# CS208 (Semester 1) Week 7 : Predicate Logic : Natural Deduction 

Dr. Robert Atkey<br>Computer \& Information Sciences

## Predicate Logic : Natural Deduction, Part 1 Upgrading Natural Deduction

## Tracking free variables

We are going to prove things like:

$$
\vdash \forall x .(p(x) \wedge q(x)) \rightarrow p(x)
$$

This will mean we will have proof states like:

$$
\cdots \vdash(p(x) \wedge q(x)) \rightarrow p(x)
$$

We need to keep track of variables as well as assumed formulas to the left of the $\vdash$ "turnstile".

## Judgements

Proving:


Focused:


Note:

1. We never focus on a variable, only formulas
2. Each $P_{j}$ only contains free variables that appear to the left of it

## Well-scoped terms and formulas

If we have a list of variables and assumptions (a "context")

$$
\Gamma=P_{1}, x_{1}, \ldots, x_{i}, P_{j}, \ldots, x_{m}, P_{n}
$$

## $\Gamma$ is the name we're giving to the list

- A formula P is well-scoped in $\Gamma$ if all the free variables of P appear in $\Gamma$.
- A term $t$ is well-scoped in $\Gamma$ if all the variables of $t$ appear in $\Gamma$.
- All formulas in $\Gamma$ must be well-scoped by the variables to their left (same condition as previous slide).
- The focus and conclusion must always be well-scoped in $\Gamma$.


## Well-scoped terms and formulas

Are the following well-scoped?

1. Context: $x$ Formula: $\forall y . P(y) \rightarrow Q(y)$

## Well-scoped terms and formulas

Are the following well-scoped?

1. Context: $x \quad$ Formula: $\forall y . P(y) \rightarrow Q(y)$ Yes. The variable $y$ is bound in the formula.

## Well-scoped terms and formulas

Are the following well-scoped?

> 1. Context: $x$ Formula: $\forall y . P(y) \rightarrow Q(y)$ Yes. The variable $y$ is bound in the formula.
> 2. Context: $x \quad$ Formula: $\forall y . P(y) \rightarrow Q(x, y)$

## Well-scoped terms and formulas

Are the following well-scoped?

1. Context: $x$ Formula: $\forall y . P(y) \rightarrow Q(y)$ Yes. The variable $y$ is bound in the formula.
2. Context: $x$ Formula: $\forall y . P(y) \rightarrow Q(x, y)$

Yes. The variable $y$ is bound in the formula, and the free variable $x$ is in the context.

## Well-scoped terms and formulas

Are the following well-scoped?

1. Context: empty Formula: $\forall y . P(y) \rightarrow Q(x, y)$

## Well-scoped terms and formulas

Are the following well-scoped?

1. Context: empty Formula: $\forall y . P(y) \rightarrow Q(x, y)$ No. The variable $y$ is bound in the formula, but the free variable $x$ is not in the context.

## Well-scoped terms and formulas

Are the following well-scoped?

1. Context: empty Formula: $\forall y . P(y) \rightarrow Q(x, y)$

No. The variable $y$ is bound in the formula, but the free variable $x$ is not in the context.
2. Context: empty Term: $x+1$

## Well-scoped terms and formulas

Are the following well-scoped?

1. Context: empty Formula: $\forall y . P(y) \rightarrow Q(x, y)$

No. The variable $y$ is bound in the formula, but the free variable $x$ is not in the context.
2. Context: empty Term: $x+1$

No. The variable $x$ is free in the term but is not in the context.

## Well-scoped terms and formulas

Are the following well-scoped?

1. Context: empty Formula: $\forall y . P(y) \rightarrow Q(x, y)$

No. The variable $y$ is bound in the formula, but the free variable $x$ is not in the context.
2. Context: empty Term: $x+1$

No. The variable $x$ is free in the term but is not in the context.

## Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

$$
x, y[\mathrm{P}(\mathrm{x}, \mathrm{y})] \vdash \mathrm{Q}(\mathrm{x})
$$

## Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

$$
x, y[P(x, y)] \vdash Q(x)
$$

Yes. The free variables of the focus and conclusion are $x, y$, which are in the context.

## Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

$$
x[\mathrm{P}(\mathrm{x}, \mathrm{y})] \vdash \mathrm{Q}(\mathrm{x})
$$

## Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

$$
x[P(x, y)] \vdash Q(x)
$$

No. The free variables of the focus and conclusion are $x, y$, but $y$ is not in the context.

## Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

$$
x, \mathrm{Q}(\mathrm{x}), \mathrm{y}[\mathrm{P}(\mathrm{x}, \mathrm{y})] \vdash \mathrm{Q}(\mathrm{y})
$$

## Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

$$
x, \mathrm{Q}(\mathrm{x}), \mathrm{y}[\mathrm{P}(\mathrm{x}, \mathrm{y})] \vdash \mathrm{Q}(\mathrm{y})
$$

Yes. Each variable appears before (reading left to right) it is used.

## Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

$$
\forall x \cdot Q(x), y[P(x, y)] \vdash Q(y)
$$

## Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

$$
\forall x \cdot \mathrm{Q}(\mathrm{x}), \mathrm{y}[\mathrm{P}(\mathrm{x}, \mathrm{y})] \vdash \mathrm{Q}(\mathrm{y})
$$

No. The $x$ in the first $Q(x)$ is $O K$, but the $x$ in $P(x, y)$ has not been declared in scope.

## Summary

1. We started to upgrade Natural Deduction to Predicate Logic
2. We need to manage the scope of variables
3. To do so, we add them to the context
4. Variables may only be used by formulas to their right

## Predicate Logic: Natural Deduction, Part 2 Substitution

## From General to Specific

We will have general assumptions like:

$$
\forall x \cdot \operatorname{human}(x) \rightarrow \operatorname{mortal}(x)
$$

And we want to specialise (or instantiate) to:

$$
\text { human }(\operatorname{socrates}()) \rightarrow \operatorname{mortal}(\text { socrates }())
$$

## Substitution

The notation

$$
\mathrm{P}[\mathrm{x}:=\mathrm{t}]
$$

means "replace all free occurrences of $x$ in $P$ with $t$ ".

- $x$ is a variable
- P is a formula
- t is a term

But there is a subtlety...

## Substitution Examples

## $(\operatorname{mortal}(x))[x:=\operatorname{socrates}()]$ <br> $\Longrightarrow$ mortal(socrates())

## Substitution Examples

$(\forall$ y.weatherIs $(\mathrm{d}, \mathrm{y}) \rightarrow$ weatherIs(dayAfter $(\mathrm{d}), \mathrm{y}))[\mathrm{d}:=$ tuesday $]$
$\Longrightarrow \forall y$.weatherIs(tuesday, y$) \rightarrow$ weatherIs(dayAfter(tuesday), y )

## Substitution Examples

$(\exists y \cdot \operatorname{sameElements}(x, y) \wedge \operatorname{sorted}(y))\left[x:=\operatorname{cons}\left(z_{1}, \operatorname{cons}\left(z_{2}\right.\right.\right.$, nil $\left.\left.)\right)\right]$ $\Longrightarrow \exists y . \operatorname{sameElements}\left(\operatorname{cons}\left(z_{1}, \operatorname{cons}\left(z_{2}\right.\right.\right.$, nil $\left.\left.)\right), y\right) \wedge \operatorname{sorted}(y)$

## Substitution Examples

$$
\begin{aligned}
& (\forall y \cdot x+y=y+x)[x:=z-z] \\
\Longrightarrow & \forall y \cdot(z-z)+y=y+(z-z)
\end{aligned}
$$

## Accidental Name Capture

If we substitute naively, then we produce nonsense:

1. $\exists y . \operatorname{sameElements}(x, y)$
"there exists ay that has the same elements as $x$ "
2. $(\exists y \cdot \operatorname{sameElements}(x, y))[x:=\operatorname{append}(y,[1,2])]$ "replace $x$ by the list append $(y,[1,2])$ "
3. $\exists y$.sameElements(append $(\mathrm{y},[1,2]), \mathrm{y})$
"there exists ay that has the same elements as $y+[1,2]$ ?"

