

CS208 (Semester 1) Week 7 : Predicate Logic : Natural Deduction

Dr. Robert Atkey

Computer & Information Sciences

Tracking free variables

We are going to prove things like:

$$\vdash \forall \mathbf{x}.(\mathbf{p}(\mathbf{x}) \land \mathbf{q}(\mathbf{x})) \rightarrow \mathbf{p}(\mathbf{x})$$

This will mean we will have proof states like:

$$\dots \vdash (p(x) \land q(x)) \to p(x)$$

We need to keep track of variables as well as assumed formulas to the left of the \vdash "turnstile".

Atkey

2. Each P_j only contains free variables that appear to the *left* of it

Predicate Logic : Natural Deduction, Part 1: Upgrading Natural Deduction

Well-scoped terms and formulas

If we have a list of variables and assumptions (a "context") university of

$$\Gamma = P_1, x_1, \ldots, x_i, P_j, \ldots, x_m, P_n$$

 Γ is the name we're giving to the list

- A formula P is *well-scoped in* Γ if all the free variables of P appear in Γ.
- A term t is *well-scoped in* Γ if all the variables of t appear in Γ .
- All formulas in Γ must be well-scoped by the variables to their left (same condition as previous slide).
- The focus and conclusion must always be well-scoped in Γ .

Well-scoped terms and formulas

Are the following well-scoped?

1. Context: x Formula: $\forall y.P(y) \rightarrow Q(y)$

Well-scoped terms and formulas

Are the following well-scoped?

1. Context: x Formula: $\forall y.P(y) \rightarrow Q(y)$ Yes. The variable y is bound in the formula.

Well-scoped terms and formulas

- 1. Context: x Formula: $\forall y.P(y) \rightarrow Q(y)$ Yes. The variable y is bound in the formula.
- **2.** Context: x Formula: $\forall y.P(y) \rightarrow Q(x,y)$

Well-scoped terms and formulas

- 1. Context: x Formula: $\forall y.P(y) \rightarrow Q(y)$ Yes. The variable y is bound in the formula.
- 2. Context: x Formula: $\forall y.P(y) \rightarrow Q(x,y)$ Yes. The variable y is bound in the formula, and the free variable x is in the context.

Well-scoped terms and formulas

Are the following well-scoped?

1. Context: *empty* Formula: $\forall y.P(y) \rightarrow Q(x,y)$

Well-scoped terms and formulas

Are the following well-scoped?

1. Context: *empty* Formula: $\forall y.P(y) \rightarrow Q(x,y)$ No. The variable y is bound in the formula, but the free variable x is not in the context.

Well-scoped terms and formulas

- 1. Context: *empty* Formula: $\forall y.P(y) \rightarrow Q(x,y)$ No. The variable y is bound in the formula, but the free variable x is not in the context.
- **2.** Context: *empty* Term: x + 1

Well-scoped terms and formulas

- 1. Context: *empty* Formula: $\forall y.P(y) \rightarrow Q(x,y)$ No. The variable y is bound in the formula, but the free variable x is not in the context.
- 2. Context: *empty* Term: x + 1No. The variable x is free in the term but is not in the context.

Well-scoped terms and formulas

- 1. Context: *empty* Formula: $\forall y.P(y) \rightarrow Q(x,y)$ No. The variable y is bound in the formula, but the free variable x is not in the context.
- 2. Context: *empty* Term: x + 1No. The variable x is free in the term but is not in the context.

Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

 $x,y \; [P(x,y)] \vdash Q(x)$

Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

 $x,y \; [P(x,y)] \vdash Q(x)$

Yes. The free variables of the focus and conclusion are x, y, which are in the context.

Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

 $x \; [\mathsf{P}(x,y)] \vdash Q(x)$

Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

 $x \; [\mathsf{P}(x,y)] \vdash Q(x)$

No. The free variables of the focus and conclusion are x, y, but y is not in the context.

Well-scoped Judgements

1. Is this judgement well-scoped:

 $x, Q(x), y [P(x,y)] \vdash Q(y)$

Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

$\mathbf{x}, \mathbf{Q}(\mathbf{x}), \mathbf{y} \; [\mathbf{P}(\mathbf{x}, \mathbf{y})] \vdash \mathbf{Q}(\mathbf{y})$

Yes. Each variable appears before (reading left to right) it is used.

Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

 $\forall x.Q(x), y \; [\mathsf{P}(x,y)] \vdash Q(y)$

Well-scoped Judgements

Is the following well-scoped?

1. Is this judgement well-scoped:

 $\forall x.Q(x), y \; [P(x,y)] \vdash Q(y)$

No. The x in the first Q(x) is OK, but the x in P(x, y) has not been declared in scope.

Summary

- 1. We started to upgrade Natural Deduction to Predicate Logic
- 2. We need to manage the *scope* of variables
- 3. To do so, we add them to the context
- 4. Variables may only be used by formulas to their right

From General to Specific

We will have general assumptions like:

 $\forall x.\mathrm{human}(x) \rightarrow \mathrm{mortal}(x)$

And we want to *specialise* (or *instantiate*) to:

 $\operatorname{human}(\operatorname{\mathsf{socrates}}()) \to \operatorname{mortal}(\operatorname{\mathsf{socrates}}())$

Substitution

The notation

P[x := t]

means "replace all *free* occurrences of x in P with t".

- ▶ x is a *variable*
- P is a formula
- ▶ t is a *term*

But there is a subtlety...

Substitution Examples

$(mortal(\mathbf{x}))[\mathbf{x} := socrates()]$ $\implies mortal(socrates())$

Substitution Examples

$\begin{array}{l} (\forall y. \mathrm{weatherIs}(d,y) \rightarrow \mathrm{weatherIs}(\mathsf{dayAfter}(d),y))[d := \mathsf{tuesday}] \\ \Longrightarrow \ \forall y. \mathrm{weatherIs}(\mathsf{tuesday},y) \rightarrow \mathrm{weatherIs}(\mathsf{dayAfter}(\mathsf{tuesday}),y) \end{array}$

Substitution Examples

$(\exists y.same Elements(x, y) \land sorted(y))[x := cons(z_1, cons(z_2, nil))] \\ \implies \exists y.same Elements(cons(z_1, cons(z_2, nil)), y) \land sorted(y)$

$$(\forall y.x + y = y + x)[x := z - z]$$

$$\implies \forall y.(z - z) + y = y + (z - z)$$

Accidental Name Capture

If we substitute naively, then we produce nonsense:

- ∃y.sameElements(x, y)
 "there exists a y that has the same elements as x"
- **3.** ∃y.sameElements(append(y, [1, 2]), y) *"there exists a* y *that has the same elements as* y + [1, 2]?"

Capture Avoidance

Solution: Rename bound variables

$$(\exists y.sameElements(x, y))[x := append(y, [1, 2])] \\ \implies (\exists z.sameElements(x, z))[x := append(y, [1, 2])] \\ \implies \exists z.sameElements(append(y, [1, 2]), z)$$

Capture Avoiding Substitution

When working out

$$\mathsf{P}[\mathsf{x} := \mathsf{t}]$$

If any of the variables in t are bound in P then rename them before doing the substitution.

1.
$$P(x,y)[x := y + y]$$

1.
$$P(x,y)[x := y + y] = P(y + y, y)$$

1.
$$P(x,y)[x := y + y] = P(y + y, y)$$

2.
$$P(x,y)[y := y + y]$$

1.
$$P(x,y)[x := y + y] = P(y + y, y)$$

2.
$$P(x,y)[y := y + y] = P(x,y+y)$$

1.
$$P(x,y)[x := y + y] = P(y + y, y)$$

2.
$$P(x,y)[y := y + y] = P(x,y+y)$$

3.
$$(\forall x.P(x,y))[x := y + y]$$

1.
$$P(x,y)[x := y + y] = P(y + y, y)$$

2.
$$P(x,y)[y := y + y] = P(x,y+y)$$

3.
$$(\forall x.P(x,y))[x := y + y] = \forall x.P(x,y)$$

Substitution Examples

1. $(\forall x.P(x,y))[y := x + x]$

1.
$$(\forall x.P(x,y))[y := x + x] = \forall z.P(z,x+x)$$

Renaming!

