \vdash \mathrm{Q}}{\Gamma\left[\mathrm{P}_{1} \wedge \mathrm{P}_{2}\right] \vdash \mathrm{Q}}{ }^{\text {FIRST }} \frac{\Gamma\left[\mathrm{P}_{2}\right] \vdash \mathrm{Q}}{\Gamma\left[\mathrm{P}_{1} \wedge \mathrm{P}_{2}\right] \vdash \mathrm{Q}} \text { SECOND }
$$

$$
\frac{\Gamma, \mathrm{P} \vdash \mathrm{Q}}{\Gamma \vdash \mathrm{P} \rightarrow \mathrm{Q}} \text { Introduce }
$$

$$
{\frac{\Gamma \vdash \mathrm{P}_{1} \quad \Gamma\left[\mathrm{P}_{2}\right] \vdash \mathrm{Q}}{\Gamma\left[\mathrm{P}_{1} \rightarrow \mathrm{P}_{2}\right] \vdash \mathrm{Q}}}_{\text {APPLY }}
$$

Summary

- The rules for Implication

$$
\frac{\Gamma, \mathrm{P} \vdash \mathrm{Q}}{\Gamma \vdash \mathrm{P} \rightarrow \mathrm{Q}} \text { Introduce }^{\frac{\Gamma \vdash \mathrm{P}_{1} \quad \Gamma\left[\mathrm{P}_{2}\right] \vdash \mathrm{Q}}{\Gamma\left[\mathrm{P}_{1} \rightarrow \mathrm{P}_{2}\right] \vdash \mathrm{Q}}}{ }_{\text {AppLy }}
$$

Natural Deduction I, Part 4 Using the Interactive Editor