## Capture Avoidance

## Solution: Rename bound variables

$$
\begin{aligned}
& (\exists y \cdot \operatorname{sameElements}(x, y))[x:=\operatorname{append}(y,[1,2])] \\
\Longrightarrow & (\exists z \cdot \operatorname{sameElements}(x, z))[x:=\operatorname{append}(y,[1,2])] \\
\Longrightarrow & \exists z \cdot \operatorname{sameElements}(\operatorname{append}(y,[1,2]), z)
\end{aligned}
$$

## Capture Avoiding Substitution

When working out

$$
\mathrm{P}[\mathrm{x}:=\mathrm{t}]
$$

If any of the variables in $t$ are bound in $P$ then rename them before doing the substitution.

Predicate Logic : Natural Deduction, Part 2: Substitution

## Substitution Examples

1. $P(x, y)[x:=y+y]$

Predicate Logic : Natural Deduction, Part 2: Substitution

## Substitution Examples

1. $P(x, y)[x:=y+y]=P(y+y, y)$

## Substitution Examples

1. $P(x, y)[x:=y+y]=P(y+y, y)$
2. $P(x, y)[y:=y+y]$

## Substitution Examples

1. $P(x, y)[x:=y+y]=P(y+y, y)$
2. $P(x, y)[y:=y+y]=P(x, y+y)$

## Substitution Examples

1. $P(x, y)[x:=y+y]=P(y+y, y)$
2. $P(x, y)[y:=y+y]=P(x, y+y)$
3. $(\forall x \cdot P(x, y))[x:=y+y]$

## Substitution Examples

1. $P(x, y)[x:=y+y]=P(y+y, y)$
2. $P(x, y)[y:=y+y]=P(x, y+y)$
3. $(\forall x \cdot P(x, y))[x:=y+y]=\forall x \cdot P(x, y)$

Predicate Logic : Natural Deduction, Part 2: Substitution

## Substitution Examples

1. $(\forall x \cdot P(x, y))[y:=x+x]$

## Substitution Examples

1. $(\forall x . P(x, y))[y:=x+x]=\forall z . P(z, x+x)$

Renaming!

## Substitution Examples

1. $(\forall x . P(x, y))[y:=x+x]=\forall z \cdot P(z, x+x)$ Renaming!
2. $(\forall x \cdot \mathrm{P}(x, y) \rightarrow(\exists z \cdot Q(y, z)))[y:=z+z]$

## Substitution Examples

1. $(\forall x . P(x, y))[y:=x+x]=\forall z \cdot P(z, x+x)$ Renaming!
2. $(\forall x . \mathrm{P}(\mathrm{x}, \mathrm{y}) \rightarrow(\exists z \cdot \mathrm{Q}(\mathrm{y}, \mathrm{z})))[\mathrm{y}:=z+z]$ $=\forall x \cdot \mathrm{P}(x, z+z) \rightarrow(\exists w \cdot \mathrm{Q}(z+z, w))$

Renaming!

## Substitution Examples

1. $(\forall x . P(x, y))[y:=x+x]=\forall z . P(z, x+x)$

Renaming!
2. $(\forall x . P(x, y) \rightarrow(\exists z \cdot Q(y, z)))[y:=z+z]$ $=\forall x \cdot \mathrm{P}(x, z+z) \rightarrow(\exists w \cdot \mathrm{Q}(z+z, w))$

Renaming!
3. $(\forall x \cdot P(x, z) \rightarrow(\exists z \cdot Q(y, z)))[z:=x+x]$

## Substitution Examples

1. $(\forall x . P(x, y))[y:=x+x]=\forall z \cdot P(z, x+x)$

Renaming!
2. $(\forall x \cdot P(x, y) \rightarrow(\exists z \cdot Q(y, z)))[y:=z+z]$ $=\forall x \cdot \mathrm{P}(x, z+z) \rightarrow(\exists w \cdot \mathrm{Q}(z+z, w))$

Renaming!
3. $(\forall x \cdot P(x, z) \rightarrow(\exists z \cdot Q(y, z)))[z:=x+x]$

$$
=\forall w \cdot \mathrm{P}(w, x+x) \rightarrow(\exists z \cdot \mathrm{Q}(y, z))
$$

Renaming! and no substitution of the final $z$

## Summary

- Substitution

$$
\mathrm{P}[\mathrm{x}:=\mathrm{t}]
$$

is how we go from the general $x$ to the specific $t$.