- 1. $(\forall x.P(x,y))[y := x + x] = \forall z.P(z,x+x)$ Renaming!
- **2.** $(\forall x.P(x,y) \rightarrow (\exists z.Q(y,z)))[y := z + z]$

- 1. $(\forall x.P(x,y))[y := x + x] = \forall z.P(z,x+x)$ Renaming!
- 2. $(\forall x.P(x,y) \rightarrow (\exists z.Q(y,z)))[y := z + z]$ = $\forall x.P(x,z+z) \rightarrow (\exists w.Q(z+z,w))$ Renaming!

1.
$$(\forall x.P(x,y))[y := x + x] = \forall z.P(z,x+x)$$

Renaming!

2.
$$(\forall x.P(x,y) \rightarrow (\exists z.Q(y,z)))[y := z + z]$$

= $\forall x.P(x,z+z) \rightarrow (\exists w.Q(z+z,w))$
Renaming!

3.
$$(\forall x.P(x,z) \rightarrow (\exists z.Q(y,z)))[z := x + x]$$

1.
$$(\forall x.P(x,y))[y := x + x] = \forall z.P(z,x+x)$$

Renaming!

2.
$$(\forall x.P(x,y) \rightarrow (\exists z.Q(y,z)))[y := z + z]$$

= $\forall x.P(x,z+z) \rightarrow (\exists w.Q(z+z,w))$
Renaming!

3.
$$(\forall x.P(x,z) \rightarrow (\exists z.Q(y,z)))[z := x + x]$$

= $\forall w.P(w, x + x) \rightarrow (\exists z.Q(y,z))$
Renaming! and no substitution of the final z

Summary

$$P[x := t]$$

is how we go from the general x to the specific t.

We need to be careful to rename bound variables to avoid accidental name capture.

Predicate Logic : Natural Deduction, Part 3 Rules for "Forall"

What does $\forall x.P$ mean?

(assuming a domain of discourse)

Answer 1 : it means for all individuals "a", P[x := a] is true.

(we think of "for all" as an infinite conjunction)

What does $\forall x.P$ mean?

(assuming a domain of discourse)

Answer 1 : it means for all individuals "a", P[x := a] is true.

(we think of "for all" as an infinite conjunction)

Answer 2 : thinking about proofs:

To *prove* a $\forall x.P$:

- We must prove $P[x := x_0]$ for a *general* x_0 .
- ▶ The x₀ stands in for any "a" that might be chosen.

To *use* a proof of $\forall x.P$:

• We can *choose* any t we like for x, and get P[x := t]

Introduction rule

$$\frac{\Gamma\!\!, x_0 \vdash Q[x := x_0]}{\Gamma \vdash \forall x.Q} \text{ Introduce} \forall$$

Introduction rule

$$rac{\Gamma, \mathbf{x}_0 \vdash \mathbf{Q}[\mathbf{x} := \mathbf{x}_0]}{\Gamma \vdash orall \mathbf{x}. \mathbf{Q}}$$
 Introduce

"To prove $\forall x.Q$, we prove $Q[x := x_0]$, assuming an arbitrary x_0 ."

Elimination

$$\frac{\Gamma \; [P[x:=t]] \vdash Q}{\Gamma \; [\forall x.P] \vdash Q} \; \text{Instantiate}$$

(side condition: t is well-scoped in Γ)

Elimination

$$\frac{\Gamma \; [P[x:=t]] \vdash Q}{\Gamma \; [\forall x.P] \vdash Q} \; \text{Instantiate}$$

(side condition: t is well-scoped in Γ)

"If we have P for all x, then we can pick any well-scoped t we like to stand in for it."