- We need to be careful to rename bound variables to avoid accidental name capture.


## Predicate Logic : Natural Deduction, Part 3 Rules for "Forall"

## What does $\forall x$.P mean?

(assuming a domain of discourse)
Answer 1 : it means for all individuals " a ", $\mathrm{P}[\mathrm{x}:=\mathrm{a}]$ is true.
(we think of "for all" as an infinite conjunction)

## What does $\forall x$.P mean?

(assuming a domain of discourse)
Answer 1 : it means for all individuals " a ", $\mathrm{P}[\mathrm{x}:=\mathrm{a}]$ is true. (we think of "for all" as an infinite conjunction)

Answer 2 : thinking about proofs:
To prove a $\forall x . P$ :

- We must prove $\mathrm{P}\left[\mathrm{x}:=x_{0}\right]$ for a general $x_{0}$.
- The $x_{0}$ stands in for any "a" that might be chosen.

To use a proof of $\forall x . P$ :

- We can choose any t we like for x , and get $\mathrm{P}[\mathrm{x}:=\mathrm{t}]$


## Introduction rule

$$
\frac{\Gamma, x_{0} \vdash \mathrm{Q}\left[x:=x_{0}\right]}{\Gamma \vdash \forall x . \mathrm{Q}} \text { Introduce } \forall
$$

## Introduction rule

$$
\frac{\Gamma, x_{0} \vdash \mathrm{Q}\left[x:=x_{0}\right]}{\Gamma \vdash \forall x . \mathrm{Q}} \text { Introduce } \forall
$$

"To prove $\forall x . Q$, we prove $\mathrm{Q}\left[x:=x_{0}\right]$, assuming an arbitrary $x_{0}$."

$$
\begin{gathered}
\frac{\frac{\mathrm{x}, \mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x})[\mathrm{P}(\mathrm{x})] \vdash \mathrm{P}(\mathrm{x})}{\mathrm{x}, \mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x})[\mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x})] \vdash \mathrm{P}(\mathrm{x})}}{\frac{\mathrm{x}, \mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x}) \vdash \mathrm{P}(\mathrm{x})}{\text { Firt }}} \text { Use} \\
\frac{\mathrm{x} \vdash(\mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x})) \rightarrow \mathrm{P}(\mathrm{x})}{\vdash \forall \mathrm{x} .(\mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x})) \rightarrow \mathrm{P}(\mathrm{x})}
\end{gathered}
$$

## Elimination

$$
\frac{\Gamma[\mathrm{P}[\mathrm{x}:=\mathrm{t}]] \vdash \mathrm{Q}}{\Gamma[\forall x . \mathrm{P}] \vdash \mathrm{Q}} \text { Instantiate }
$$

(side condition: t is well-scoped in $\Gamma$ )

## Elimination

$$
\frac{\Gamma[\mathrm{P}[\mathrm{x}:=\mathrm{t}]] \vdash \mathrm{Q}}{\Gamma[\forall x . \mathrm{P}] \vdash \mathrm{Q}} \text { Instantiate }
$$

(side condition: t is well-scoped in $\Gamma$ )
"If we have $P$ for all $x$, then we can pick any well-scoped $t$ we like to stand in for it."

$$
\Gamma[\mathrm{h}(\mathrm{~s}()) \rightarrow \mathrm{m}(\mathrm{~s}())] \vdash \mathrm{m}(\mathrm{~s}()) \quad \text { Apply }
$$

## Done

 $\Gamma[\forall \mathrm{x} . \mathrm{h}(\mathrm{x}) \rightarrow \mathrm{m}(\mathrm{x})] \vdash \mathrm{m}(\mathrm{s}(\mathrm{)})$$$
\Gamma \vdash \mathrm{m}(\mathrm{~s}())
$$

$\forall \mathrm{x} . \mathrm{h}(\mathrm{x}) \rightarrow \mathrm{m}(\mathrm{x}) \vdash \mathrm{h}(\mathrm{s}(\mathrm{)}) \rightarrow \mathrm{m}(\mathrm{s}(\mathrm{)})$

$$
\vdash(\forall \mathrm{x} \cdot \mathrm{~h}(\mathrm{x}) \rightarrow \mathrm{m}(\mathrm{x})) \rightarrow \mathrm{h}(\mathrm{~s}(\mathrm{)}) \rightarrow \mathrm{m}(\mathrm{~s}())
$$

where $\Gamma=\forall \mathrm{x} . \mathrm{h}(\mathrm{x}) \rightarrow \mathrm{m}(\mathrm{x}), \mathrm{h}(\mathrm{s}())$

## Summary

- To prove $\forall x . P(x)$, we must prove $P\left(x_{0}\right)$ for a general $x_{0}$.
- To use $\forall x . P(X)$, we get to choose the $t$ we use for $x$.


# Predicate Logic : Natural Deduction, Part 4 Rules for "Exists" 

## What does $\exists x . P$ mean?

(assuming a domain of discourse)
Answer 1 : there is at least one "a" such that $\mathrm{P}[\mathrm{x}:=\mathrm{a}]$ is true.
(we think of "exists" as an infinite disjunction)

## What does $\exists x . P$ mean?

(assuming a domain of discourse)
Answer 1 : there is at least one "a" such that $\mathrm{P}[\mathrm{x}:=\mathrm{a}]$ is true.
(we think of "exists" as an infinite disjunction)
Answer 2 : thinking about proofs:
To prove a $\exists x . P$ :

- We must provide a witness term t such that $\mathrm{P}[\mathrm{x}:=\mathrm{t}]$.

To use a proof of $\exists$ x.P:

- We have to work with an arbitrary $x_{0}$ and all we know is $\mathrm{P}\left[\mathrm{x}:=\mathrm{x}_{0}\right]$.


## Introduction

$$
\frac{\Gamma \vdash \mathrm{P}[\mathrm{x}:=\mathrm{t}]}{\Gamma \vdash \exists \mathrm{x} . \mathrm{P}} \text { ExisTs }
$$

(side condition: t is well-scoped in $\Gamma$ )
"To prove $\exists x . P$, we have to provide a witness $t$ for $x$, and show that $\mathrm{P}[\mathrm{x}:=\mathrm{t}]$ "

| human(socrates()) [human(socrates())] $\vdash$ human(socrates()) | Done |
| :---: | :---: |
| human(socrates()) $\vdash$ human(socrates()) |  |
| human(socrates()) $\vdash \exists \mathrm{x}$.human(x) |  |
| $\vdash$ human(socrates()) $\rightarrow(\exists \mathrm{x} . \operatorname{human}(\mathrm{x})$ ) |  |

## Elimination

$$
\frac{\Gamma, x_{0}, P\left[x:=x_{0}\right] \vdash Q}{\Gamma[\exists x . P] \vdash Q} \text { UnPACK }
$$

"To use $\exists x . P$, we get some arbitrary $x_{0}$ that we know $P\left[x:=x_{0}\right]$ about."

## Done

$\exists \mathrm{x} . \mathrm{h}(\mathrm{x}) \wedge \mathrm{m}(\mathrm{x})$, ali, $\mathrm{h}($ ali $) \wedge \mathrm{m}($ ali $)[\mathrm{h}($ ali $)] \vdash \mathrm{h}($ ali $)$
$\frac{\exists \mathrm{x} . \mathrm{h}(\mathrm{x}) \wedge \mathrm{m}(\mathrm{x}), \text { ali, } \mathrm{h}(\text { ali }) \wedge \mathrm{m}(\text { ali })[\mathrm{h}(\text { ali }) \wedge \mathrm{m}(\text { ali })] \vdash \mathrm{h}(\text { ali })}{\exists \mathrm{x} . \mathrm{h}(\mathrm{x}) \wedge \mathrm{m}(\mathrm{x}), \text { ali, } \mathrm{h}(\text { ali }) \wedge \mathrm{m}(\text { ali }) \vdash \mathrm{h}(\text { ali })} \mathrm{F}$