$$\begin{array}{c|c} \hline{\Gamma \left[h(s()) \right] \vdash h(s())} & \text{Done} \\ \hline{\Gamma \left[h(s()) \right] \vdash h(s())} & \text{Use} & \hline{\Gamma \left[m(s()) \right] \vdash m(s())} & \text{Done} \\ \hline{\Gamma \left[h(s()) \rightarrow m(s()) \right] \vdash m(s())} & \text{Apply} \\ \hline{\Gamma \left[h(s()) \rightarrow m(s()) \right] \vdash m(s())} & \text{Instantiate} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \vdash m(s())} & \text{Use} \\ \hline{\Gamma \vdash m(s())} & \text{Use} \\ \hline{\forall x.h(x) \rightarrow m(x) \vdash h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\forall x.h(x) \rightarrow m(x)) \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \vdash h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x) \right] \rightarrow h(s()) \rightarrow m(s())} & \text{Introduce} \\ \hline{\Gamma \left[\forall x.h(x) \rightarrow m(x)$$

where $\Gamma = \forall x.h(x) \rightarrow m(x), h(s())$

Predicate Logic : Natural Deduction, Part 3: Rules for "Forall"

Summary

► To prove ∀x.P(x), we must prove P(x₀) for a general x₀.
► To use ∀x.P(X), we get to choose the t we use for x.

What does $\exists x.P$ mean?

(assuming a domain of discourse)

Answer 1 : there is at least one "a" such that P[x := a] is true.

(we think of "exists" as an infinite disjunction)

What does $\exists x.P$ mean?

(assuming a domain of discourse)

Answer 1 : there is at least one "a" such that P[x := a] is true.

(we think of "exists" as an infinite disjunction)

Answer 2 : thinking about proofs:

To *prove* a $\exists x.P$:

• We must provide a *witness* term t such that P[x := t].

To *use* a proof of $\exists x.P$:

We have to work with an arbitrary x₀ and all we know is P[x := x₀].

Introduction

$$\frac{\Gamma \vdash P[x := t]}{\Gamma \vdash \exists x.P} \text{ Exists}$$

(side condition: t is well-scoped in Γ)

"To prove $\exists x.P$, we have to provide a witness t for x, and show that P[x := t]"

Elimination

$$\frac{\Gamma, x_0, \mathsf{P}[\mathsf{x} := x_0] \vdash Q}{\Gamma \ [\exists \mathsf{x}.\mathsf{P}] \vdash Q} \ \mathsf{Unpack}$$

"To use $\exists x.P$, we get some arbitrary x_0 that we know $P[x := x_0]$ about."

Comparing \wedge and \forall

Introduction

$$\frac{\Gamma \vdash P_1 \quad \Gamma \vdash P_2}{\Gamma \vdash P_1 \land P_2} \text{ Split} \qquad \qquad \frac{\Gamma, x_0 \vdash P[x := x_0]}{\Gamma \vdash \forall x.P} \; \forall \text{-1}$$

For \land , we have to prove P_i , no matter what i is. For \forall , we have to prove $P[x := x_0]$, no matter what x_0 is.

Comparing \wedge and \forall

Elimination

For \wedge , we choose 1 or 2. For \forall , we choose t.

Comparing \lor **and** \exists

Introduction

$$\frac{\Gamma \vdash \mathsf{P}_1}{\Gamma \vdash \mathsf{P}_1 \lor \mathsf{P}_2} \text{ Left} \qquad \frac{\Gamma \vdash \mathsf{P}_2}{\Gamma \vdash \mathsf{P}_1 \lor \mathsf{P}_2} \text{ Right} \qquad \frac{\Gamma \vdash \mathsf{P}[x := t]}{\Gamma \vdash \exists x.\mathsf{P}} \text{ Exists}$$

For \lor , we choose which of 1 or 2 we want. For \exists , we choose the witnessing term t.

Comparing \lor **and** \exists

Elimination

$$\frac{\Gamma, \mathsf{P}_1 \vdash Q}{\Gamma \; [\mathsf{P}_1 \lor \mathsf{P}_2] \vdash Q} \; \mathsf{Cases} \qquad \quad \frac{\Gamma, x_0, \mathsf{P}[x := x_0] \vdash Q}{\Gamma \; [\exists x.\mathsf{P}] \vdash Q} \; \mathsf{Unpack}$$

For \lor , we must deal with 1 or 2. For \exists , we must cope with any x_0 .

Summary

To prove ∃x.P(x) we must give a witness t and prove P(t).
To use ∃x.P(X) we get to assume there is some y and P(y).

Predicate Logic : Natural Deduction, Part 5 Using the interactive prover