$$
\exists \mathrm{x} . \mathrm{h}(\mathrm{x}) \wedge \mathrm{m}(\mathrm{x}), \text { ali, } \mathrm{h}(\mathrm{ali}) \wedge \mathrm{m}(\mathrm{ali}) \vdash \exists \mathrm{x} . \mathrm{h}(\mathrm{x})
$$

$$
\exists \mathrm{x} . \mathrm{h}(\mathrm{x}) \wedge \mathrm{m}(\mathrm{x})[\exists \mathrm{x} . \mathrm{h}(\mathrm{x}) \wedge \mathrm{m}(\mathrm{x})] \vdash \exists \mathrm{x} . \mathrm{h}(\mathrm{x})
$$

$$
\exists \mathrm{x} . \mathrm{h}(\mathrm{x}) \wedge \mathrm{m}(\mathrm{x}) \vdash \exists \mathrm{x} . \mathrm{h}(\mathrm{x})
$$

## Comparing $\wedge$ and $\forall$

## Introduction

$$
\frac{\Gamma \vdash \mathrm{P}_{1} \quad \Gamma \vdash \mathrm{P}_{2}}{\Gamma \vdash \mathrm{P}_{1} \wedge \mathrm{P}_{2}} \text { SPLIT }
$$

$$
\frac{\Gamma, x_{0} \vdash P\left[x:=x_{0}\right]}{\Gamma \vdash \forall x . P} \forall-I
$$

For $\wedge$, we have to prove $P_{i}$, no matter what $i$ is. For $\forall$, we have to prove $P\left[x:=x_{0}\right]$, no matter what $x_{0}$ is.

## Comparing $\wedge$ and $\forall$

## Elimination

$$
\begin{gathered}
\frac{\Gamma\left[\mathrm{P}_{1}\right] \vdash \mathrm{Q}}{\Gamma\left[\mathrm{P}_{1} \wedge \mathrm{P}_{2}\right] \vdash \mathrm{Q}} \text { First } \frac{\Gamma\left[\mathrm{P}_{2}\right] \vdash \mathrm{Q}}{\Gamma\left[\mathrm{P}_{1} \wedge \mathrm{P}_{2}\right] \vdash \mathrm{Q}} \text { Second } \\
\frac{\Gamma[\mathrm{P}[\mathrm{x}:=\mathrm{t}]] \vdash \mathrm{Q}}{\Gamma[\forall x . \mathrm{P}] \vdash \mathrm{Q}} \text { Instantiate }
\end{gathered}
$$

For $\wedge$, we choose 1 or 2 . For $\forall$, we choose $t$.

## Comparing $\vee$ and $\exists$

## Introduction

$$
\frac{\Gamma \vdash P_{1}}{\Gamma \vdash P_{1} \vee P_{2}} \text { Left } \quad \frac{\Gamma \vdash P_{2}}{\Gamma \vdash P_{1} \vee P_{2}} \text { Right } \quad \frac{\Gamma \vdash P[x:=\mathrm{t}]}{\Gamma \vdash \exists x . P} \text { Exists }
$$

For $\vee$, we choose which of 1 or 2 we want. For $\exists$, we choose the witnessing term t .

## Comparing $\vee$ and $\exists$

## Elimination

$$
\frac{\Gamma, \mathrm{P}_{1} \vdash \mathrm{Q} \quad \Gamma, \mathrm{P}_{2} \vdash \mathrm{Q}}{\Gamma\left[\mathrm{P}_{1} \vee \mathrm{P}_{2}\right] \vdash \mathrm{Q}} \text { CASES } \quad \frac{\Gamma, \mathrm{x}_{0}, \mathrm{P}\left[\mathrm{x}:=\mathrm{x}_{0}\right] \vdash \mathrm{Q}}{\Gamma[\exists \mathrm{x} . \mathrm{P}] \vdash \mathrm{Q}} \text { UnPACK }
$$

For $\vee$, we must deal with 1 or 2 . For $\exists$, we must cope with any $x_{0}$.

## Summary

- To prove $\exists x . P(x)$ we must give a witness $t$ and prove $P(t)$.
- To use $\exists x . P(X)$ we get to assume there is some $y$ and $P(y)$.


## Predicate Logic : Natural Deduction, Part 5 Using the interactive prover

